1
|
Wu J, Lu J, Huang J, You J, