1
|
Ochoa-Amaya JE, Paula LDOA, Luciano FF, Bernardi MM. Repeated saline injections reduce the pulmonary allergic inflammatory response in rats by inducing short-term stress. Brain Behav Immun Health 2024; 40:100822. [PMID: 39144834 PMCID: PMC11320420 DOI: 10.1016/j.bbih.2024.100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Purpose Asthma is characterized by pulmonary cell infiltration and hyper-responsiveness of the airways. Short-term stress reduces airway inflammation. Thus, in the present study, we examined the effects of short-term stress induced by repeated treatment with saline injections on the pulmonary allergic inflammatory response in rats. Methods Adult male rats were divided into three groups: Naïve group (non-sensitized, challenged, or treated rats), Control group (rats sensitized with ovalbumin (OVA) to induce lung inflammation), and Saline group (rats treated for five days with saline before OVA sensitization). Inhalation challenges were performed one week after the booster with aerosolized OVA. On day 18, the effect of saline injections on total and differential leukocytes in bronchoalveolar lavage (BAL), femoral marrow lavage (FML), and blood was evaluated. The percentage of mucus, serum corticosterone, collagen, cytokines in lung explants, and norepinephrine levels were also measured. Results OVA sensitization increased the circulating leukocytes and their migration to the lung, decreasing the bone marrow leukocytes. The repeated saline injections prevented this migration by decreasing the number of leukocytes in BAL and blood in the control group. Cytokine Interleukin-4 (IL-4) was higher in the control group than in the naive and saline groups; cytokines Interleukin-6 (IL-6), Interleukin-10 (IL-10), and tumor necrosis factor-alpha (TNFα) were higher in the control and saline groups than in the naïve group; Interferon gamma (IFNγ) was higher in the saline group than in the naive and control groups; norepinephrine increased in animals sensitized with OVA and was higher only in the saline group relative to the naïve group. Conclusions These results suggest that short-term stress could contribute to the anti-allergic airway inflammation effects of a given treatment.
Collapse
Affiliation(s)
- Julieta Esperanza Ochoa-Amaya
- University of the Llanos, Faculty of Agricultural Sciences and Natural Resources, School of Animal Sciences, Colombia
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Ligeiro de Oliveira Ana Paula
- Post-Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Freitas Felicio Luciano
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Maria Martha Bernardi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar 1212, 04026-002, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Huang Q, Gao S, Yao Y, Wang Y, Li J, Chen J, guo C, Zhao D, Li X. Innate immunity and immunotherapy for hemorrhagic shock. Front Immunol 2022; 13:918380. [PMID: 36091025 PMCID: PMC9453212 DOI: 10.3389/fimmu.2022.918380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Hemorrhagic shock (HS) is a shock result of hypovolemic injury, in which the innate immune response plays a central role in the pathophysiology ofthe severe complications and organ injury in surviving patients. During the development of HS, innate immunity acts as the first line of defense, mediating a rapid response to pathogens or danger signals through pattern recognition receptors. The early and exaggerated activation of innate immunity, which is widespread in patients with HS, results in systemic inflammation, cytokine storm, and excessive activation of complement factors and innate immune cells, comprised of type II innate lymphoid cells, CD4+ T cells, natural killer cells, eosinophils, basophils, macrophages, neutrophils, and dendritic cells. Recently, compelling evidence focusing on the innate immune regulation in preclinical and clinical studies promises new treatment avenues to reverse or minimize HS-induced tissue injury, organ dysfunction, and ultimately mortality. In this review, we first discuss the innate immune response involved in HS injury, and then systematically detail the cutting-edge therapeutic strategies in the past decade regarding the innate immune regulation in this field; these strategies include the use of mesenchymal stem cells, exosomes, genetic approaches, antibody therapy, small molecule inhibitors, natural medicine, mesenteric lymph drainage, vagus nerve stimulation, hormones, glycoproteins, and others. We also reviewed the available clinical studies on immune regulation for treating HS and assessed the potential of immune regulation concerning a translation from basic research to clinical practice. Combining therapeutic strategies with an improved understanding of how the innate immune system responds to HS could help to identify and develop targeted therapeutic modalities that mitigate severe organ dysfunction, improve patient outcomes, and reduce mortality due to HS injury.
Collapse
Affiliation(s)
- Qingxia Huang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Song Gao
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd., Changchun, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yisa Wang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chen guo
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Daqing Zhao, ; Xiangyan Li,
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Daqing Zhao, ; Xiangyan Li,
| |
Collapse
|
3
|
Bergmann CB, Beckmann N, Salyer CE, Hanschen M, Crisologo PA, Caldwell CC. Potential Targets to Mitigate Trauma- or Sepsis-Induced Immune Suppression. Front Immunol 2021; 12:622601. [PMID: 33717127 PMCID: PMC7947256 DOI: 10.3389/fimmu.2021.622601] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
In sepsis and trauma, pathogens and injured tissue provoke a systemic inflammatory reaction which can lead to overwhelming inflammation. Concurrent with the innate hyperinflammatory response is adaptive immune suppression that can become chronic. A current key issue today is that patients who undergo intensive medical care after sepsis or trauma have a high mortality rate after being discharged. This high mortality is thought to be associated with persistent immunosuppression. Knowledge about the pathophysiology leading to this state remains fragmented. Immunosuppressive cytokines play an essential role in mediating and upholding immunosuppression in these patients. Specifically, the cytokines Interleukin-10 (IL-10), Transforming Growth Factor-β (TGF-β) and Thymic stromal lymphopoietin (TSLP) are reported to have potent immunosuppressive capacities. Here, we review their ability to suppress inflammation, their dynamics in sepsis and trauma and what drives the pathologic release of these cytokines. They do exert paradoxical effects under certain conditions, which makes it necessary to evaluate their functions in the context of dynamic changes post-sepsis and trauma. Several drugs modulating their functions are currently in clinical trials in the treatment of other pathologies. We provide an overview of the current literature on the effects of IL-10, TGF-β and TSLP in sepsis and trauma and suggest therapeutic approaches for their modulation.
