1
|
Antony F, Kinha D, Nowińska A, Rouse BT, Suryawanshi A. The immunobiology of corneal HSV-1 infection and herpetic stromal keratitis. Clin Microbiol Rev 2024; 37:e0000624. [PMID: 39078136 PMCID: PMC11391706 DOI: 10.1128/cmr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
SUMMARYHuman alphaherpesvirus 1 (HSV-1) is a highly successful neurotropic pathogen that primarily infects the epithelial cells lining the orofacial mucosa. After primary lytic replication in the oral, ocular, and nasal mucosal epithelial cells, HSV-1 establishes life-long latency in neurons within the trigeminal ganglion. Patients with compromised immune systems experience frequent reactivation of HSV-1 from latency, leading to virus entry in the sensory neurons, followed by anterograde transport and lytic replication at the innervated mucosal epithelial surface. Although recurrent infection of the corneal mucosal surface is rare, it can result in a chronic immuno-inflammatory condition called herpetic stromal keratitis (HSK). HSK leads to gradual vision loss and can cause permanent blindness in severe untreated cases. Currently, there is no cure or successful vaccine to prevent latent or recurrent HSV-1 infections, posing a significant clinical challenge to managing HSK and preventing vision loss. The conventional clinical management of HSK primarily relies on anti-virals to suppress HSV-1 replication, anti-inflammatory drugs (such as corticosteroids) to provide symptomatic relief from pain and inflammation, and surgical interventions in more severe cases to replace damaged cornea. However, each clinical treatment strategy has limitations, such as local and systemic drug toxicities and the emergence of anti-viral-resistant HSV-1 strains. In this review, we summarize the factors and immune cells involved in HSK pathogenesis and highlight alternate therapeutic strategies for successful clinical management of HSK. We also discuss the therapeutic potential of immunoregulatory cytokines and immunometabolism modulators as promising HSK therapies against emerging anti-viral-resistant HSV-1 strains.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Kinha
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Anna Nowińska
- Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
- Ophthalmology Department, Railway Hospital in Katowice, Katowice, Poland
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Amol Suryawanshi
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
Kumar R, Sinha NR, Mohan RR. Corneal gene therapy: Structural and mechanistic understanding. Ocul Surf 2023; 29:279-297. [PMID: 37244594 PMCID: PMC11926995 DOI: 10.1016/j.jtos.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Cornea, a dome-shaped and transparent front part of the eye, affords 2/3rd refraction and barrier functions. Globally, corneal diseases are the leading cause of vision impairment. Loss of corneal function including opacification involve the complex crosstalk and perturbation between a variety of cytokines, chemokines and growth factors generated by corneal keratocytes, epithelial cells, lacrimal tissues, nerves, and immune cells. Conventional small-molecule drugs can treat mild-to-moderate traumatic corneal pathology but requires frequent application and often fails to treat severe pathologies. The corneal transplant surgery is a standard of care to restore vision in patients. However, declining availability and rising demand of donor corneas are major concerns to maintain ophthalmic care. Thus, the development of efficient and safe nonsurgical methods to cure corneal disorders and restore vision in vivo is highly desired. Gene-based therapy has huge potential to cure corneal blindness. To achieve a nonimmunogenic, safe and sustained therapeutic response, the selection of a relevant genes, gene editing methods and suitable delivery vectors are vital. This article describes corneal structural and functional features, mechanistic understanding of gene therapy vectors, gene editing methods, gene delivery tools, and status of gene therapy for treating corneal disorders, diseases, and genetic dystrophies.
