1
|
Lodhi N, Nagpal P, Sarojini S, Keck M, Chiu YM, Parvez Z, Adrianzen L, Suh KS. Synergetic effect of high dose rate radiations (10× FFF/2400 MU/min/10 MV x-rays) and paclitaxel selectively eliminates melanoma cells. Cancer Rep (Hoboken) 2023; 6:e1733. [PMID: 36241419 PMCID: PMC9940010 DOI: 10.1002/cnr2.1733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Melanoma is one of the most aggressive cancers, with 1.6% of total cancer deaths in the United States. In recent years treatment options for metastatic melanoma have been improved by the FDA approval of new therapeutic agents. However, these inhibitors-based therapies are non-specific and have severe toxicities, including hyperkeratosis, photosensitivity, hepatitis, arthralgia, and fatigue. AIMS The aim of this study is to determine the synthetic lethal effect (paclitaxel and radiations) on melanoma cells and reduce the total radiation doses by increasing the dose rates up to 2400 MU/min. METHODS AND RESULTS We previously reported a radiation treatment (10 MV x-rays, 10X-FFF, dose rate 2400MU/min, low total dose 0.5 Gy) that kills melanoma cells with 80% survival of normal HEM in vitro. In this study, we extended the radiation cycle up to four and included paclitaxel treatment to study the synthetic lethal effect on melanoma and two other normal primary cells, HDF and HEK. Cells were treated with paclitaxel prior to the radiation at a dose rate of 400 and 2400 MU/min with a total radiation dose of only 0.5 Gy. Mitochondrial respiration assay, DNA damage assay, and colony formation assays were performed to study apoptosis and cell death induction. Four days of consequent radiation treatment with paclitaxel significantly reduces the survival of melanoma cells by inducing apoptosis and mitochondrial damage. After treatment, excessive DNA damage in melanoma cells leads to an increase in the expression of pro-apoptotic genes (Caspase-3) and a decrease in the expression of DNA repair gene (PARP1) and anti-apoptotic gene (Bcl-2) to activate the apoptosis pathway. The combination of paclitaxel and radiation reduces the survival of melanoma cells colonies compared to radiation alone. CONCLUSION Our study indicates that radiations with paclitaxel have a potential synthetic lethal effect on melanoma cells and can be developed as a melanoma therapy without toxicities or harmful effects on normal primary skin cells.
Collapse
Affiliation(s)
- Niraj Lodhi
- The Genomics and Biomarkers ProgramHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Poonam Nagpal
- The Genomics and Biomarkers ProgramHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
- College of Natural, Applied, and Health SciencesKean UniversityUnionNew JerseyUSA
| | - Sreeja Sarojini
- The Genomics and Biomarkers ProgramHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Michaela Keck
- The Genomics and Biomarkers ProgramHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Yuk Ming Chiu
- The Genomics and Biomarkers ProgramHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Zeenath Parvez
- The Genomics and Biomarkers ProgramHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Laura Adrianzen
- The Genomics and Biomarkers ProgramHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - K. Stephen Suh
- The Genomics and Biomarkers ProgramHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
- DiagnoCineHackensackNew JerseyUSA
| |
Collapse
|
2
|
