1
|
Ryu G, Lee E, Park SI, Park M, Hong SD, Jung YG, Kim HY. The Mechanism of Action and Clinical Efficacy of Low-Dose Long-Term Macrolide Therapy in Chronic Rhinosinusitis. Int J Mol Sci 2023; 24:ijms24119489. [PMID: 37298439 DOI: 10.3390/ijms24119489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Various chronic inflammatory airway diseases can be treated with low-dose, long-term (LDLT) macrolide therapy. LDLT macrolides can be one of the therapeutic options for chronic rhinosinusitis (CRS) due to their immunomodulatory and anti-inflammatory actions. Currently, various immunomodulatory mechanisms of the LDLT macrolide treatment have been reported, as well as their antimicrobial properties. Several mechanisms have already been identified in CRS, including reduced cytokines such as interleukin (IL)-8, IL-6, IL-1β, tumor necrosis factor-α, transforming growth factor-β, inhibition of neutrophil recruitment, decreased mucus secretion, and increased mucociliary transport. Although some evidence of effectiveness for CRS has been published, the efficacy of this therapy has been inconsistent across clinical studies. LDLT macrolides are generally believed to act on the non-type 2 inflammatory endotype of CRS. However, the effectiveness of LDLT macrolide treatment in CRS is still controversial. Here, we reviewed the immunological mechanisms related to CRS in LDLT macrolide therapy and the treatment effects according to the clinical situation of CRS.
Collapse
Affiliation(s)
- Gwanghui Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Eunkyu Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Song I Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang 10380, Republic of Korea
| | - Minhae Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Sang Duk Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Yong Gi Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Hyo Yeol Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| |
Collapse
|
2
|
Sputum-Rheology-Based Strategy for Guiding Azithromycin Prescription in COPD Patients with Frequent Exacerbations: A Randomized, Controlled Study (“COPD CARhE”). Biomedicines 2023; 11:biomedicines11030740. [PMID: 36979719 PMCID: PMC10045420 DOI: 10.3390/biomedicines11030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
(1) Background: We have previously shown that sputum rheology can discriminate between patients with COPD and other muco-obstructive lung diseases, and that it is correlated with mucin content and sputum eosinophilia. We now hypothesize that it could be a more-accurate guide than clinical evaluation for the prescription of azithromycin to prevent exacerbations of COPD and to reduce exposure to antibiotics; (2) Methods: “COPD CaRhe” is a multicentric, randomized, controlled trial comparing outcomes in two parallel arms (36 vs. 36 patients). Patients will be recruited in the university hospitals of Montpellier, Bordeaux, and Toulouse, in France, and they should have a diagnosis of COPD with frequent exacerbations (≥3/year). Enrollment will occur during a routine visit to a respiratory department, and follow-up visits will occur every 3 months for a period of 1 year. At each visit, a 3-month prescription of azithromycin will be provided to those patients who obtain a score of <70 on the Cough and Sputum Assessment Questionnaire (CASA-Q) or a critical stress score of σc > 39 on a rheological assessment of sputum, depending upon their randomization group. The primary outcome will be the number of exacerbations of COPD; (3) Discussion: By using sputum rheology, the COPD CaRhe study may provide clinicians with an objective biomarker to guide the prescription of azithromycin while reducing the cumulative exposure to macrolides.
Collapse
|
3
|
Taha I, Abdou Y, Hammad I, Nady O, Hassan G, Farid MF, Alofi FS, Alharbi N, Salamah E, Aldeeb N, Elmehallawy G, Alruwathi R, Sarah E, Rashad A, Rammah O, Shoaib H, Omar ME, Elmehallawy Y, Kassim S. Utilization of Antibiotics for Hospitalized Patients with Severe Coronavirus Disease 2019 in Al-Madinah Al-Munawara, Saudi Arabia: A Retrospective Study. Infect Drug Resist 2022; 15:7401-7411. [DOI: 10.2147/idr.s386162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/03/2022] [Indexed: 12/15/2022] Open
|
4
|
Dransfield M, Rowe S, Vogelmeier CF, Wedzicha J, Criner GJ, Han MK, Martinez FJ, Calverley P. Cystic Fibrosis Transmembrane Conductance Regulator: Roles in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2022; 205:631-640. [DOI: 10.1164/rccm.202109-2064tr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Mark Dransfield
- University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Steven Rowe
- University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | | - Jadwiga Wedzicha
- Imperial College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Gerard J. Criner
- Lewis Katz School of Medicine at Temple University, 12314, Philadelphia, Pennsylvania, United States
| | - MeiLan K. Han
- University of Michigan, Ann Arbor, Michigan, United States
| | | | - Peter Calverley
- University of Liverpool, Liverpool, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
5
|
Thomsen K, Kobayashi O, Kishi K, Shirai R, Østrup Jensen P, Heydorn A, Hentzer M, Calum H, Christophersen L, Høiby N, Moser C. Animal models of chronic and recurrent Pseudomonas aeruginosa lung infection: significance of macrolide treatment. APMIS 2021; 130:458-476. [PMID: 34117660 DOI: 10.1111/apm.13161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022]
Abstract
Animal models of human diseases are invaluable and inevitable elements in identifying and testing novel treatments for serious diseases, including severe infections. Planning and conducting investigator-initiated human trials are generally accepted as being enormously challenging. In contrast, it is often underestimated how much planning, including background and modifying experiments, is needed to establish a relevant infectious disease animal model. However, representative animal infectious models, well designed to test generated hypotheses, are useful to improve our understanding of pathogenesis, virulence factors and host response and to identify novel treatment candidates and therapeutic strategies. Such results can subsequently proceed to clinical testing if suitable. The present review aims at presenting all the pulmonary Pseudomonas aeruginosa infectious models we have knowledge of and the detailed descriptions of established animal models in our laboratory focusing on macrolide therapy are presented.