Collapse
Affiliation(s)
- Rajnish Kumar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow campus, UP, 226028, India
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
3
|
Maurizi E, Martella DA, Schiroli D, Merra A, Mustfa SA, Pellegrini G, Macaluso C, Chiappini C. Nanoneedles Induce Targeted siRNA Silencing of p16 in the Human Corneal Endothelium. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203257. [PMID: 36253148 PMCID: PMC9685449 DOI: 10.1002/advs.202203257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Nanoneedles can target nucleic acid transfection to primary cells at tissue interfaces with high efficiency and minimal perturbation. The corneal endothelium is an ideal target for nanoneedle-mediated RNA interference therapy aimed at enhancing its proliferative capacity, necessary for tissue regeneration. This work develops a strategy for siRNA nanoninjection to the human corneal endothelium. Nanoneedles can deliver p16-targeting siRNA to primary human corneal endothelial cells in vitro without toxicity. The nanoinjection of siRNA induces p16 silencing and increases cell proliferation, as monitored by ki67 expression. Furthermore, siRNA nanoinjection targeting the human corneal endothelium is nontoxic ex vivo, and silences p16 in transfected cells. These data indicate that nanoinjection can support targeted RNA interference therapy for the treatment of endothelial corneal dysfunction.
Collapse
Affiliation(s)
- Eleonora Maurizi
- Dentistry Centre LabUniversity of Parmavia Gramsci 14Parma43126Italy
- Centre for Regenerative Medicine ‘‘S. Ferrari’’University of Modena and Reggio EmiliaModena41125Italy
| | | | - Davide Schiroli
- Transfusion Medicine UnitAzienda USL‐IRCCSReggio Emilia42122Italy
| | | | - Salman Ahmad Mustfa
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
- AstraZenecaGranta Park, Great AbingtonCambridgeCB21 6GHUnited Kingdom
| | - Graziella Pellegrini
- Centre for Regenerative Medicine ‘‘S. Ferrari’’University of Modena and Reggio EmiliaModena41125Italy
- Holostem Terapie Avanzate S.r.l.Modena41125Italy
| | - Claudio Macaluso
- Dentistry Centre LabUniversity of Parmavia Gramsci 14Parma43126Italy
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
- London Centre for NanotechnologyKing's College LondonLondonWC2R 2LSUK
| |
Collapse
|
4
|
Mohan RR, Balne PK, Muayad MS, Tripathi R, Sinha NR, Gupta S, An JA, Sinha PR, Hesemann NP. Six-Month In Vivo Safety Profiling of Topical Ocular AVV5-Decorin Gene Transfer. Transl Vis Sci Technol 2021; 10:5. [PMID: 34383877 PMCID: PMC8362634 DOI: 10.1167/tvst.10.10.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose A significant remission of corneal fibrosis and neovascularization in rabbit eye in vivo was observed from a tissue-selective localized adeno-associated virus (AAV)5–Decorin (Dcn) gene therapy. This study sought to investigate 6-month toxicity profiling of this gene therapy for the eye in vivo using a rabbit model. Methods A small epithelial scrape followed by corneal drying was performed unilaterally in 12 rabbit eyes and either AAV5–Dcn (n = 6) or naked vector (n = 6) was delivered topically using a cloning cylinder technique. Contralateral eyes served as naïve control (n = 6). Safety and tolerability measurements in live rabbits were performed periodically until month 6 using multimodel clinical ophthalmic imaging tools—a slit lamp, stereomicroscope, and HRT3-RCM in vivo confocal microscope. Thereafter, corneas were excised and subjected to hematoxylin and eosin staining, Mason trichome staining, propidium iodide nuclear staining, and quantitative real-time polymerase chain reaction analyses. Results Clinical eye examinations based on the modified Hackett–McDonald ocular scoring system, and in vivo confocal imaging of the cornea showed no signs of ocular toxicity in rabbit eyes given AAV5–Dcn gene transfer vs control eyes (P > 0.05) through 6 months after treatment. The histologic and molecular analyses showed no significant differences in AAV5–Dcn vs AAV naked or naïve control groups (P > 0.05) and were in accordance with the masked clinical ophthalmic observations showing no abnormalities. Conclusions Topical tissue-targeted localized AAV5–Dcn gene therapy seems to be safe and nontoxic to the rabbit eye in vivo. Translational Relevance AAV5–Dcn gene therapy has the potential to treat corneal fibrosis and neovascularization in vivo safely without significant ocular toxicity.
