1
|
Riaz F, Wei P, Pan F. PPARs at the crossroads of T cell differentiation and type 1 diabetes. Front Immunol 2023; 14:1292238. [PMID: 37928539 PMCID: PMC10623333 DOI: 10.3389/fimmu.2023.1292238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
T-cell-mediated autoimmune type 1 diabetes (T1D) is characterized by the immune-mediated destruction of pancreatic beta cells (β-cells). The increasing prevalence of T1D poses significant challenges to the healthcare system, particularly in countries with struggling economies. This review paper highlights the multifaceted roles of Peroxisome Proliferator-Activated Receptors (PPARs) in the context of T1D, shedding light on their potential as regulators of immune responses and β-cell biology. Recent research has elucidated the intricate interplay between CD4+ T cell subsets, such as Tregs and Th17, in developing autoimmune diseases like T1D. Th17 cells drive inflammation, while Tregs exert immunosuppressive functions, highlighting the delicate balance crucial for immune homeostasis. Immunotherapy has shown promise in reinstating self-tolerance and restricting the destruction of autoimmune responses, but further investigations are required to refine these therapeutic strategies. Intriguingly, PPARs, initially recognized for their role in lipid metabolism, have emerged as potent modulators of inflammation in autoimmune diseases, particularly in T1D. Although evidence suggests that PPARs affect the β-cell function, their influence on T-cell responses and their potential impact on T1D remains largely unexplored. It was noted that PPARα is involved in restricting the transcription of IL17A and enhancing the expression of Foxp3 by minimizing its proteasomal degradation. Thus, antagonizing PPARs may exert beneficial effects in regulating the differentiation of CD4+ T cells and preventing T1D. Therefore, this review advocates for comprehensive investigations to delineate the precise roles of PPARs in T1D pathogenesis, offering innovative therapeutic avenues that target both the immune system and pancreatic function. This review paper seeks to bridge the knowledge gap between PPARs, immune responses, and T1D, providing insights that may revolutionize the treatment landscape for this autoimmune disorder. Moreover, further studies involving PPAR agonists in non-obese diabetic (NOD) mice hold promise for developing novel T1D therapies.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Ping Wei
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
2
|
Wang C, Shi Y, Wang X, Ma H, Liu Q, Gao Y, Niu J. Peroxisome Proliferator-Activated Receptors Regulate Hepatic Immunity and Assist in the Treatment of Primary Biliary Cholangitis. Front Immunol 2022; 13:940688. [PMID: 35880178 PMCID: PMC9307989 DOI: 10.3389/fimmu.2022.940688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
Fibrates, which are agonists of peroxisome proliferator-activated receptor alpha, have received increasing attention in the treatment of primary biliary cholangitis. Reduced alkaline phosphatase levels and improved clinical outcomes were observed in patients with primary biliary cholangitis with an inadequate response to ursodeoxycholic acid (UDCA) monotherapy4 when treated with bezafibrate or fenofibrate combined with UDCA. In contrast to obeticholic acid, which exacerbates pruritus in patients, fibrates have been shown to relieve pruritus. Clinical trial outcomes show potential for the treatment of primary biliary cholangitis by targeting peroxisome proliferator-activated receptors. It is currently agreed that primary biliary cholangitis is an autoimmune-mediated cholestatic liver disease, and peroxisome proliferator-activated receptor is a nuclear receptor that regulates the functions of multiple immune cells, thus playing an important role in regulating innate and adaptive immunity. Therefore, this review focuses on the immune disorder of primary biliary cholangitis and summarizes the regulation of hepatic immunity when peroxisome proliferator-activated receptors are targeted for treating primary biliary cholangitis.