Collapse
Affiliation(s)
- Christian B Bergmann
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Nadine Beckmann
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Christen E Salyer
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Marc Hanschen
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Peter A Crisologo
- Division of Podiatric Medicine and Surgery, Critical Care, and Acute Care Surgery, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Charles C Caldwell
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Division of Research, Shriners Hospital for Children, Cincinnati, OH, United States
| |
Collapse
|
4
|
Awasthi V, Vilekar P, Rao G, Awasthi S. Anti-inflammatory mediators ST2 and SIGIRR are induced by diphenyldifluoroketone EF24 in lipopolysaccharide-stimulated dendritic cells. Immunobiology 2019; 225:151886. [PMID: 31812341 DOI: 10.1016/j.imbio.2019.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022]
Abstract
The objective of this study was to investigate the effect of EF24, an NF-κB-inhibitor, on the expression of negative regulators in IL-1R pathway, namely ST2 and SIGIRR. Murine JAWS II dendritic cells (DC) were challenged with lipopolysaccharide (LPS, 100 ng/ml) for 4 h, followed by treatment with 10 μM EF24 for 1 h. ST2 and SIGIRR expression was monitored by qRT-PCR and immunoblotting. ST2L and MyD88 interaction was studied by co-immunoprecipitation, and IL-33, a ST2L ligand, was assayed by ELISA. Activation of transcription factor SP1 was examined by confocal microscopy, immunoblotting, and EMSA. The effect of EF24 on accumulation of ubiquitinated proteins in DCs and proteolysis of fluorogenic peptides by purified proteasome was studied. We found that EF24 upregulated the expression of ST2 and SIGIRR and decreased the interaction of the membrane-bound ST2 (ST2L) with MyD88, and significantly reduced IL-33 levels in LPS-stimulated DCs. Simultaneously it increased the activation of transcription factor SP1and restored the basal level of ubiquitinated proteins in LPS-stimulated DCs. Moreover, EF24 inhibited trypsin- and chymotrypsin-like activity of proteasome by directly interacting with 26S proteasome. The results suggest that EF24 activates endogenous anti-inflammatory arm of IL-1R signaling, most likely by stabilizing SP1 against proteasomal degradation.
Collapse
Affiliation(s)
- Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| | - Prachi Vilekar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Geeta Rao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
5
|
Horst K, Höfler J, Martin L, Greven J, Schürholz T, Simon TP, Marx G, Hildebrand F. Geriatric Polytrauma-Cardiovascular and Immunologic Response in a Murine Two-Hit Model of Trauma. J Surg Res 2019; 241:87-94. [PMID: 31018170 DOI: 10.1016/j.jss.2019.03.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/07/2019] [Accepted: 03/22/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND The aims of the present study were to establish a clinically relevant two-hit model with trauma/hemorrhage followed by sepsis in older mice and investigate age-dependent cardiovascular and immunologic specificities under these conditions. MATERIALS AND METHODS In aged mice (12, 18, and 24 mo old), a femur fracture followed by hemorrhage was induced. After resuscitation, animals were monitored for 72 h before sepsis was induced. Vital signs were monitored during shock. Systemic interleukin (IL)-6 levels were measured daily. Expression of sarcoplasmic or endoplasmic reticulum calcium ATPase (SERCA) and IL-6 receptor were analyzed in heart, lung, and liver tissues. RESULTS After induction of shock, mean arterial pressure decreased significantly in all groups (12 mo, P < 0.001; 18 mo, P < 0.001; 24 mo, P = 0.013). Compared with younger animals, 24-mo old mice were not able to adequately compensate for hypovolemia by an increase of heart rate (P = 0.711). Expression of SERCA2 (P = 0.002) and IL-6 receptor on myocytes (P = 0.037), lung (P = 0.005), and liver (P = 0.009) tissues were also lowest in this group. Systemic IL-6 values showed the most distinct posttraumatic response in 24-mo-old mice (P = 0.016). Survival rate decreased significantly with increased age (P = 0.005). CONCLUSIONS The increased mortality rate in older animals was associated with a limited compensatory physiological response and a more distinct immunologic reaction after trauma and sepsis. A decreased SERCA2 expression and missing feedback loops due to a reduced density of organ bound immune receptors might represent possible explanations for the observed age-dependent differences.
Collapse
Affiliation(s)
- Klemens Horst
- Department of Orthopaedic Trauma, RWTH Aachen University, Aachen, Germany.