Collapse
Affiliation(s)
- Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Praveen K Balne
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Maryam S Muayad
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Ratnakar Tripathi
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jella A An
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Nathan P Hesemann
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
5
|
Amador C, Shah R, Ghiam S, Kramerov AA, Ljubimov AV. Gene therapy in the anterior eye segment. Curr Gene Ther 2021; 22:104-131. [PMID: 33902406 DOI: 10.2174/1566523221666210423084233] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
This review provides comprehensive information about the advances in gene therapy in the anterior segment of the eye including cornea, conjunctiva, lacrimal gland, and trabecular meshwork. We discuss gene delivery systems including viral and non-viral vectors as well as gene editing techniques, mainly CRISPR-Cas9, and epigenetic treatments including antisense and siRNA therapeutics. We also provide a detailed analysis of various anterior segment diseases where gene therapy has been tested with corresponding outcomes. Disease conditions include corneal and conjunctival fibrosis and scarring, corneal epithelial wound healing, corneal graft survival, corneal neovascularization, genetic corneal dystrophies, herpetic keratitis, glaucoma, dry eye disease, and other ocular surface diseases. Although most of the analyzed results on the use and validity of gene therapy at the ocular surface have been obtained in vitro or using animal models, we also discuss the available human studies. Gene therapy approaches are currently considered very promising as emerging future treatments of various diseases, and this field is rapidly expanding.
Collapse
Affiliation(s)
- Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
6
|
Mohan RR, Martin LM, Sinha NR. Novel insights into gene therapy in the cornea. Exp Eye Res 2021; 202:108361. [PMID: 33212142 PMCID: PMC9205187 DOI: 10.1016/j.exer.2020.108361] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Corneal disease remains a leading cause of impaired vision world-wide, and advancements in gene therapy continue to develop with promising success to prevent, treat and cure blindness. Ideally, gene therapy requires a vector and gene delivery method that targets treatment of specific cells or tissues and results in a safe and non-immunogenic response. The cornea is a model tissue for gene therapy due to its ease of clinician access and immune-privileged state. Improvements in the past 5-10 years have begun to revolutionize the approach to gene therapy in the cornea with a focus on adeno-associated virus and nanoparticle delivery of single and combination gene therapies. In addition, the potential applications of gene editing (zinc finger nucleases [ZNFs], transcription activator-like effector nucleases [TALENs], Clustered Regularly Interspaced Short Palindromic Repeats/Associated Systems [CRISPR/Cas9]) are rapidly expanding. This review focuses on recent developments in gene therapy for corneal diseases, including promising multiple gene therapy, while outlining a practical approach to the development of such therapies and potential impediments to successful delivery of genes to the cornea.
Collapse
Affiliation(s)
- Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-health Vision Research Center, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States.
| | - Lynn M Martin
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-health Vision Research Center, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-health Vision Research Center, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
7
|
Torrecilla J, Del Pozo-Rodríguez A, Vicente-Pascual M, Solinís MÁ, Rodríguez-Gascón A. Targeting corneal inflammation by gene therapy: Emerging strategies for keratitis. Exp Eye Res 2018; 176:130-140. [PMID: 29981344 DOI: 10.1016/j.exer.2018.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/14/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
Inflammation is the underlying process of several diseases within the eye, specifically in the cornea. Current treatment options for corneal inflammation or keratitis, and related neovascularization, are restricted by limited efficacy, adverse effects, and short duration of action. Gene therapy has shown great potential for the treatment of diseases affecting the ocular surface, and major efforts are being targeted to inflammatory mediators and neovascularization, in order to develop potential treatments for corneal inflammation. Gene therapy to treat ocular disorders is still starting, and current therapies are primarily experimental, with most human clinical trials still in research state, although some of them have already shown encouraging results. In this review, we focus on the progress and challenges of gene therapy to treat corneal inflammation. After introducing the inflammation process, we present the main nucleic acid delivery systems, including viral and non-viral vectors, and the most studied strategies to address the therapy: control of neovascularization and regulation of pro- and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Josune Torrecilla
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain
| | - Mónica Vicente-Pascual
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain.