Martinage G, Hong AM, Fay M, Thachil T, Roos D, Williams N, Lo S, Fogarty G. Quality assurance analysis of hippocampal avoidance in a melanoma whole brain radiotherapy randomized trial shows good compliance. Radiat Oncol 2018; 13:132. [PMID: 30029684 PMCID: PMC6053726 DOI: 10.1186/s13014-018-1077-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/11/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Melanoma brain metastases (MBM) often cause morbidity and mortality for stage IV melanoma patients. An ongoing randomised phase III trial (NCT01503827 - WBRT-Mel) evaluates the role of adjuvant whole brain radiotherapy (WBRT) following local treatment of MBM. Hippocampal avoidance during WBRT (HA-WBRT) has shown memory and neurocognitive function (NCF) preservation in the RTOG-0933 phase II study. This study assessed the quality assurance of HA-WBRT within the WBRT-Mel trial according to RTOG-0933 study criteria. METHODS Hippocampal avoidance was allowed in approved centres with intensity-modulated radiotherapy capability. Patients treated by HA-WBRT were not randomized within the WBRT arm. The RTOG 0933 contouring Atlas was used to contour hippocampi. In the trial co-ordinating centre, patients were treated with volumetric modulated arc therapy using complementary arcs; similar techniques were used at other sites. Dosimetric data were extracted retrospectively and analysed in accordance with RTOG 0933 study constraints criteria. RESULTS Among the 215 patients accrued to the WBRT-Mel study between April 2009 and September 2017, 107 were randomized to the WBRT arm, 22 were treated by HA-WBRT in 4 centers. Eighteen patients were treated in the same centre. The median age was 65 years. The commonest (91%) HA-WBRT schema was 30 Gy in 10 fractions. Prior to HA-WBRT, 10 patients had been treated by surgery alone, six by radiosurgery alone, four by surgery and radiosurgery and two exclusively by simultaneous integrated boost concurrent to HA-WBRT. Twenty patients were treated with intention to spare both hippocampi and two patients had MBM close to one hippocampus and were treated with intention to spare the contralateral hippocampus. According to RTOG-0933 study criteria, 18 patients (82%) were treated within constraints and four patients (18%) had unacceptable deviation in just one hippocampus. CONCLUSIONS This dosimetric quality assurance study shows good compliance (82%) according to RTOG-0933 study dosimetric constraints. Indeed, all patients respected RTOG hippocampal avoidance constraints on at least one hippocampus. In the futureanalysis of the WBRT-Mel trial, the NCF of patients on the observation arm, WBRT arm and with HA-WBRT arm will be compared.
Collapse
Affiliation(s)
- Geoffrey Martinage
- Melanoma Institute Australia, The University of Sydney, NSW, North Sydney, Australia
- Centre Oscar-Lambret, Lille, France
- Mater Hospital, NSW, North Sydney, Australia
| | - Angela M Hong
- Melanoma Institute Australia, The University of Sydney, NSW, North Sydney, Australia
- Mater Hospital, NSW, North Sydney, Australia
- GenesisCare, Radiation Oncology, Mater Hospital, NSW, North Sydney, Australia
- Central Clinical School, The University of Sydney, Camperdown, NSW, Australia
| | - Mike Fay
- School of Medicine and Public Health, University of Newcastle, NSW, Callaghan, Australia
- GenesisCare, Radiation Oncology, NSW, Newcastle, Australia
| | - Thanuja Thachil
- Northern Territory Radiation Oncology, Alan Walker Cancer Care Centre, NT, Darwin, Australia
| | - Daniel Roos
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
- University of Adelaide, South Australia, Adelaide, Australia
| | - Narelle Williams
- Australia and New Zealand Melanoma Trials Group, NSW, North Sydney, Australia
| | - Serigne Lo
- Melanoma Institute Australia, The University of Sydney, NSW, North Sydney, Australia
- Central Clinical School, The University of Sydney, Camperdown, NSW, Australia
| | - Gerald Fogarty
- Melanoma Institute Australia, The University of Sydney, NSW, North Sydney, Australia.
- Mater Hospital, NSW, North Sydney, Australia.
- GenesisCare, Radiation Oncology, Mater Hospital, NSW, North Sydney, Australia.
