1
|
Matsunaga A, Saito T. Impact of Apolipoprotein E Variants: A Review of Naturally Occurring Variants and Clinical Features. J Atheroscler Thromb 2025; 32:281-303. [PMID: 39779225 PMCID: PMC11883201 DOI: 10.5551/jat.65393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Apolipoprotein E (apoE) is a key apoprotein in lipid transport and is susceptible to genetic mutations. ApoE variants have been studied for four decades and more than a hundred of them have been reported. This paper presents an up-to-date review of the function and structure of apoE in lipid metabolism, the E2, E3, and E4 isoforms, the APOE gene, and various pathologies, such as familial type III hyperlipidemia and lipoprotein glomerulopathy, caused by apoE variants. Alzheimer's disease was barely mentioned in this paper. But this review should help researchers obtain a comprehensive overview of human apoE in lipid metabolism.
Collapse
Affiliation(s)
- Akira Matsunaga
- General Medical Research Center, Faculty of Medicine, Fukuoka University
| | - Takao Saito
- Sanko Clinic
- Faculty of Medicine, Fukuoka University
| |
Collapse
|
2
|
Hasan M, Sarker MN, Jabin T, Sarker S, Ahmed S, Abdullah-Al-Shoeb M, Hossain T. Pathogenic single nucleotide polymorphisms in RhoA gene: Insights into structural and functional impacts on RhoA-PLD1 interaction through molecular dynamics simulation. Curr Res Struct Biol 2024; 8:100159. [PMID: 39698059 PMCID: PMC11653153 DOI: 10.1016/j.crstbi.2024.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/03/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Molecular switches serve as key regulators of biological systems by acting as one of the crucial driving forces in the initiation of signal transduction pathway cascades. The Ras homolog gene family member A (RhoA) is one of the molecular switches that binds with GTP in order to cycle between an active GTP-bound state and an inactive GDP-bound state. Any aberrance in control over this circuit, particularly due to any perturbation in switching, leads to the development of different pathogenicity. Consequently, the single nucleotide polymorphisms (SNPs) within the RhoA gene, especially deleterious genetic variations, are crucial to study to forecast structural alteration and their functional impacts in light of disease onset. In this comprehensive study, we employed a range of computational tools to screen the deleterious SNPs of RhoA from 207 nonsynonymous SNPs (nsSNPs). By utilizing 7 distinct tools for further analysis, 8 common deleterious SNPs were sorted, among them 5 nsSNPs (V9G, G17E, E40K, A61T, F171L) were found to be in the highly conserved regions, with E40K and A61T at G2 and G3 motif of the GTP-binding domain respectively, indicating potential perturbation in GTP/GDP binding ability of the protein. RhoA-GDP complex interacts with the enzyme phospholipase, specifically PLD1, to regulate different cellular activities. PLD1 is also a crucial regulator of thrombosis and cancer. In that line of focus, our initial structural analysis of Y66H, A61T, G17E, I86N, and I151T mutations of RhoA revealed remarkable decreased hydrophobicity from which we further filtered out G17E and I86N which may have potential impact on the RhoA-GDP-PLD1 complex. Intriguingly, the comparative 250 ns (ns) molecular dynamics (MD) simulation of these two mutated complexes revealed overall structural instability and altered interaction patterns. Therefore, further investigation into these deleterious mutations with in vitro and in vivo studies could lead to the identification of potential biomarkers in terms of different pathogenesis and could also be utilized in personalized therapeutic targets in the long run.
Collapse
Affiliation(s)
| | | | | | - Saifuddin Sarker
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Shamim Ahmed
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammad Abdullah-Al-Shoeb
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Tanvir Hossain
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
3
|
Akcesme B, Islam N, Lekic D, Cutuk R, Basovic N. Analysis of Alzheimer's disease associated deleterious non-synonymous single nucleotide polymorphisms and their impacts on protein structure and function by performing in-silico methods. Neurogenetics 2024; 26:8. [PMID: 39589570 DOI: 10.1007/s10048-024-00786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/17/2024] [Indexed: 11/27/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is presented with a progressive loss of memory, a decline in cognitive abilities and multiple changes in behavior. Its pathogenicity has been linked to genetic factors in approximately 60-80% of the cases specifically APOE gene family and as well as other gene families. This study utilized advanced computational biology methods to analyze AD-associated nsSNPs extracted from the NHGRI-EBI GWAS Catalog. Ensembl Variant Effect Predictor (VEP) is used to annotate the variants associated with AD. Annotated missense variants were subjected to PolyPhen-2, SNPs&Go, PredictSNP servers which were used to predict pathogenicity of selected missense variants by protein sequence information. DynaMut and DUET servers were applied to determine protein stability due to the amino acid change by integrating protein structure information. Missense variations associated with AD were annotated to 26 proteins and further analyzed in our study. Following rigorous data filtration steps, 15 candidate variants (13 proteins) were identified and subjected to sequence and structure-based analysis. Finally in this in-silico study, five deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) were identified in ACKR2(V41A), APOE(R176C), ATP8B4(G395S), LAMB2(E987K), and TOMM40(R239W), and these findings were subsequently backed-up by existing in-vivo and in-vitro literature. This study not only provides invaluable insight into the intricate pathogenic mechanisms underlying AD but also offers a distinctive perspective that paves the way for future, more comprehensive investigations aimed at unraveling the molecular intricacies responsible for the development and progression of AD. Nonetheless, it is imperative that further rigorous in vivo and in vitro experiments are conducted to validate and expand upon the findings presented here.
Collapse
Affiliation(s)
- Betul Akcesme
- Department of Genetics and Bioengineering, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
- Hamidiye Faculty of Medicine, Program of Medical Biology, University of Health Sciences, İstanbul, Türkiye.
| | - Nadia Islam
- Department of Genetics and Bioengineering, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Delila Lekic
- Department of Genetics and Bioengineering, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Raisa Cutuk
- Department of Genetics and Bioengineering, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Nejla Basovic
- Department of Genetics and Bioengineering, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
4
|
de Lima Pizzico F, Beatriz Máximo R, Hirata MH, Monteiro Ferreira G. Mapping the APOE structurally on missense variants in elderly Brazilians. J Biomol Struct Dyn 2024:1-9. [PMID: 38520131 DOI: 10.1080/07391102.2024.2328743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
Cardiovascular diseases (CVDs) pose a significant global health threat, with familial hypercholesterolemia (FH) being a key genetic contributor. The apolipoprotein E (APOE) gene plays a vital role in lipid metabolism, and its variants are associated with CVD risk. This study explores prevalent APOE variants (p.R163C, p.R176C, p.R246C and p.V254E) using genetic and structural analyses. The research, initiated by identifying high-frequency APOE variants through the ABraOM database, utilizes homology modeling and molecular dynamics (MD) simulations to understand the structural consequences. The major lipid-binding region, a critical domain for lipid metabolism, was a focal point. Structural dynamics, including principal component analyses and domain movement analyses, highlighted distinct patterns in APOE variants compared to the wild type (WT). Results revealed significant differences in the structural behavior of variants, particularly in the Major lipid-binding region. The identification of an 'elbow' structure with two states (Elbow I and Elbow II) provided insights into conformational changes. Notably, variants exhibited unique patterns in hydrogen bonding (hb) and hydrophobic interactions, indicating potential functional consequences. The study further associated APOE variants with clinical outcomes, including cognitive impairment and cholesterol levels. Specific variants demonstrated correlations with cognitive decline and variations in lipid profiles, emphasizing their relevance to cardiovascular and neurobiological health. In conclusion, this integrated approach enhances our understanding of APOE variants, shedding light on their role in lipid metabolism and cardiovascular health. The identified structural 'elbows' and their association with clinical outcomes offer a nuanced perspective, guiding future research toward targeted interventions for diseases linked to lipid metabolism and neurobiology.
Collapse
Affiliation(s)
- Filipe de Lima Pizzico
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Rebeca Beatriz Máximo
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Hossain MU, Ahammad I, Moniruzzaman M, Akter Lubna M, Bhattacharjee A, Mahmud Chowdhury Z, Ahmed I, Hosen MB, Biswas S, Chandra Das K, Keya CA, Salimullah M. Investigation of pathogenic germline variants in gastric cancer and development of "GasCanBase" database. Cancer Rep (Hoboken) 2023; 6:e1906. [PMID: 37867380 PMCID: PMC10728505 DOI: 10.1002/cnr2.1906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Gastric cancer, which is also known as stomach cancer, can be influenced by both germline and somatic mutations. Non-synonymous Single Nucleotide Polymorphisms (nsSNPs) in germline have long been reported to play a pivotal role in cancer progression. AIM The aim of this study is to examine the nsSNP in GC-associated genes. The study also aims to develop a database with extensive information regarding the nsSNPs in the GC-associated genes and their impacts. METHODS AND RESULTS A total of 34,588 nsSNPs from 1,493,460 SNPs of the 40 genes were extracted from the available SNP database. Drug binding and energy minimization were examined by molecular docking and YASARA. To validate the existence of the germline CDH1 gene mutation (rs34466743) in the isolated blood DNA of gastric cancer (GC) patients, polymerase chain reaction (PCR) and DNA sequencing were performed. According to the results of the gene network analysis, 17 genes may interact with other types of cancer. A total of 11,363 nsSNPs were detected within the 40 GC genes. Among these, 474 nsSNPs were predicted to be damaging and 40 to be the most damaging. The SNPs in domain regions were thought to be strong candidates that alter protein functions. Our findings proposed that most of the selected nsSNPs were within the domains or motif regions. Free Energy Deviation calculation of protein structure pointed toward noteworthy changes in the structure of each protein that can demolish its natural function. Subsequently, drug binding confirmed the structural variation and the ineffectiveness of the drug against the mutant model in individuals with these germline variants. Furthermore, in vitro analysis of the rs34466743 germline variant from the CDH1 gene confirmed the strength and robustness of the pipeline that could expand the somatic alteration for causing cancer. In addition, a comprehensive gastric cancer polymorphism database named "GasCanBase" was developed to make data available to researchers. CONCLUSION The findings of this study and the "GasCanBase" database may greatly contribute to our understanding of molecular epidemiology and the development of precise therapeutics for gastric cancer. GasCanBase is available at: https://www.gascanbase.com/.
Collapse
Affiliation(s)
| | - Ishtiaque Ahammad
- Bioinformatics DivisionNational Institute of BiotechnologyDhakaBangladesh
| | - Md. Moniruzzaman
- Molecular Biotechnology DivisionNational Institute of BiotechnologyDhakaBangladesh
| | | | | | | | - Istiak Ahmed
- Department of PharmacyNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Md. Billal Hosen
- Department of PharmacyNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Shourov Biswas
- Department of Clinical OncologyBangabandhu Sheikh Mujib Medical UniversityDhakaBangladesh
| | - Keshob Chandra Das
- Molecular Biotechnology DivisionNational Institute of BiotechnologyDhakaBangladesh
| | - Chaman Ara Keya
- Department of Biochemistry and MicrobiologyNorth South UniversityDhakaBangladesh
| | - Md. Salimullah
- Molecular Biotechnology DivisionNational Institute of BiotechnologyDhakaBangladesh
| |
Collapse
|
6
|
Emadi E, Akhoundi F, Kalantar SM, Emadi-Baygi M. Predicting the most deleterious missense nsSNPs of the protein isoforms of the human HLA-G gene and in silico evaluation of their structural and functional consequences. BMC Genet 2020; 21:94. [PMID: 32867672 PMCID: PMC7457528 DOI: 10.1186/s12863-020-00890-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Human Leukocyte Antigen G (HLA-G) protein is an immune tolerogenic molecule with 7 isoforms. The change of expression level and some polymorphisms of the HLA-G gene are involved in various pathologies. Therefore, this study aimed to predict the most deleterious missense non-synonymous single nucleotide polymorphisms (nsSNPs) in HLA-G isoforms via in silico analyses and to examine structural and functional effects of the predicted nsSNPs on HLA-G isoforms. RESULTS Out of 301 reported SNPs in dbSNP, 35 missense SNPs in isoform 1, 35 missense SNPs in isoform 5, 8 missense SNPs in all membrane-bound HLA-G isoforms and 8 missense SNPs in all soluble HLA-G isoforms were predicted as deleterious by all eight servers (SIFT, PROVEAN, PolyPhen-2, I-Mutant 3.0, SNPs&GO, PhD-SNP, SNAP2, and MUpro). The Structural and functional effects of the predicted nsSNPs on HLA-G isoforms were determined by MutPred2 and HOPE servers, respectively. Consurf analyses showed that the majority of the predicted nsSNPs occur in conserved sites. I-TASSER and Chimera were used for modeling of the predicted nsSNPs. rs182801644 and rs771111444 were related to creating functional patterns in 5'UTR. 5 SNPs in 3'UTR of the HLA-G gene were predicted to affect the miRNA target sites. Kaplan-Meier analysis showed the HLA-G deregulation can serve as a prognostic marker for some cancers. CONCLUSIONS The implementation of in silico SNP prioritization methods provides a great framework for the recognition of functional SNPs. The results obtained from the current study would be called laboratory investigations.
Collapse
Affiliation(s)
- Elaheh Emadi
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Akhoundi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Seyed Mehdi Kalantar
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Modjtaba Emadi-Baygi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
- Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
7
|
Saito T, Matsunaga A, Fukunaga M, Nagahama K, Hara S, Muso E. Apolipoprotein E-related glomerular disorders. Kidney Int 2019; 97:279-288. [PMID: 31874799 DOI: 10.1016/j.kint.2019.10.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 11/30/2022]
Abstract
Of the glomerular disorders that occur due to apolipoprotein E (apoE) mutations, apoE2 homozygote glomerulopathy and lipoprotein glomerulopathy (LPG) have been characterized. ApoE2 homozygote glomerulopathy has been found in individuals expressing homozygous apoE2/2. This was characterized histologically by glomerulosclerosis with marked infiltration of foam cells derived from macrophages, and occasionally with non-lamellated lipoprotein thrombi. Recently, several cases of apoE Toyonaka (Ser197Cys) combined with homozygous apoE2/2 have been reported, in which non-immune membranous nephropathy-like features were observed in glomeruli. Interestingly, in these cases, apoE accumulation was identified by tandem mass spectrometry. Therefore, it is speculated that these findings may arise from apoE molecules without lipids, which result from hinge damage by apoE Toyonaka and may cross the glomerular basement membrane as small molecules. LPG is primarily associated with heterozygous apoE mutations surrounding the low-density lipoprotein-receptor binding site, and it is histologically characterized by lamellated lipoprotein thrombi that lack foam cells. Recent studies have suggested that LPG can be induced by thermodynamic destabilization, hydrophobic surface exposure, and the aggregation of apoE resulting from the incompatibility of apoE mutated residues within helical regions. Additionally, apoE5 may play a supporting role in the development of LPG and in lipid-induced kidney diseases via hyperlipoproteinemia. Thus, it is interesting that many apoE mutations contribute to characteristic glomerular disorders through various mechanisms. In particular, macrophages may uptake lipoproteins into the cytoplasm and contribute to the development of apoE2 homozygote glomerulopathy as foam cells, and their dysfunction may contribute to the accumulation of lipoproteins in the glomerulus, causing lipoprotein thrombi in LPG.