Collapse
Affiliation(s)
- Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Osamu Kobayashi
- Department of Infectious Diseases, National Cancer Center Hospital, Tokyo, Japan
| | - Kenji Kishi
- Oitaken Kouseiren Tsurumi Hospital, Tsurumi, Beppu City, Japan
| | - Ryo Shirai
- Department of Internal Medicine, Kawasaki Medical School, General Medical Center, Okayama, Japan
| | - Peter Østrup Jensen
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Arne Heydorn
- Department of Endocrinology and Nephrology, Nordsjaellands Hospital, Hillerød, Denmark
| | - Morten Hentzer
- Department of Molecular Pharmacology, H. Lundbeck A/S, Copenhagen, Denmark
| | - Henrik Calum
- Department of Clinical Microbiology, Hvidovre Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars Christophersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Seabra G, Ventura Mendes RF, Dos Santos Amorim LFV, Peregrino IV, Branquinha MH, Dos Santos ALS, Nunes APF. Azithromycin Use in COVID-19 Patients: Implications on the Antimicrobial Resistance. Curr Top Med Chem 2021; 21:677-683. [PMID: 34028347 DOI: 10.2174/156802662108210319145317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Gabriela Seabra
- Laboratorio de Resistencia Bacteriana (RESBAC), Departamento de Microbiologia, Centro de Ciencias da Saude (CCS), Universidade Federal do Espirito Santo (UFES), Vitoria, Brazil
| | - Roberta Ferreira Ventura Mendes
- Laboratorio de Resistencia Bacteriana (RESBAC), Departamento de Microbiologia, Centro de Ciencias da Saude (CCS), Universidade Federal do Espirito Santo (UFES), Vitoria, Brazil
| | - Luiz Felipe Vieira Dos Santos Amorim
- Laboratorio de Resistencia Bacteriana (RESBAC), Departamento de Microbiologia, Centro de Ciencias da Saude (CCS), Universidade Federal do Espirito Santo (UFES), Vitoria, Brazil
| | - Ingrid Vianez Peregrino
- Laboratorio de Resistencia Bacteriana (RESBAC), Departamento de Microbiologia, Centro de Ciencias da Saude (CCS), Universidade Federal do Espirito Santo (UFES), Vitoria, Brazil
| | - Marta Helena Branquinha
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - André Luis Souza Dos Santos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ana Paula Ferreira Nunes
- Laboratorio de Resistencia Bacteriana (RESBAC), Departamento de Microbiologia, Centro de Ciencias da Saude (CCS), Universidade Federal do Espirito Santo (UFES), Vitoria, Brazil
| |
Collapse
|
7
|
Echeverría-Esnal D, Martin-Ontiyuelo C, Navarrete-Rouco ME, De-Antonio Cuscó M, Ferrández O, Horcajada JP, Grau S. Azithromycin in the treatment of COVID-19: a review. Expert Rev Anti Infect Ther 2020; 19:147-163. [DOI: 10.1080/14787210.2020.1813024] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Daniel Echeverría-Esnal
- Service of Pharmacy, Hospital Del Mar, Hospital Del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
| | | | - María Eugenia Navarrete-Rouco
- Service of Pharmacy, Hospital Del Mar, Hospital Del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Marta De-Antonio Cuscó
- Service of Pharmacy, Hospital Del Mar, Hospital Del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Olivia Ferrández
- Service of Pharmacy, Hospital Del Mar, Hospital Del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Juan Pablo Horcajada
- Service of Infectious Diseases, Hospital Del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d’Investigacions Mèdiques (IMIM), Spain
- Department of Pharmacy, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Santiago Grau
- Service of Pharmacy, Hospital Del Mar, Hospital Del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
- Department of Pharmacy, Universitat Autònoma De Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Ioannides P, Giedzinski E, Limoli CL. Evaluating different routes of extracellular vesicle administration for cranial therapies. ACTA ACUST UNITED AC 2020; 6. [PMID: 34277952 PMCID: PMC8281946 DOI: 10.20517/2394-4722.2020.