Collapse
Affiliation(s)
- Chang Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
- Department of Gastroenterology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Ying Shi
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
- Center of Infectious Disease and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory of Zoonotic Disease, The First Hospital of Jilin University, Changchun, China
| | - Xiaomei Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
- Center of Infectious Disease and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory of Zoonotic Disease, The First Hospital of Jilin University, Changchun, China
| | - Heming Ma
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
- Center of Infectious Disease and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory of Zoonotic Disease, The First Hospital of Jilin University, Changchun, China
| | - Quan Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
- Center of Infectious Disease and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory of Zoonotic Disease, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yanhang Gao, ; Junqi Niu,
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
- Center of Infectious Disease and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory of Zoonotic Disease, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yanhang Gao, ; Junqi Niu,
| |
Collapse
|
3
|
Rada J, Donato M, Penas FN, Alba Soto C, Cevey ÁC, Pieralisi AV, Gelpi R, Mirkin GA, Goren NB. IL-10-Dependent and -Independent Mechanisms Are Involved in the Cardiac Pathology Modulation Mediated by Fenofibrate in an Experimental Model of Chagas Heart Disease. Front Immunol 2020; 11:572178. [PMID: 33072115 PMCID: PMC7541836 DOI: 10.3389/fimmu.2020.572178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
IL-10 is an anti-inflammatory cytokine that plays a significant role in the modulation of the immune response in many pathological conditions, including infectious diseases. Infection with Trypanosoma cruzi (T. cruzi), the etiological agent of Chagas disease, results in an ongoing inflammatory response that may cause heart dysfunction, ultimately leading to heart failure. Given its infectious and inflammatory nature, in this work we analyzed whether the lack of IL-10 hinders the anti-inflammatory effects of fenofibrate, a PPARα ligand, in a murine model of Chagas heart disease (CHD) using IL-10 knockout (IL-10 KO) mice. Our results show fenofibrate was able to restore the abnormal cardiac function displayed by T. cruzi-infected mice lacking IL-10. Treatment with fenofibrate reduced creatine kinase (CK) levels in sera of IL-10 KO mice infected with T. cruzi. Moreover, although fenofibrate could not modulate the inflammatory infiltrates developing in the heart, it was able to reduce the increased collagen deposition in infected IL-10 KO mice. Regarding pro-inflammatory mediators, the most significant finding was the increase in serum IL-17. These were reduced in IL-10 KO mice upon fenofibrate treatment. In agreement with this, the expression of RORγt was reduced. Infection of IL-10 KO mice increased the expression of YmI, FIZZ and Mannose Receptor (tissue healing markers) that remained unchanged upon treatment with fenofibrate. In conclusion, our work emphasizes the role of anti-inflammatory mechanisms to ameliorate heart function in CHD and shows, for the first time, that fenofibrate attains this through IL-10-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Jimena Rada
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Donato
- Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiopatología Cardiovascular, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico N Penas
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Catalina Alba Soto
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ágata C Cevey
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Azul V Pieralisi
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ricardo Gelpi
- Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiopatología Cardiovascular, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerardo A Mirkin
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nora B Goren
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of transcription factors with a key role in glucose and lipid metabolism. PPARs are expressed in many cell types including pancreatic beta cells and immune cells, where they regulate insulin secretion and T cell differentiation, respectively. Moreover, various PPAR agonists prevent diabetes in the non-obese diabetic (NOD) mouse model of type 1 diabetes. PPARs are thus of interest in type 1 diabetes (T1D) as they represent a novel approach targeting both the pancreas and the immune system. In this review, we examine the role of PPARs in immune responses and beta cell biology and their potential as targets for treatment of T1D.
Collapse
|
5
|
Fenofibrate inhibited the differentiation of T helper 17 cells in vitro. PPAR Res 2012; 2012:145654. [PMID: 22792085 PMCID: PMC3388320 DOI: 10.1155/2012/145654] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/25/2012] [Accepted: 04/25/2012] [Indexed: 11/18/2022] Open
Abstract
Uncontrolled activity of T cells mediates autoimmune and inflammatory diseases such as multiple sclerosis, inflammatory bowel diseases, rheumatoid arthritis, type 1 diabetes, and atherosclerosis. Recent findings suggest that enhanced activity of interleukin-17 (IL-17) producing T helper 17 cells (Th17 cells) plays an important role in autoimmune diseases and inflammatory diseases. Previous papers have revealed that a lipid-lowering synthetic ligand of peroxisome proliferator-activated receptor α (PPARα), fenofibrate, alleviates both atherosclerosis and a few nonlipid-associated autoimmune diseases such as autoimmune colitis and multiple sclerosis. However, the link between fenofibrate and Th17 cells is lacking. In the present study, we hypothesized that fenofibrate inhibited the differentiation of Th17 cells. Our results showed that fenofibrate inhibited transforming growth factor-β (TGF-β) and IL-6-induced differentiation of Th17 cells in vitro. However, other PPARα ligands such as WY14643, GW7647 and bezafibrate did not show any effect on Th17 differentiation, indicating that this effect of fenofibrate might be PPARα independent. Furthermore, our data showed that fenofibrate reduced IL-21 production and STAT3 activation, a critical signal in the Th17 differentiation. Thus, by ameliorating the differentiation of Th17 cells, fenofibrate might be beneficial for autoimmunity and inflammatory diseases.
Collapse
|