Collapse
Affiliation(s)
- Takao Saito
- Sanko Clinic, Fukuoka, Japan; Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | - Akira Matsunaga
- Department of Laboratory Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | | | - Kiyotaka Nagahama
- Department of Pathology, Kyorin University School of Medicine, Tokyo, Japan
| | - Shigeo Hara
- Department of Diagnostic Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Eri Muso
- Division of Nephrology and Dialysis, Kitano Hospital, Osaka, Japan; Department of Food and Nutrition, Faculty of Contemporary Home Economics, Kyoto Kacho University, Kyoto, Japan
| |
Collapse
|
8
|
Kato T, Ushiogi Y, Yokoyama H, Hara S, Matsunaga A, Muso E, Saito T. A case of apolipoprotein E Toyonaka and homozygous apolipoprotein E2/2 showing non-immune membranous nephropathy-like glomerular lesions with foamy changes. CEN Case Rep 2019; 8:106-111. [PMID: 30701487 DOI: 10.1007/s13730-019-00380-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022] Open
Abstract
A 47-year-old Japanese man with mild proteinuria was treated with an ACE inhibitor and antiplatelet agent for 7 years. However, urinary protein levels increased and renal biopsy was performed. Eight out of 20 glomeruli showed global or segmental sclerosis with foamy changes or bubbles, but with a different appearance to typical foam cells or lipoprotein thrombi. "Spike" formation, as observed in membranous nephropathy (MN), was segmentally detected in methenamine silver-stained sections. In an immunofluorescence study, weak linear patterns for IgG and scanty deposits for C3 were observed in glomeruli, but were not specific for immunogenetic MN. An electron microscopy study showed highly dense deposits in the subepithelial, subendothelial, and mesangial areas, in which microbubbles appeared under a higher magnification. Since this case exhibited hypertriglyceridemia and cholesterolemia with high serum apolipoprotein E (apoE) clinically and homozygous apoE2/2 by apoE phenotype and genotype analyses, apoE2 homozygote glomerulopathy was diagnosed and various lipid-lowering agents, e.g., probucol, fenofibrate, and ezetimibe, were administered. However, renal dysfunction gradually developed and peritoneal dialysis was initiated 11 years after the diagnosis. ApoE Toyonaka (Ser197Cys) and homozygous E2/2 were recently identified by direct DNA sequencing. Therefore, non-immune MN-like lesions may develop with the combination of these apoE mutations.
Collapse
Affiliation(s)
- Tamayo Kato
- Department of Nephrology, Fukuiken Saiseikai Hospital, 7-1 Funabashi, Wadanakacho, Fukui, 918-8503, Japan.
| | - Yasuyuki Ushiogi
- Department of Nephrology, Fukuiken Saiseikai Hospital, 7-1 Funabashi, Wadanakacho, Fukui, 918-8503, Japan
| | - Hitoshi Yokoyama
- Department of Nephrology, Kanazawa Medical University School of Medicine, Uchinada, Japan
| | - Shigeo Hara
- Department of Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Akira Matsunaga
- Department of Laboratory Medicine, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Eri Muso
- Division of Nephrology and Dialysis, Kitano Hospital, Tazuke Kofukai Medical Institute, Osaka, Japan.,Department of Food and Nutrition, Faculty of Contemporary Home Economics, Kyoto Kacho University, Kyoto, Japan
| | | |
Collapse
|
9
|
Huang P, Hsieh SW, Chang YH, Hour AL, Chen HY, Liu CK. Differences in the frequency of Alzheimer's disease-associated genomic variations in populations of different races. Geriatr Gerontol Int 2017; 17:2184-2193. [PMID: 28675603 DOI: 10.1111/ggi.13059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 01/27/2017] [Accepted: 02/20/2017] [Indexed: 01/24/2023]
Abstract
AIM The general genetic background is important when studying major common diseases, such as Alzheimer's disease (AD). Determining the underlying genetic factors in populations of different races might allow for the tailored management of such diseases. The aim of the present study was to identify potential single-nucleotide polymorphisms (SNP) and genes associated with racial differences. METHODS We identified AD-associated SNP with different carrier frequencies among races through the National Human Genome Research Institute and 1000 Genome Project databases. We generated heatmaps and carried out principle component analysis and pathway analysis. A total of 99 AD-associated SNP from genome-wide association studies were found to have different frequencies among races. Principle component analysis showed that specific SNP had higher or lower frequencies in specific races, and that similar races were clustered together. RESULTS Pathway analysis showed that a total of 15 pathways involving intracellular endocytosis, inflammation, immune response and lipid metabolism were significant, and that apolipoprotein E was involved in the most significant pathways. A literature review showed that 16 genes were involved in the pathogenesis of AD, and that the identified SNP could be used to cluster different races, suggesting that these SNP represented different genomic backgrounds of races. CONCLUSIONS As disease-associated genes might have several functional variants across different populations, these genes could be candidates for further studies, such as target gene sequencing or functional follow up of putative loci regarding racial differences. Geriatr Gerontol Int 2017; 17: 2184-2193.