| | - Johannes Höfler
- Department of Orthopaedic Trauma, RWTH Aachen University, Aachen, Germany
| | - Lukas Martin
- Department of Intensive Care and Intermediate Care, RWTH Aachen University, Aachen, Germany
| | - Johannes Greven
- Department of Orthopaedic Trauma, RWTH Aachen University, Aachen, Germany
| | - Tobias Schürholz
- Department of Anaesthesia and Intensive Care, University of Rostock, Rostock, Germany
| | - Tim P Simon
- Department of Intensive Care and Intermediate Care, RWTH Aachen University, Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, RWTH Aachen University, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopaedic Trauma, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Gao P, He C, Zhang C, Li B, Guo Y, Zhao W, Xie Q, Zhang X. Preventive effect on endothelial surface layer damage of Fusu agent in LPS-induced acute lung injury in rats. Mol Cell Biochem 2018; 450:113-123. [PMID: 29948507 PMCID: PMC6328519 DOI: 10.1007/s11010-018-3378-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/11/2018] [Indexed: 01/11/2023]
Abstract
Acute lung injury (ALI) is one of major causes of morbidity and mortality in intensive care. In pathophysiological events of ALI, endothelial surface layer (ESL) injury can result in capillary leakage as the initial event. The “Fusu agent”, a traditional Chinese medicine, can inhibit inflammatory factors, attenuate lung capillary leak as seen in our previous study. This study was aimed to explore the molecular mechanism of Fusu agent treatment with ALI. Consistent with previous studies, we found that Fusu agent has the protective effect on LPS-induced ALI model rats. Further investigation demonstrated that heparanase activation is necessary for the LPS-induced ALI model to aggravate ESL loss. Fusu agent can inhibit heparanase activation and heparan sulfate proteoglycans’ (HSPGs) degradation to mitigate the ESL injury. Furthermore, TNF-α and intercellular adhesion molecule-1 (ICAM-1) were significantly reduced upon Fusu agent pre-treatment to inhibit inflammatory cell influx and neutrophil adhesion in ALI. These findings shed light on the pharmacologic basis for the clinical application of traditional Chinese medicine in treating ALI.
Collapse
Affiliation(s)
- Peiyang Gao
- Critical Care Medicine, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Chengshi He
- Department of Respiratory, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Infectious Disease Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Baixue Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiling Guo
- Department of Emergency, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen Zhao
- Department of Emergency, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quan Xie
- Critical Care Medicine, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuemei Zhang
- Critical Care Medicine, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Dose-dependent effects of peroxisome proliferator-activated receptors β/δ agonist on systemic inflammation after haemorrhagic shock. Cytokine 2017; 103:127-132. [PMID: 28969938 DOI: 10.1016/j.cyto.2017.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/27/2017] [Accepted: 09/20/2017] [Indexed: 11/20/2022]
Abstract
INTRODUCTION PPARβ/δ agonists are known to modulate the systemic inflammatory response after sepsis. In this study, inflammation modulation effects of PPARβ/δ are investigated using the selective PPARβ/δ agonist (GW0742) in a model of haemorrhagic shock (HS)-induced sterile systemic inflammation. METHODS Blood pressure-controlled (35±5mmHg) HS was performed in C57/BL6 mice for 90min. Low-dose GW0742 (0.03mg/kg/BW) and high-dose GW0742 (0.3mg/kg/BW) were then administered at the beginning of resuscitation. Mice were sacrificed 6h after induction of HS. Plasma levels of IL-6, IL-1β, IL-10, TNFα, KC, MCP-1, and GM-CSF were determined by ELISA. Myeloperoxidase (MPO) activity in pulmonary and liver tissues was analysed with standardised MPO kits. RESULTS In mice treated with high-dose GW0742, plasma levels of IL-6, IL-1β, and MCP-1 were significantly increased compared to the control group mice. When compared to mice treated with low-dose GW0742 plasma levels of IL-6, IL-1β, GM-CSF, KC, and MCP-1 were significantly elevated in high-dose-treated mice. Low-dose GW0742 treatment was associated with a non-significant downtrend of inflammatory factors in mice with HS. No significant changes of MPO activity in lung and liver were observed between the control group and the GW0742 treatment groups. CONCLUSION This study identified dose-dependent effects of GW0742 on systemic inflammation after HS. While high-dose GW0742 substantially enhanced the systemic inflammatory response, low-dose GW0742 led to a downtrend of pro-inflammation cytokine expression. The exact mechanisms are yet unknown and need to be assessed in further studies.
Collapse
|
8
|
Hittinger M, Mell NA, Huwer H, Loretz B, Schneider-Daum N, Lehr CM. Autologous Co-culture of Primary Human Alveolar Macrophages and Epithelial Cells for Investigating Aerosol Medicines. Part II: Evaluation of IL-10-loaded Microparticles for the Treatment of Lung Inflammation. Altern Lab Anim 2016; 44:349-360. [DOI: 10.1177/026119291604400405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Acute respiratory distress syndrome is linked to inflammatory processes in the human lung. The aim of this study was to mimic in vitro the treatment of lung inflammation by using a cell-based human autologous co-culture model. As a potential trial medication, we developed a pulmonary dry powder formulation loaded with interleukin-10 (IL-10), a potent anti-inflammatory cytokine. The inflammatory immune response was stimulated by lipopolysaccharide. The co-culture was combined with the Pharmaceutical Aerosol Deposition Device on Cell Cultures (PADDOCC), to deposit the IL-10-loaded microparticles on the inflamed co-culture model at the air–liquid interface. This treatment significantly reduced the secretion of interleukin-6 and tumour necrosis factor, as compared to the deposition of placebo (unloaded) particles. Our results show that the alveolar co-culture model, in combination with a deposition device such as the PADDOCC, may serve as a powerful tool for testing the safety and efficacy of dry powder formulations for pulmonary drug delivery.