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aim: Human stem cell-derived extracellular vesicles (EV) provide many advantages over cell-based therapies for the treatment of functionally compromised tissue beds and organ sites. Here we aimed to highlight multiple administration routes for the potential treatment of various forms of brain injury. Methods: Human neural stem cell-derived EV were isolated from conditioned media and administered via three distinct routes: intrahippocampal transplantation, retro-orbital vein injection, and intranasal. EV were administered after which brains were evaluated to determine the capability of EV to translocate into normal tissue. Results: Data showed no significant differences in the amount of EV able to translocate across the brain, indicating the functional equivalence of each administration route to effectively deliver EV to the brain parenchyma. Conclusion: Findings show that both systemic administration routes (retro-orbital vein or intranasal delivery) afforded effective penetrance and perfusion of EV throughout the brain in a minimally invasive manner, and point to a translationally tractable option for treating certain neurological disorders including those resulting from cranial irradiation procedures.
Collapse
Affiliation(s)
- Pericles Ioannides
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| |
Collapse
|
9
|
Su YC, Jalalvand F, Thegerström J, Riesbeck K. The Interplay Between Immune Response and Bacterial Infection in COPD: Focus Upon Non-typeable Haemophilus influenzae. Front Immunol 2018; 9:2530. [PMID: 30455693 PMCID: PMC6230626 DOI: 10.3389/fimmu.2018.02530] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating respiratory disease and one of the leading causes of morbidity and mortality worldwide. It is characterized by persistent respiratory symptoms and airflow limitation due to abnormalities in the lower airway following consistent exposure to noxious particles or gases. Acute exacerbations of COPD (AECOPD) are characterized by increased cough, purulent sputum production, and dyspnea. The AECOPD is mostly associated with infection caused by common cold viruses or bacteria, or co-infections. Chronic and persistent infection by non-typeable Haemophilus influenzae (NTHi), a Gram-negative coccobacillus, contributes to almost half of the infective exacerbations caused by bacteria. This is supported by reports that NTHi is commonly isolated in the sputum from COPD patients during exacerbations. Persistent colonization of NTHi in the lower airway requires a plethora of phenotypic adaptation and virulent mechanisms that are developed over time to cope with changing environmental pressures in the airway such as host immuno-inflammatory response. Chronic inhalation of noxious irritants in COPD causes a changed balance in the lung microbiome, abnormal inflammatory response, and an impaired airway immune system. These conditions significantly provide an opportunistic platform for NTHi colonization and infection resulting in a "vicious circle." Episodes of large inflammation as the consequences of multiple interactions between airway immune cells and NTHi, accumulatively contribute to COPD exacerbations and may result in worsening of the clinical status. In this review, we discuss in detail the interplay and crosstalk between airway immune residents and NTHi, and their effect in AECOPD for better understanding of NTHi pathogenesis in COPD patients.
Collapse
Affiliation(s)
- Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Farshid Jalalvand
- Department of Biology, Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - John Thegerström
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
10
|
Lantsov A, Ryabko M, Shchekin A. Compressed sensing approach for wrist vein biometrics. JOURNAL OF BIOPHOTONICS 2018; 11:e201700153. [PMID: 29027755 DOI: 10.1002/jbio.201700153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
The work describes features of the compressed sensing (CS) approach utilized for development of a wearable system for wrist vein recognition with single-pixel detection; we consider this system useful for biometrics authentication purposes. The CS approach implies use of a spatial light modulation (SLM) which, in our case, can be performed differently-with a liquid crystal display or diffusely scattering medium. We show that compressed sensing combined with above-mentioned means of SLM allows us to avoid using an optical system-a limiting factor for wearable devices. The trade-off between the 2 different SLM approaches regarding issues of practical implementation of CS approach for wrist vein recognition purposes is discussed. A possible solution of a misalignment problem-a typical issue for imaging systems based upon 2D arrays of photodiodes-is also proposed. Proposed design of the wearable device for wrist vein recognition is based upon single-pixel detection.