Collapse
Affiliation(s)
- Poyin Huang
- Department of Neurology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Ph.D. Program in Translational Medicine, Kaohsiung Medical University and Academia Sinica, Kaohsiung, Taiwan.,Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sun-Wung Hsieh
- Department of Neurology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Engineering
- , National Taiwan University, Taipei, Taiwan
| | - Ai-Ling Hour
- Department of Life Science, Fu Jen University, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ching-Kuan Liu
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Jamal S, Goyal S, Shanker A, Grover A. Computational Screening and Exploration of Disease-Associated Genes in Alzheimer's Disease. J Cell Biochem 2017; 118:1471-1479. [PMID: 27883225 DOI: 10.1002/jcb.25806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/22/2016] [Indexed: 02/05/2023]
Abstract
Alzheimer's is a neurodegenerative disease affecting large populations worldwide characterized mainly by progressive loss of memory along with various other symptoms. The foremost cause of the disease is still unclear, however various mechanisms have been proposed to cause the disease that include amyloid hypothesis, tau hypothesis, and cholinergic hypothesis in addition to genetic factors. Various genes have been known to be involved which are APOE, PSEN1, PSEN2, and APP among others. In the present study, we have used computational methods to examine the pathogenic effects of non-synonymous single nucleotide polymorphisms (SNPs) associated with ABCA7, CR1, MS4A6A, CD2AP, PSEN1, PSEN2, and APP genes. The SNPs were obtained from dbSNP database followed by identification of deleterious SNPs and prediction of their functional impact. Prediction of disease-associated mutations was performed and the impact of the mutations on the stability of the protein was carried out. To study the structural significance of the computationally prioritized mutations on the proteins, molecular dynamics simulation studies were carried out. On analysis, the SNPs with IDs rs76282929 ABCA7; CR1 rs55962594; MS4A6A rs601172; CD2AP rs61747098; PSEN1 rs63750231, rs63750265, rs63750526, rs63750577, rs63750687, rs63750815, rs63750900, rs63751037, rs63751163, rs63751399; PSEN2 rs63749851; and APP rs63749964, rs63750066, rs63750734, and rs63751039 were predicted to be deleterious and disease-associated having significant structural impact on the proteins. The current study proposes a precise computational methodology for the identification of disease-associated SNPs. J. Cell. Biochem. 118: 1471-1479, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Salma Jamal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan, India
| | - Sukriti Goyal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan, India
| | - Asheesh Shanker
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan, India
- Bioinformatics Programme, Centre for Biological Sciences, Central University of South Bihar, BIT Campus, Patna, Bihar, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
11
|
Wang S, Guan L, Luo D, Liu J, Lin H, Li X, Liu X. Gene- Gene Interaction between PPARG and APOE Gene on Late-Onset Alzheimer's Disease: A Case- Control Study in Chinese Han Population. J Nutr Health Aging 2017; 21:397-403. [PMID: 28346566 DOI: 10.1007/s12603-016-0794-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The aim was to investigate the impact of PPARG and APOE gene single nucleotide polymorphisms (SNPs) and additional gene- gene interaction on late-onset Alzheimer's disease (LOAD) risk based on Chinese Han population. METHODS A total of 928 participants (466 males, 462 females), with a mean age of 81.3 ± 16.4 years old, were included in the study, including 460 LOAD patients and 468 normal controls participants. Logistic regression was performed to investigate association between SNP and LOAD risk and generalized multifactor dimensionality reduction (GMDR) was used to analysis the gene-gene interaction. RESULTS Logistic regression analysis showed that LOAD risk was significantly higher in carriers of G allele of the rs405509 polymorphism than those with AA (AG+ GG versus AA, adjusted OR (95%CI) =1.54(1.20-1.89), and higher in carriers of G allele of the rs1805192 polymorphism than those with CC (CG+ GG versus CC, adjusted OR (95%CI) =1.32(1.16-2.43). We also found that there was a potential gene-gene interaction between rs405509 and rs1805192. Participants with AG or GG of rs405509 and CG or GG of rs1805192 genotype have the highest AD risk, compared to participants with AA of rs405509 and CC of rs1805192 genotype, OR (95%CI) was 2.62(1.64 -3.58), after covariates adjustment. CONCLUSIONS G allele of the rs405509 of APOE and G allele of the rs1805192 of PPAR G polymorphism were associated with increased LOAD risk, and participants with AG or GG of rs405509 and CG or GG of rs1805192 genotype have the highest AD risk.