Collapse
Affiliation(s)
- Marius Hittinger
- PharmBioTec GmbH, Saarbrücken, Germany
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Nico Alexander Mell
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
- Biopharmaceutics and Pharmaceutical Technology, Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Hanno Huwer
- Heart & Thoracic Surgery, SHG Kliniken Völklingen, Saarbrücken, Germany
| | - Brigitta Loretz
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Nicole Schneider-Daum
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Claus-Michael Lehr
- PharmBioTec GmbH, Saarbrücken, Germany
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
- Biopharmaceutics and Pharmaceutical Technology, Department of Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
9
|
Wang Y, Fan L, Meng X, Jiang F, Chen Q, Zhang Z, Yan H. Transplantation of IL-10-transfected endothelial progenitor cells improves retinal vascular repair via suppressing inflammation in diabetic rats. Graefes Arch Clin Exp Ophthalmol 2016; 254:1957-1965. [PMID: 27405975 DOI: 10.1007/s00417-016-3427-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/06/2016] [Accepted: 06/22/2016] [Indexed: 12/15/2022] Open
Abstract
PURPOSE We aimed to evaluate the effect of IL-10 gene transfection on endothelial progenitor cells (EPCs) under inflammatory conditions, and explore the therapeutic potential of IL-10-transfected EPC transplantation on nonproliferative diabetic retinopathy (NPDR). METHODS Lentivirus vectors encoding IL-10 were constructed and introduced into EPCs isolated from rat bone marrow. After exposure to recombinant rat TNF-α, abilities of nontransfected EPCs (non-EPCs) and EPCs transfected with normal control lentivirus (EPCs-GFP) or IL-10 expressing lentivirus (EPCs-IL-10-GFP) were assessed, including migration, adhesion, and tube formation. IL-10 production by EPCs-IL-10-GFP was determined by ELISA. Following 12 weeks after establishment of diabetes, diabetic rats were randomly injected with non-EPCs, EPCs-GFP, or EPCs-IL-10-GFP via tail vein. Expression of inflammatory factors and factors associated with nuclear factor-kappa B (NF-kB) signal pathway, retinal histological analysis, and retinal vascular permeability were assessed 2 weeks after transplantation. RESULTS The detrimental effects of TNF-ɑ on the abilities of EPCs were significantly attenuated in EPCs-IL-10-GFP compared with non-EPCs and EPCs-GFP. The concentration of IL-10 in the EPCs-IL-10-GFP group was significantly higher than the non-EPCs and EPCs-GFP groups. Additionally, transplantation of EPCs-IL-10-GFP significantly inhibited inflammatory factors expression and activation of NF-kB signal pathway, improved retinal histological changes, and attenuated retinal vascular permeability. CONCLUSION In conclusion, transplantation of IL-10-transfected EPCs significantly improved EPCs-mediated retinal vascular repair and subsequently suppressed NPDR progression. This was associated with inflammation suppression, at least partly via inhibiting the NF-kB signal pathway. Transplantation of IL-10-transfected EPCs may be a new strategy for treatment of NPDR.
Collapse
Affiliation(s)
- Ying Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China.,Shenyang Aier Eye Hospital, NO.11, Shiyi Wei Road, Shenyang, 110003, China
| | - Lingling Fan
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China.,Department of Ophthalmology, The First Hospital Affiliated of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Xiangda Meng
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Feng Jiang
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Qingzhong Chen
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Zhuhong Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China.
| |
Collapse
|
10
|
Lu S, Aguilar A, Subramani K, Poulose N, Ayub A, Raju R. Alteration of cytokine profile following hemorrhagic shock. Cytokine 2016; 81:35-8. [PMID: 26851979 DOI: 10.1016/j.cyto.2016.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/07/2016] [Accepted: 01/27/2016] [Indexed: 01/28/2023]
Abstract
Hemorrhage is one of the leading causes of death in patients with trauma. We recently demonstrated that resveratrol can improve cardiac function and prolong life following severe hemorrhagic injury (HI) in a rat model. The present work is focused on determining changes in NF-κB dependent gene expression in the heart and the systemic cytokine milieu following HI and the effect of resveratrol treatment. The results indicate an increase in phosphorylated NF-κB in the heart with a concomitant increase in the expression of NF-κB dependent genes following HI. There was also a significant increase of systemic cytokine levels, both pro and anti-inflammatory, following HI and resolution when treated with resveratrol. This study demonstrates the potential role NF-κB has in the physiological response to HI and the effectiveness of resveratrol in reducing immune activation.
Collapse
Affiliation(s)
- Sumin Lu
- Georgia Regents University, Augusta, GA, United States
| | - Alex Aguilar
- Georgia Regents University, Augusta, GA, United States
| | | | - Ninu Poulose
- Georgia Regents University, Augusta, GA, United States
| | - Ahmar Ayub
- Georgia Regents University, Augusta, GA, United States
| | - Raghavan Raju
- Georgia Regents University, Augusta, GA, United States.
| |
Collapse
|
11
|
Pedrotti LP, Barrios BE, Maccio-Maretto L, Bento AF, Sena AA, Rodriguez-Galán MC, Calixto JB, Correa SG. Systemic IL-12 burst expands intestinal T-lymphocyte subsets bearing the α₄ β₇ integrin in mice. Eur J Immunol 2015; 46:70-80. [PMID: 26464149 DOI: 10.1002/eji.201545585] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 09/11/2015] [Accepted: 10/06/2015] [Indexed: 12/25/2022]
Abstract
The intestinal immune system is complex and displays unique anatomic and functional characteristics. Numerous immune cell subsets are located beneath the epithelial barrier and their activity is highly regulated. Using hydrodynamic shear of IL-12 cDNA to achieve systemic expression of IL-12 in mice, we evaluated the effect of a transient burst of this cytokine on the activation status of T cells from Peyer's patches (PPs), mesenteric lymph nodes (MLNs), and colonic lamina propria (LP). Following systemic IL-12 release, intestinal T lymphocytes became activated, exhibiting a CD44(high) CD62L(-) phenotype. After 5 days of the cytokine burst, the frequency of α4β7(+) CD4(+) and CD8(+) cells increased, and CD8(+) α4β7(+) cells mainly expressed T bet, a critical regulator of the Th1 differentiation program. The incremental increase in α4β7 expression involved the IL-12 receptor-signal transducer and activator of transcription (STAT)-4 axis, and occurred independently of IFN-γ, IL-4, IL-10, and TNF-α signaling. Moreover, IL-12 priming exacerbated the outcome of acute dextran sodium sulphate (DSS)-induced colitis with higher scores of weight loss, blood in stool, and diarrhea and lower hematocrit. Together, our findings demonstrate that systemic polarizing signals could effectively expand the number of effector cells able to home to the LP and contribute to local inflammation.
Collapse
Affiliation(s)
- Luciano P Pedrotti
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Córdoba, Córdoba, Argentina
| | - Bibiana E Barrios
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Córdoba, Córdoba, Argentina
| | - Lisa Maccio-Maretto
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Córdoba, Córdoba, Argentina
| | - Allisson F Bento
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina, Brasil
| | - Angela A Sena
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Córdoba, Córdoba, Argentina
| | - María Cecilia Rodriguez-Galán
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Córdoba, Córdoba, Argentina
| | - João B Calixto
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina, Brasil
| | - Silvia G Correa
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Córdoba, Córdoba, Argentina
| |
Collapse
|
12
|
Vilekar P, Rao G, Awasthi S, Awasthi V. Diphenyldifluoroketone EF24 Suppresses Pro-inflammatory Interleukin-1 receptor 1 and Toll-like Receptor 4 in lipopolysaccharide-stimulated dendritic cells. JOURNAL OF INFLAMMATION-LONDON 2015; 12:55. [PMID: 26401121 PMCID: PMC4580149 DOI: 10.1186/s12950-015-0096-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/23/2015] [Indexed: 01/24/2023]
Abstract
Background Unresolved and prolonged inflammation is a pathological basis of many disorders such as cancer and multiple organ failure in shock. Interleukin-1 receptor (IL-1R) superfamily consists of IL-1R1 and pathogen pattern recognition receptor toll-like receptor-4 (TLR4) which, upon ligand binding, initiate pro-inflammatory signaling. The study objective was to investigate the effect of a diphenyldifluoroketone EF24 on the expression of IL-1R1 and TLR4 in lipopolysaccharide (LPS)-stimulated dendritic cells (DCs). Methods Immortalized murine bone marrow-derived JAWS II dendritic cells (DC) were challenged with LPS (100 ng/ml) for 4 h. The LPS-stimulated DCs were treated with 10 μM of EF24 for 1 h. The expression levels of IL-1R1 and TLR4 were monitored by RT-PCR, immunoblotting, and confocal microscopy. The effect of EF24 on the viability and cell cycle of DCs was examined by lactate dehydrogenase assay and flow cytometry, respectively. Results EF24 treatment suppressed the LPS-induced TLR4 and IL-1R1 expression in DCs. However, the expression levels of IL-1RA and IL-1R2 were not influenced by either LPS or EF24 treatments. These effects of EF24 were associated with a decrease in LPS-induced expression of phospho-NF-kB p65, indicative of its role in the transcriptional control of IL-1R superfamily members. We did not find any significant effect of EF24 on the proliferation or cell cycle of DCs. Conclusions The results suggest that EF24 influences IL-1R superfamily signaling pathway in ways that could have salutary effects in inflammation. The pluripotent anti-inflammatory actions of EF24 warrant further investigation of EF24 in inflammatory conditions of systemic nature.
Collapse
Affiliation(s)
- Prachi Vilekar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 North Stonewall Avenue, Oklahoma City, OK 73117 USA
| | - Geeta Rao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 North Stonewall Avenue, Oklahoma City, OK 73117 USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 North Stonewall Avenue, Oklahoma City, OK 73117 USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 North Stonewall Avenue, Oklahoma City, OK 73117 USA
| |
Collapse
|
13
|
Kaempferol pretreatment modulates systemic inflammation and oxidative stress following hemorrhagic shock in mice. Chin Med 2015; 10:6. [PMID: 25798187 PMCID: PMC4369346 DOI: 10.1186/s13020-015-0035-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 03/06/2015] [Indexed: 11/16/2022] Open
Abstract
Background Kaempferol has been reported as beneficial for both acute and chronic inflammatory diseases. This study aims to investigate whether kaempferol affects systemic inflammation and oxidative stress in the heart, lung, and liver after hemorrhagic shock in mice. Methods Male C57/BL6 mice underwent hemorrhagic shock (mean arterial pressure of 35 mmHg for 90 min) and were arbitrarily divided into Sham, hemorrhagic shock (HS), and Kae groups (n = 10 in each group). Mice in the Kae groups received a kaempferol (10-mg/kg body weight) injection 12 h prior to (Group Kae PT) or 90 min after (Group Kae T) the initiation of hemorrhagic shock. Plasma proinflammatory cytokines (TNF-α and IL-6), organ myeloperoxidase (MPO) and superoxide dismutase (SOD) activities, and organ malondialdehyde (MDA) concentrations and heme oxygenase-1 (HO-1) expression levels were assessed by enzyme-linked immunosorbent assay (ELISA) or western blot assay. Results Compared with the HS group and the Kae T group, pretreatment with kaempferol significantly decreased proinflammatory cytokines TNF-α (P = 0.012 and 0.015, respectively) and IL-6 (P = 0.023 and 0.014, respectively) following hemorrhagic shock. Kae pretreatment reverted MPO, SOD, and MDA to basal levels in the heart, lung, and liver (Ps < 0.05), while the Kae T group showed no significant differences in these biomarkers compared with the HS group (Ps > 0.05). HO-1 expression was significantly increased in the Kae PT group compared with the other groups (P = 0.011 vs. HS group and P = 0.02 vs. Kae T group). Conclusions Pretreatment of hemorrhagic shock mice with kaempferol significantly decreased plasma levels of TNF-α and IL-6; reverted MPO, SOD, and MDA in the heart, lung, and liver; and increased expression of HO-1 in the same organs.