Collapse
Affiliation(s)
- Aleksey Lantsov
- Nano Photonics Lab, SAIT-Russia Team, Samsung R&D Institute Rus, Moscow, Russia
| | - Maxim Ryabko
- Nano Photonics Lab, SAIT-Russia Team, Samsung R&D Institute Rus, Moscow, Russia
| | - Aleksey Shchekin
- Nano Photonics Lab, SAIT-Russia Team, Samsung R&D Institute Rus, Moscow, Russia
| |
Collapse
|
11
|
Ha EVS, Rogers DF. Novel Therapies to Inhibit Mucus Synthesis and Secretion in Airway Hypersecretory Diseases. Pharmacology 2015; 97:84-100. [PMID: 26674354 DOI: 10.1159/000442794] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/26/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND In asthma and chronic obstructive pulmonary disease (COPD), airway mucus hypersecretion contributes to impaired mucociliary clearance, mucostasis and, potentially, the development of mucus plugging of the airways. SUMMARY Excess mucus production can be targeted via therapies that focus on inhibition mucin synthesis, via reducing expression of mucin (MUC) genes, and/or inhibition of mucin secretion into the airways. KEY MESSAGES This review discusses a number of therapeutic approaches to reduce airway mucus in asthma and COPD, including the use of synthetic and natural products. In particular, it highlights areas where clinical trials of inhibitors of particular target molecules are lacking. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors are an example of a targeted therapy that has been researched to reduce mucus synthesis, as have inhibitors of EGFR's downstream signalling pathways, for example, mitogen-activated protein kinase-13 and hypoxia inducible factor-1. However, their efficacy and safety profiles are currently not up to the mark. There is clinical potential in Bio-11006, which reduces mucus secretion via the inhibition of myristoylated alanine-rich C-kinase substrate and is currently in Phase IIb trial.
Collapse
Affiliation(s)
- Emily V S Ha
- National Heart and Lung Institute, Imperial College, London, UK
| | | |
Collapse
|
12
|
Consensus national sur la prescription de l’azithromycine dans la mucoviscidose. Rev Mal Respir 2015; 32:557-65. [DOI: 10.1016/j.rmr.2014.10.733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 10/19/2014] [Indexed: 01/22/2023]
|
13
|
Tojima I, Shimizu S, Ogawa T, Kouzaki H, Omura S, Sunazuka T, Shimizu T. Anti-inflammatory effects of a novel non-antibiotic macrolide, EM900, on mucus secretion of airway epithelium. Auris Nasus Larynx 2015; 42:332-6. [PMID: 25769240 DOI: 10.1016/j.anl.2015.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/16/2015] [Accepted: 02/02/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Low-dose, long-term use of 14-membered macrolides is effective for treatment of patients with chronic airway inflammation such as diffuse panbronchiolitis or chronic rhinosinusitis. However, long-term use of macrolides can promote the growth of drug-resistant bacteria, and the development of anti-inflammatory macrolides that lack antibiotic effects is desirable. Previously, we developed EM900, a novel 12-membered erythromycin A derivative, which has potent anti-inflammatory and immunomodulatory activities and lacks any antibacterial activity. We examined the anti-inflammatory effects of EM900 on mucus secretion from airway epithelial cells. METHODS To examine the in vivo effects of EM900 on airway inflammation, we induced hypertrophic and metaplastic changes of goblet cells in rat nasal epithelium via intranasal instillation of lipopolysaccharides. In vitro effects of EM900 on airway epithelial cells were examined using cultured human airway epithelial (NCI-H292) cells. Mucus secretion was evaluated via enzyme-linked immunosorbent assays with an anti-MUC5AC monoclonal antibody. RESULTS Oral administration of EM900 or clarithromycin (CAM) significantly inhibited LPS-induced mucus production from rat nasal epithelium. EM900, CAM, or erythromycin significantly inhibited MUC5AC secretion induced by tumor necrosis factor-α from NCI-H292 cells. MUC5AC mRNA expression was also significantly lower in EM900-treated cells. CONCLUSION These results indicated that a novel non-antibiotic macrolide, EM900 exerted direct inhibitory effects on mucus secretion from airway epithelial cells, and that it may have the potential to become a new anti-inflammatory drug for the treatment of chronic rhinosinusitis.