| |
Collapse
|
8
|
Battaglia L, Serpe L, Foglietta F, Muntoni E, Gallarate M, Del Pozo Rodriguez A, Solinis MA. Application of lipid nanoparticles to ocular drug delivery. Expert Opin Drug Deliv 2016; 13:1743-1757. [PMID: 27291069 DOI: 10.1080/17425247.2016.1201059] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Although eye drops are widely used as drug delivery systems for the anterior segment of the eye, they are also associated with poor drug bioavailability due to transient contact time and rapid washout by tearing. Moreover, effective drug delivery to the posterior segment of the eye is challenging, and alternative routes of administration (periocular and intravitreal) are generally needed, the blood-retinal barrier being the major obstacle to systemic drug delivery. Areas covered: Nanotechnology, and especially lipid nanoparticles, can improve the therapeutic efficiency, compliance and safety of ocular drugs, administered via different routes, to both the anterior and posterior segment of the eye. This review highlights the main ocular barriers to drug delivery, as well as the most common eye diseases suitable for pharmacological treatment in which lipid nanoparticles have proved efficacious as alternative delivery systems. Expert opinion: Lipid-based nanocarriers are among the most biocompatible and versatile means for ocular delivery. Mucoadhesion with consequent increase in pre-corneal retention time, and enhanced permeation due to cellular uptake by corneal epithelial cells, are the essential goals for topical lipid nanoparticle delivery. Gene delivery to the retina has shown very promising results after intravitreal administration of lipid nanoparticles as non-viral vectors.
Collapse
Affiliation(s)
- Luigi Battaglia
- a Dipartimento di Scienza e Tecnologia del Farmaco , Università degli Studi di Torino , Torino , Italy
| | - Loredana Serpe
- a Dipartimento di Scienza e Tecnologia del Farmaco , Università degli Studi di Torino , Torino , Italy
| | - Federica Foglietta
- a Dipartimento di Scienza e Tecnologia del Farmaco , Università degli Studi di Torino , Torino , Italy
| | - Elisabetta Muntoni
- a Dipartimento di Scienza e Tecnologia del Farmaco , Università degli Studi di Torino , Torino , Italy
| | - Marina Gallarate
- a Dipartimento di Scienza e Tecnologia del Farmaco , Università degli Studi di Torino , Torino , Italy
| | - Ana Del Pozo Rodriguez
- b Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy , Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU , Vitoria-Gasteiz , Spain
| | - Maria Angeles Solinis
- b Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy , Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU , Vitoria-Gasteiz , Spain
| |
Collapse
|
9
|
Wilhelmus KR. Antiviral treatment and other therapeutic interventions for herpes simplex virus epithelial keratitis. Cochrane Database Syst Rev 2015; 1:CD002898. [PMID: 25879115 PMCID: PMC4443501 DOI: 10.1002/14651858.cd002898.pub5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Eye disease due to herpes simplex virus (HSV) commonly presents as epithelial keratitis which, though usually self-limiting, may persist or progress without treatment. OBJECTIVES To compare the relative effectiveness of antiviral agents, interferon, and corneal debridement in the treatment of HSV epithelial keratitis. SEARCH METHODS We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 12), PubMed (January 1946 to 31 December 2014), EMBASE (January 1980 to 31 December 2014), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to 31 December 2014), System for Information on Grey Literature in Europe (OpenGrey) (January 1995 to 31 December 2014), BIOSIS (January 1926 to 5 May 2014), Scopus (January 1966 to 31 December 2014), Japan Science and Technology Institute (J-Global) (January 1975 to 31 December 2014), China National Knowledge Infrastructure (CNKI) (January 1979 to 31 December 2014), British Library's Electronic Table of Contents (Zetoc) (January 1993 to 7 May 2014). We looked for trials listed on the the metaRegister of Controlled Trials (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov), the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en), Chinese Clinical Trial Registry, the U.S. Food and Drug Administration (FDA) (www.fda.gov/), National Institute for Health and Clinical Excellence (NICE) (www. EVIDENCE nhs.uk) and the European Medicines Agency (EMA) (www.ema.europa.eu/ema/) as of 31 