Collapse
|
14
|
Pfeifer R, Andruszkow JHK, Busch D, Hoepken M, Barkatali BM, Horst K, Pape HC, Hildebrand F. Development of a standardized trauma-related lung injury model. J Surg Res 2015; 196:388-94. [PMID: 25881786 DOI: 10.1016/j.jss.2015.03.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 02/16/2015] [Accepted: 03/16/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND The pathophysiology of acute lung injury is multifactorial, and the mechanisms are difficult to prove. We have devised a study of two known and standardized animal models (hemorrhagic shock [HS] and oleic acid [OA]) to more closely reproduce the pathophysiology of posttraumatic acute lung injury. MATERIAL AND METHODS Pressure-controlled HS (group HS) was performed by withdrawing blood over 15-min until mean arterial pressure reached 35 mm Hg for 90 min. In an additional group, HS and standardized lung injury induced by OA were combined (group lung injury [HS + OA]). After the shock period, both groups were resuscitated over 15 min by transfusion of the removed blood and an equal volume of lactate Ringer solution. The end point was 6 h. Plasma interleukin (IL)-6, keratinocyte chemoattractant (KC), IL-10, monocyte chemoattractant protein-1 (MCP-1), and lung histology were carried out. RESULTS The posttraumatic lung injury group demonstrated significantly higher IL-6 levels when compared with HS group (744.8 ± 104 versus 297.7 ± 134 pg/mL; P = 0.004). Histologic analysis confirmed diffuse alveolar congestion and moderate-to-severe lung edema in animals with HS + OA. Lung injury was mild in mice with isolated HS or OA injection. CONCLUSIONS We established a posttraumatic lung injury model combining two different standardized protocols (HS and OA). This model leads to pronounced inflammation and lung injury. This model allows the analysis of the dynamics of sterile lung injury and associated organ dysfunction.
Collapse
Affiliation(s)
- Roman Pfeifer
- Department of Orthopaedics and Trauma Surgery and Harald Tscherne Laboratory, Aachen University Medical Center, RWTH Aachen University, Aachen, Germany.
| | - Julia H K Andruszkow
- Institute of Pathology, Aachen University Medical Center, RWTH Aachen University, Aachen, Germany
| | - Daniel Busch
- Department of Surgery, University Medical Center, RWTH Aachen University, Aachen, Germany
| | - Merle Hoepken
- Department of Orthopaedics and Trauma Surgery and Harald Tscherne Laboratory, Aachen University Medical Center, RWTH Aachen University, Aachen, Germany
| | - Bilal M Barkatali
- Department of Trauma and Orthopaedics, Salford Royal Teaching Hospitals Foundation NHS Trust, Salford, United Kingdom
| | - Klemens Horst
- Department of Orthopaedics and Trauma Surgery and Harald Tscherne Laboratory, Aachen University Medical Center, RWTH Aachen University, Aachen, Germany
| | - Hans-Christoph Pape
- Department of Orthopaedics and Trauma Surgery and Harald Tscherne Laboratory, Aachen University Medical Center, RWTH Aachen University, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopaedics and Trauma Surgery and Harald Tscherne Laboratory, Aachen University Medical Center, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
15
|
Lichte P, Pfeifer R, Kobbe P, Tohidnezhad M, Pufe T, Almahmoud K, Hildebrand F, Pape HC. Inhalative IL-10 treatment after bilateral femoral fractures affect pulmonary inflammation in mice. Ann Anat 2015; 200:73-8. [PMID: 25801583 DOI: 10.1016/j.aanat.2015.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/08/2015] [Accepted: 02/08/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Musculoskeletal injuries induce systemic inflammation which often impairs lung function contributing to morbidity. IL-10 has been shown to have a beneficial effect on immune dysfunction and organ damage after different traumatic insults. We sought to investigate the effect of inhalative IL-10 administration on the systemic and pulmonary inflammatory response in a small animal model of bilateral femoral fracture. MATERIALS AND METHODS Male C57/BL6 mice (6 animals per group) were subjected to bilateral femoral fracture and intramedullary nailing followed by inhalative administration of either 50μL PBS (Fx group) or 50μg/kg recombinant mouse IL-10 dissolved in 50μL PBS (FxIL-10 group). All animals were sacrificed at 6, 24, or 72h after fracture induction. Blood samples were collected and analyzed for IL-6, IL-10, KC, and MCP-1 (CCL2) plasma concentrations by Bio-Plex Pro™ assays. Pulmonary infiltration by neutrophils was assessed by myeloperoxidase (MPO) activity (ELISA) and histological analysis of lung tissue. Pulmonary ICAM-1 expression (immunohistochemistry), and pulmonary IL-6 levels (ELISA) were determined. RESULTS Inhalative IL-10 administration showed a decrease in the pulmonary infiltration by neutrophils. A significant decrease in the expression of the adhesion molecule ICAM-1 after local IL-10 application was observed. In contrast, local IL-10 administration did not show a significant effect on the systemic inflammatory response. CONCLUSION Our findings suggest that inhalative IL-10 administration may beneficially modulate the pulmonary microenvironment, in which IL-10 effect on the local ICAM-1 expression seems to play a central role.