Collapse
Affiliation(s)
- S Wang
- Shuhua Wang, Center of Health Management, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwuweiqi Road, Jinan 250021, Shandong, China. Tel: +86-531-68773708, Fax: +86-531-68773708; Email address:
| | | | | | | | | | | | | |
Collapse
|
12
|
Basharat Z, Messaoudi A, Ruba S, Yasmin A. NQO1 rs1800566 polymorph is more prone to NOx induced lung injury: Endorsing deleterious functionality through informatics approach. Gene 2016; 591:14-20. [DOI: 10.1016/j.gene.2016.06.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/12/2016] [Accepted: 06/23/2016] [Indexed: 02/06/2023]
|
13
|
Mohammadpour Lashkari F, Mohseni Meybodi A, Mansouri Z, Kalantari H, Farahmand K, Vaziri H. The association between (8390G>A) single nucleotide polymorphism in APOE gene with Alzheimer’s and Parkinson disease. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2016. [DOI: 10.1016/j.ejmhg.2015.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Functional properties of rare missense variants of human CDH13 found in adult attention deficit/hyperactivity disorder (ADHD) patients. PLoS One 2013; 8:e71445. [PMID: 23936508 PMCID: PMC3731280 DOI: 10.1371/journal.pone.0071445] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 07/01/2013] [Indexed: 12/31/2022] Open
Abstract
The CDH13 gene codes for T-cadherin, a GPI-anchored protein with cell adhesion properties that is highly expressed in the brain and cardiovascular system. Previous studies have suggested that CDH13 may be a promising candidate gene for Attention Deficit/Hyperactivity Disorder (ADHD). The aims of this study were to identify, functionally characterize, and estimate the frequency of coding CDH13 variants in adult ADHD patients and controls. We performed sequencing of the CDH13 gene in 169 Norwegian adult ADHD patients and 63 controls and genotyping of the identified variants in 641 patients and 668 controls. Native and green fluorescent protein tagged wild type and variant CDH13 proteins were expressed and studied in CHO and HEK293 cells, respectively. Sequencing identified seven rare missense CDH13 variants, one of which was novel. By genotyping, we found a cumulative frequency of these rare variants of 2.9% in controls and 3.2% in ADHD patients, implying that much larger samples are needed to obtain adequate power to study the genetic association between ADHD and rare CDH13 variants. Protein expression and localization studies in CHO cells and HEK293 cells showed that the wild type and mutant proteins were processed according to the canonical processing of GPI-anchored proteins. Although some of the mutations were predicted to severely affect protein secondary structure and stability, no significant differences were observed between the expression levels and distribution of the wild type and mutant proteins in either HEK293 or CHO cells. This is the first study where the frequency of coding CDH13 variants in patients and controls is reported and also where the functional properties of these variants are examined. Further investigations are needed to conclude whether CDH13 is involved in the pathogenesis of ADHD or other conditions.
Collapse
|