December 2014. There were no language or date restrictions in the search for trials. We also culled literature digests and conference proceedings as of 15 April 2014. There were no language or date restrictions in the search for trials. SELECTION CRITERIA Randomised and quasi-randomised trials of HSV dendritic or geographic epithelial keratitis were included that reported the proportion of eyes healed at one week, two weeks, or both after enrolment. DATA COLLECTION AND ANALYSIS We tabulated data on study characteristics, risk of bias, and outcomes and used direct comparisons to estimate a risk ratio (RR) and, when feasible, a hazard ratio (HR) with a 95% confidence interval (CI). Heterogeneity was assessed by an inconsistency index. A multiple treatment comparison meta-analysis consolidated direct and indirect comparisons of relative healing at 14 days. MAIN RESULTS One hundred thirty-seven studies involving 8333 eyes met the inclusion criteria. Placebo-controlled studies were heterogeneous in comparison with idoxuridine (RR 1.74; 95% CI 1.03 to 2.91) and few in number for vidarabine (RR 1.81; 95% CI 1.09 to 3.01), interferon (RR 1.32; 95% CI 1.06 to 1.64), and debridement. Vidarabine (RR 1.13; 95% CI 1.02 to 1.25), trifluridine (RR 1.30; 95% CI 1.18 to 1.43), acyclovir (RR 1.23; 95% CI 1.14 to 1.34), and brivudine (RR 1.34; 95% CI 1.18 to 1.51) were more effective than idoxuridine. Trifluridine (RR 1.17; 95% CI 1.03 to 1.32) and acyclovir (RR 1.11; 95% CI 1.03 to 1.19) were more effective than vidarabine. No significant differences in healing emerged among trifluridine, acyclovir, brivudine, and foscarnet although few studies compared brivudine or foscarnet with other antivirals. Any potential advantage of ganciclovir compared to acyclovir was mitigated by study heterogeneity and possible publication bias. Only one study evaluated the joint use of two topical antivirals. In a limited number of studies, oral acyclovir (RR 0.92; 95% CI 0.79 to 1.07) or the combination of oral acyclovir with a topical antiviral (RR 1.36; 95% CI 0.68 to 2.74) appeared as effective as a single topical antiviral agent. Compared to topical antiviral monotherapy, the combination of an antiviral with either interferon or debridement had inconsistent effects on expediting healing and improving outcome. AUTHORS' CONCLUSIONS Placebo-controlled studies of HSV epithelial keratitis are limited to superseded interventions. Trifluridine and acyclovir are more effective than idoxuridine or vidarabine and similar in therapeutic effectiveness. Brivudine and foscarnet do not substantially differ in effectiveness from trifluridine or acyclovir. Ganciclovir is at least as effective as acyclovir. The addition of interferon to a nucleoside antiviral agent and the combination of debridement with antiviral treatment need to be further assessed to substantiate any possible advantage in healing.
Collapse
Affiliation(s)
- Kirk R Wilhelmus
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
10
|
Treatment of ocular disorders by gene therapy. Eur J Pharm Biopharm 2014; 95:331-42. [PMID: 25536112 DOI: 10.1016/j.ejpb.2014.12.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022]
Abstract
Gene therapy to treat ocular disorders is still starting, and current therapies are primarily experimental, with most human clinical trials still in research state, although beginning to show encouraging results. Currently 33 clinical trials have been approved, are in progress, or have been completed. The most promising results have been obtained in clinical trials of ocular gene therapy for Leber Congenital Amaurosis, which have prompted the study of several ocular diseases that are good candidates to be treated with gene therapy: glaucoma, age-related macular degeneration, retinitis pigmentosa, or choroideremia. The success of gene therapy relies on the efficient delivery of the genetic material to target cells, achieving optimum long-term gene expression. Although viral vectors have been widely used, their potential risk associated mainly with immunogenicity and mutagenesis has promoted the design of non-viral vectors. In this review, the main administration routes and the most studied delivery systems, viral and non-viral, for ocular gene therapy are presented. The primary ocular disease candidates to be treated with gene therapy have been also reviewed, including the genetic basis and the most relevant preclinical and clinical studies.