Collapse
Affiliation(s)
- Philipp Lichte
- Department of Orthopaedic Trauma Surgery, Harald Tscherne Lab for Orthopedic Research, Pauwelsstraβe 30, Aachen, Germany.
| | - Roman Pfeifer
- Department of Orthopaedic Trauma Surgery, Harald Tscherne Lab for Orthopedic Research, Pauwelsstraβe 30, Aachen, Germany
| | - Philipp Kobbe
- Department of Orthopaedic Trauma Surgery, Faculty of Medicine, RWTH Aachen University, Pauwelsstraβe 30, Aachen, Germany
| | - Mersedeh Tohidnezhad
- Institute of Anatomy and Cell Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraβe 30, Aachen, Germany
| | - Thomas Pufe
- Institute of Anatomy and Cell Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraβe 30, Aachen, Germany
| | - Khalid Almahmoud
- Department of Orthopaedic Trauma Surgery, Harald Tscherne Lab for Orthopedic Research, Pauwelsstraβe 30, Aachen, Germany; Department of Surgery, University of Pittsburgh, Pittsburg, PA, USA
| | - Frank Hildebrand
- Department of Orthopaedic Trauma Surgery, Harald Tscherne Lab for Orthopedic Research, Pauwelsstraβe 30, Aachen, Germany; Department of Orthopaedic Trauma Surgery, Faculty of Medicine, RWTH Aachen University, Pauwelsstraβe 30, Aachen, Germany
| | - Hans-Christoph Pape
- Department of Orthopaedic Trauma Surgery, Faculty of Medicine, RWTH Aachen University, Pauwelsstraβe 30, Aachen, Germany
| |
Collapse
|
16
|
Böhmer AB, Just KS, Lefering R, Paffrath T, Bouillon B, Joppich R, Wappler F, Gerbershagen MU. Factors influencing lengths of stay in the intensive care unit for surviving trauma patients: a retrospective analysis of 30,157 cases. Crit Care 2014; 18:R143. [PMID: 25001201 PMCID: PMC4227082 DOI: 10.1186/cc13976] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 06/09/2014] [Indexed: 11/10/2022] Open
Abstract
Introduction There are many potential influencing factors that affect the duration of intensive care treatment for patients who have survived multiple trauma. Yet the respective factors’ relevance to ICU length of stay (LOS) has been rarely studied. Thus, the aim of the present study was to investigate to what extent specific factors influence ICU LOS in surviving trauma patients. Methods We retrospectively analyzed a dataset of 30,157 surviving trauma patients from the TraumaRegister DGU® who were older than six years of age and received subsequent intensive care treatment for more than one day, from 2002 to 2011. Univariate analysis and multiple linear regression analysis were used to examine 25 categorical pre- and post-trauma parameters. Results Univariate analysis confirmed the impact of all analyzed factors. In subsequent multiple linear regression analyses, coefficients ranged from -1.3 to +8.2 days. The factors that influenced the prolongation of ICU LOS most were renal failure (+8.1 days), sepsis (+7.8 days) and respiratory failure (+4.9 days). Patients spent one additional day in the ICU for every 5 additional points on the Injury Severity Score (regression coefficient +0.2 per point). Furthermore, massive transfusion (+3.3 days), invasive ventilation (+3.1 days), and an initial Glasgow Coma Scale score ≤8 (+3.0 days) had a significant impact on ICU LOS. The coefficient of determination for the model was 44% (R2). Conclusions Treatment regimens, as well as secondary effects and complications of trauma and intensive care treatment, prolong ICU LOS more than the mechanism of trauma or pre-trauma patient conditions. Successful prevention of complicated courses of illness, such as sepsis and renal and respiratory failure, could significantly abbreviate the ICU stay in trauma patients. Therefore, the staff’s attention should be focused on preventive strategies.
Collapse
|
17
|
Yadav VR, Vilekar P, Awasthi S, Awasthi V. Hemorrhage-induced interleukin-1 receptor pathway in lung is suppressed by 3,5-bis(2-fluorobenzylidene)-4-piperidone in a rat model of hypovolemic shock. Artif Organs 2014; 38:675-83. [PMID: 24749913 DOI: 10.1111/aor.12305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Severe blood loss in victims of trauma creates an exaggerated inflammatory background that contributes to the development of intravascular coagulopathy and multiple organ dysfunction syndrome. We hypothesized that treatment with diphenyldifluoroketone EF24, an inhibitor of nuclear factor kappa-B, would have salutary effects in hemorrhagic shock. The objective of this study was to investigate the effect of EF24 on the expression of the interleukin-1 receptor (IL-1R) superfamily in a rat model of hypovolemic shock. Hypovolemia was induced by gradually withdrawing approximately 50% of circulating blood, and EF24 was administered intraperitoneally (0.2 mg/kg) in 50 μL of saline. After 6 h of shock, lung tissue was probed immunohistochemically and by immunoblotting to study the expression of Toll-like receptor 4 (TLR4), IL-1R, suppression of tumorigenicity 2 (ST2), and single immunoglobulin IL-1R-related (SIGIRR). The tissue-associated pro-inflammatory cytokines, tumor necrosis factor alpha (TNF-α) and IL-6, were measured by enzyme-linked immunosorbent assay. We observed a reduction in immunoreactive TLR4 and IL-1R1 in lung tissue of rats treated with EF24. Simultaneously, the pulmonary expression of ST2 and SIGIRR (the putative down-regulators of the pro-inflammatory IL-1R pathway) was increased in EF24-treated hemorrhaged rats. The concentration of hemorrhage-induced TNF-α and IL-6 in lung tissue homogenates was also reduced by EF24 treatment. These results confirm our previous in vitro observations in lipopolysaccharide-stimulated dendritic cells that EF24 beneficially modulates the IL-1R pathway and suggest that it could be investigated as an adjunct therapeutic in managing inflammation associated with hemorrhagic shock.