- Central Clinical School, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
3
|
Wang S, Wang A, Lin J, Xie Y, Wu L, Huang H, Bian J, Yang X, Wan X, Zhao H, Huang J. Brain metastases from hepatocellular carcinoma: recent advances and future avenues. Oncotarget 2017; 8:25814-25829. [PMID: 28445959 PMCID: PMC5421971 DOI: 10.18632/oncotarget.15730] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/07/2017] [Indexed: 12/25/2022] Open
Abstract
The incidence of brain metastases from hepatocellular carcinoma (BMHCC) is becoming more frequent than that of the past as a result of prolonged survival of patients with HCC. Compared with brain metastases from other types of cancer, BMHCC tends to exhibit a high incidence of intracerebral hemorrhage (ICH) and poor liver function. Unfortunately, the prognosis is extremely poor for patients with BMHCC owing to the limited treatment selection. Currently, optimal treatment requires multidisciplinary approaches including surgery, whole-brain radiation therapy and stereotactic radiosurgery. Besides these traditional approaches, novel treatments such as target therapy and immunotherapy provide an opportunity to improve the survival of these patients. This review provides an overview of the incidence, characteristics, prognosis, and current and potential future management strategies for BMHCC.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anqiang Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianzhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Xie
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liangcai Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanchun Huang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin Bian
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaobo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueshuai Wan
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Center of Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiefu Huang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Wu L, Hu Z, Huang Y, Yu Y, Liang W, Zheng Q, Huang X, Huang Y, Lu X, Zhao Y. Radiation Changes the Metabolic Profiling of Melanoma Cell Line B16. PLoS One 2016; 11:e0162917. [PMID: 27631970 PMCID: PMC5025142 DOI: 10.1371/journal.pone.0162917] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/30/2016] [Indexed: 12/15/2022] Open
Abstract
Radiation therapy can be an effective way to kill cancer cells using ionizing radiation, but some tumors are resistant to radiation therapy and the underlying mechanism still remains elusive. It is therefore necessary to establish an appropriate working model to study and monitor radiation-mediated cancer therapy. In response to cellular stress, the metabolome is the integrated profiling of changes in all metabolites in cells, which can be used to investigate radiation tolerance mechanisms and identify targets for cancer radiation sensibilization. In this study, using 1H nuclear magnetic resonance for untargeted metabolic profiling in radiation-tolerant mouse melanoma cell line B16, we comprehensively investigated changes in metabolites and metabolic network in B16 cells in response to radiation. Principal component analysis and partial least squares discriminant analysis indicated the difference in cellular metabolites between the untreated cells and X-ray radiated cells. In radiated cells, the content of alanine, glutamate, glycine and choline was increased, while the content of leucine, lactate, creatine and creatine phosphate was decreased. Enrichment analysis of metabolic pathway showed that the changes in metabolites were related to multiple metabolic pathways including the metabolism of glycine, arginine, taurine, glycolysis, and gluconeogenesis. Taken together, with cellular metabolome study followed by bioinformatic analysis to profile specific metabolic pathways in response to radiation, we deepened our understanding of radiation-resistant mechanisms and radiation sensibilization in cancer, which may further provide a theoretical and practical basis for personalized cancer therapy.
Collapse
Affiliation(s)
- Lige Wu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zixi Hu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yingying Huang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yating Yu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Wei Liang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qinghui Zheng
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xianing Huang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yong Huang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoling Lu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
- The Department of Immunology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
5
|
Spain L, Younger E, Hatipoglu E, Larkin J. Pembrolizumab in the management of metastatic melanoma. Melanoma Manag 2015; 2:315-325. [PMID: 30190860 DOI: 10.2217/mmt.15.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pembrolizumab is a humanized IgG4 anti-PD-1 antibody that plays a major role in the treatment of advanced melanoma. Through blockade of PD-1, it leads to an increase in effector T-cell activity in the tumor microenvironment. Clinical trial outcomes for pembrolizumab in addition to pharmacokinetics, pharmacodynamics and safety of the compound are discussed in this article. Phase I trials have demonstrated safety and efficacy of pembrolizumab in advanced, pretreated melanoma patients. When compared with chemotherapy in a Phase II trial of ipilimumab-refractory patients, those treated with pembrolizumab showed superior progression-free survival. In addition, in the pivotal Phase III trial pembrolizumab improved overall survival compared with ipilimumab in patients naive to immune checkpoint inhibition. Pembrolizumab is well tolerated and has a favorable safety profile. Common adverse events are fatigue, rash, itching and diarrhea. Less frequent immune-related adverse events include hypothyroidism, colitis, hepatitis and pneumonitis.
Collapse
Affiliation(s)
- Lavinia Spain
- The Royal Marsden Hospital, Fulham Road, London, SW3 6JJ, UK
| | - Eugenie Younger
- The Royal Marsden Hospital, Fulham Road, London, SW3 6JJ, UK
| | - Emine Hatipoglu
- The Royal Marsden Hospital, Fulham Road, London, SW3 6JJ, UK
| | - James Larkin
- The Royal Marsden Hospital, Fulham Road, London, SW3 6JJ, UK
| |
Collapse
|