Collapse
|
11
|
Gene transfer of integration defective anti-HSV-1 meganuclease to human corneas ex vivo. Gene Ther 2014; 21:272-81. [PMID: 24430237 DOI: 10.1038/gt.2013.82] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 10/31/2013] [Accepted: 12/03/2013] [Indexed: 01/18/2023]
Abstract
Corneal graft rejection is a major problem in chronic herpetic keratitis (HK) patients with latent infection. A new class of antiviral agents targeting latent and active forms of herpes simplex virus type 1 (HSV-1) is importantly required. Meganucleases are sequence-specific homing endonucleases capable of inducing DNA double-strand breaks. A proof-of-concept experiment has shown that tailor-made meganucleases are efficient against HSV-1 in vitro. To take this work a step forward, we hypothesized that the pre-treatment of human corneas in eye banks using meganuclease-encoding vectors will allow HK patients to receive a medicated cornea to resist the recurrence of the infection and the common graft rejection problem. However, this strategy requires efficient gene delivery to human corneal endothelium. Using recombinant adeno-associated virus, serotype 2/1 (rAAV2/1), efficient gene delivery of a reporter gene was demonstrated in human corneas ex vivo. The optimum viral dose was 3.7 × 10(11) VG with an exposure time of 1 day, followed by 6 days incubation in de-swelling medium. In addition, 12 days incubation can result in transgene expression in excess of 70%. Using similar transduction conditions, meganuclease transgene expression was detected in 39.4% of the endothelial cells after 2 weeks in culture. Reduction of the total viral load in the media and the endothelial cells of corneas infected with HSV-1 was shown. Collectively, this work provides information about the optimum conditions to deliver genetic material to the cornea, and demonstrates for the first time the expression of meganuclease in human corneas ex vivo and its antiviral activity. In conclusion, we demonstrate that the treatment of human corneas in eye banks before transplantation is a new approach to address the unmet clinical needs in corneal diseases.
Collapse
|
12
|
Saghizadeh M, Epifantseva I, Hemmati DM, Ghiam CA, Brunken WJ, Ljubimov AV. Enhanced wound healing, kinase and stem cell marker expression in diabetic organ-cultured human corneas upon MMP-10 and cathepsin F gene silencing. Invest Ophthalmol Vis Sci 2013; 54:8172-80. [PMID: 24255036 DOI: 10.1167/iovs.13-13233] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Diabetic corneas overexpress proteinases including matrix metalloproteinase-10 (M10) and cathepsin F (CF). Our purpose was to assess if silencing M10 and CF in organ-cultured diabetic corneas using recombinant adenovirus (rAV)-driven small hairpin RNA (rAV-sh) would normalize slow wound healing, and diabetic and stem cell marker expression. METHODS Sixteen pairs of organ-cultured autopsy human diabetic corneas (four per group) were treated with rAV-sh. Proteinase genes were silenced either separately, together, or both, in combination (Combo) with rAV-driven c-met gene overexpression. Fellow control corneas received rAV-EGFP. Quantitative RT-PCR confirmed small hairpin RNA (shRNA) silencing effect. Ten days after transfection, 5-mm epithelial wounds were made with n-heptanol and healing time recorded. Diabetic, signaling, and putative stem cell markers were studied by immunofluorescence of corneal cryostat sections. RESULTS Proteinase silencing reduced epithelial wound healing time versus rAV-enhanced green fluorescent protein (EGFP) control (23% for rAV-shM10, 31% for rAV-shCF, and 36% for rAV-shM10 + rAV-shCF). Combo treatment was even more efficient (55% reduction). Staining patterns of diabetic markers (α₃β₁ integrin and nidogen-1), and of activated epidermal growth factor receptor and its signaling target activated Akt were normalized upon rAV-sh treatment. Combo treatment also restored normal staining for activated p38. All treatments, especially the combined ones, increased diabetes-altered staining for putative limbal stem cell markers, ΔNp63α, ABCG2, keratins 15 and 17, and laminin γ3 chain. CONCLUSIONS Small hairpin RNA silencing of proteinases overexpressed in diabetic corneas enhanced corneal epithelial and stem cell marker staining and accelerated wound healing. Combined therapy with c-met overexpression was even more efficient. Specific corneal gene therapy has a potential for treating diabetic keratopathy.
Collapse
Affiliation(s)
- Mehrnoosh Saghizadeh
- Eye Program, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | | | | | | | | | |
Collapse
|