Collapse
Affiliation(s)
- Vivek R Yadav
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | | | |
Collapse
|
18
|
Pfeifer R, Tschernig T, Lichte P, Dombroski D, Kobbe P, Pape HC. MALP-2 pre-treatment modulates systemic inflammation in hemorrhagic shock. JOURNAL OF INFLAMMATION-LONDON 2013; 10:17. [PMID: 23587413 PMCID: PMC3640975 DOI: 10.1186/1476-9255-10-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 04/10/2013] [Indexed: 11/24/2022]
Abstract
Background TLR-2 is expressed on the surface of leucocytes, lung and liver tissue and initiates the activation of immune response after interaction with components of the bacterial cell wall. In this experiment we investigated whether immunostimulation with TLR-2 agonists under conditions of sterile inflammation (hemorrhagic shock (HS)) may affect the immune response and remote organ inflammation. Methods Male C57/BL6 mice were subjected to standardized pressure-controlled HS (MAP of 35 mmHg for 90 minutes). The TLR-2 agonist macrophage-activated lipopeptide-2 (MALP-2) was administered (i.p.) either 12 hours prior to the induction of HS (Group MALP PT) or after the hypotensive period (90 minutes) (Group MALP T). After six hours, plasma cytokine levels (IL-6, KC, IL-10, and MCP-1) and lung and liver MPO activity were assessed. Results Pre-treatment with MALP-2 resulted in a significant attenuation of the systemic pro-inflammatory (IL-6) response (MALP PT: 0.83±0.2 ng/ml vs. MALP T: 1.7±0.09 ng/ml) (p<0.05). In comparison to the liver MPO activity, lung MPO levels in in group MALP PT did not show differences to levels measured in MALP T mice (1.200±200 ng/mg vs. 1.800±200 ng/mg). Conclusions After initial inflammation, MALP-2 pre-treatment was associated with attenuated systemic immune response after sterile stimulus. The TLR-2 agonist appears to affect sterile inflammation pathways. The exact mechanisms should be studied further to better understand these affects.
Collapse
Affiliation(s)
- Roman Pfeifer
- Department of Orthopaedic Trauma Surgery, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Pfeifer R, Lichte P, Schreiber H, Sellei RM, Dienstknecht T, Sadeghi C, Pape HC, Kobbe P. Models of hemorrhagic shock: differences in the physiological and inflammatory response. Cytokine 2012. [PMID: 23178149 DOI: 10.1016/j.cyto.2012.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION The hemorrhagic shock (HS) model is commonly used to initiate a systemic post-traumatic inflammatory response. Numerous experimental protocols exist and it is unclear how differences in these models affect the immune response making it difficult to compare results between studies. The aim of this study was to compare the inflammatory response of different established protocols for volume-controlled shock in a murine model. METHODS Male C57/BL6 mice 6-10 weeks and weighing 20-25 g were subjected to volume-controlled or pressure-controlled hemorrhagic shock. In the volume-controlled group 300 μl, 500 μl, or 700 μl blood was collected over 15 min and mean arterial pressure was continuously monitored during the period of shock. In the pressure-controlled hemorrhagic shock group, blood volume was depleted with a goal mean arterial pressure of 35 mmHg for 90 min. Following hemorrhage, mice from all groups were resuscitated with the extracted blood and an equal volume of lactated ringer solution. Six hours from the initiation of hemorrhagic shock, serum IL-6, KC, MCP-1 and MPO activity within the lung and liver tissue were assessed. RESULTS In the volume-controlled group, the mice were able to compensate the initial blood loss within 30 min. Approximately 800 μl of blood volume was removed to achieve a MAP of 35 mmHg (p<0.001). No difference in the pro-inflammatory cytokine (IL-6 and KC) profile was measured between the volume-controlled groups (300 μl, 500 μl, or 700 μl). The pressure-controlled group demonstrated significantly higher cytokine levels (IL-6 and KC) than all volume-controlled groups. Pulmonary MPO activity increased with the severity of the HS (p<0.05). This relationship could not be observed in the liver. CONCLUSION Volume-controlled hemorrhagic shock performed following current literature recommendations may be insufficient to produce a profound post-traumatic inflammatory response. A decrease in the MAP following blood withdrawal (300 μl, 500 μl or 700 μl) was usually compensated within 30 min. Pressure-controlled hemorrhagic shock is a more reliable for induction of a systemic inflammatory response.
Collapse
Affiliation(s)
- Roman Pfeifer
- Department of Orthopaedics and Trauma Surgery, Aachen University Medical Center, Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Inhalative vs. systemic IL-10 administration: differences in the systemic inflammatory response and end-organ inflammation following hemorrhagic shock. Cytokine 2012; 60:266-70. [PMID: 22727902 DOI: 10.1016/j.cyto.2012.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
Abstract
Interleukin-10 is known to modulate the systemic inflammatory response after trauma. This study investigates differences in the systemic and end-organ inflammation in animals treated with either inhalative or systemic IL-10 after experimental hemorrhagic shock (HS). Pressure controlled HS was performed in C57/BL6 mice for 1.5h (6 animals per group). Inhalative or systemic recombinant mouse IL-10 (50 μg/kg dissolved in 50 μl PBS) was administered after resuscitation. Animals were sacrificed after 4.5 or 22.5h of recovery. Serum levels of IL-6, IL-10, KC, MCP-1, and LBP were determined by ELISA. Pulmonary and liver inflammation was analyzed by standardized Myeloperoxidase (MPO) kits. Systemic and inhalative IL-10 administration affected the systemic inflammatory response as well as end-organ inflammation differently. Differences were obvious in the early (6h) but not later (24h) inflammatory phase. Systemic IL-10 application was associated with a decreased systemic inflammatory response as well as hepatic inflammation, whereas nebulized IL-10 solely reduced the pulmonary inflammation. Our study demonstrates that systemic and nebulized IL-10 administration differentially influenced the systemic cytokine response and end-organ inflammation. Early pulmonary but not hepatic protection appears to be possible by inhalative IL-10 application. Further studies are necessary to assess exact pathways.
Collapse
|