Collapse
Affiliation(s)
- Ichiro Tojima
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Japan.
| | - Shino Shimizu
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Japan
| | - Takao Ogawa
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Japan
| | - Hideaki Kouzaki
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Japan
| | - Satoshi Omura
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Toshiaki Sunazuka
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Takeshi Shimizu
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
14
|
Kakeya H, Seki M, Izumikawa K, Kosai K, Morinaga Y, Kurihara S, Nakamura S, Imamura Y, Miyazaki T, Tsukamoto M, Yanagihara K, Tashiro T, Kohno S. Efficacy of combination therapy with oseltamivir phosphate and azithromycin for influenza: a multicenter, open-label, randomized study. PLoS One 2014; 9:e91293. [PMID: 24632748 PMCID: PMC3954629 DOI: 10.1371/journal.pone.0091293] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/07/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Macrolides have antibiotic and immunomodulatory activities, which may have a favorable effect on the clinical outcome of patients with infections, including influenza. This study aimed to evaluate the effects of combination therapy with an anti-influenza agent, oseltamivir, and a single-dose formulation of azithromycin (AZM), which has been used for influenza-related secondary pneumonia, on influenza patients. The primary endpoint was a change in the expression levels of inflammatory cytokines. Secondary endpoints were the time required for resolution of influenza-related symptoms, incidence of complications, and adverse reactions. METHODS Patients with seasonal influenza were enrolled in this multicenter, open-label, randomized study. Patients were stratified according to the presence of a high risk factor and were randomized to receive combination therapy with oseltamivir plus an extended-release formulation of AZM (combo-group) or oseltamivir monotherapy (mono-group). RESULTS We enrolled 107 patients and randomized them into the mono-group (56 patients) or the combo-group (51 patients). All patients were diagnosed with influenza A infection, and none of the patients had comorbid pneumonia. Statistically significant differences were not observed in the expression levels of inflammatory cytokines and chemokines between the 2 groups. The maximum temperature in the combo-group was lower than that in the mono-group on day 3 through day 5 (p = 0.048), particularly on day 4 (p = 0.037). CONCLUSION To our knowledge, this is the first prospective, randomized, clinical trial of oseltamivir and AZM combination therapy for influenza. Although the difference in inflammatory cytokine expression level was not statistically significant, combination therapy showed an early resolution of some symptoms. NAME OF REGISTRY University hospital Medical Information Network (UMIN). TRIAL REGISTRATION NO UMIN000005371.
Collapse
Affiliation(s)
- Hiroshi Kakeya
- Department of Infection Control Science, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masafumi Seki
- Divison of Infection and Control and Prevention, Osaka University Hospital, Osaka, Japan
| | - Koichi Izumikawa
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Nagasaki University Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Kosuke Kosai
- Nagasaki University Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Yoshitomo Morinaga
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Shintaro Kurihara
- Nagasaki University Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Shigeki Nakamura
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshifumi Imamura
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Taiga Miyazaki
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Misuzu Tsukamoto
- Nagasaki University Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Takayoshi Tashiro
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shigeru Kohno
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
15
|
Poachanukoon O, Koontongkaew S, Monthanapisut P, Pattanacharoenchai N. Macrolides attenuate phorbol ester-induced tumor necrosis factor-α and mucin production from human airway epithelial cells. Pharmacology 2014; 93:92-9. [PMID: 24556631 DOI: 10.1159/000358366] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/06/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Macrolide antibiotics are effective drugs in chronic bronchiolitis and chronic rhinosinusitis with mucus hypersecretion. However, the mechanism of action is unclear. This study was designed to investigate the effect of azithromycin (AZM; 15-membered) and midecamycin acetate (MDM; 16-membered) on MUC5AC and MUC2 gene expression and secretion from human airway epithelial cells. The effects of the two macrolides on tumor necrosis factor-α (TNF-α) release were also examined. METHODS Confluent NCI-H292 human mucoepidermoid airways epithelial cells were pretreated with AZM or MDM for 2 h and then stimulated with 200 nmol/l phorbol 12-myristate 13-acetate (PMA) for 8 h. The MUC5AC and MUC2 gene expression was measured by real-time quantitative RT-PCR. Total mucin in culture supernatants was measured using enzyme-linked lectin assay. Enzyme-linked immunosorbent assay was used to determine MUC5AC, MUC2 and TNF-α released by the cells. RESULTS AZM and MDM attenuated PMA-induced MUC5AC and MUC2 gene and protein expression in NCI-H292 cells. They also suppressed PMA-mediated TNF-α in the cells. CONCLUSION The present study demonstrates that AZM and MDM suppress the synthesis of mucin and TNF-α from human airway epithelial cells.
Collapse
Affiliation(s)
- Orapan Poachanukoon
- Medicinal Herb Research Unit for Asthma, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | | | | | | |
Collapse
|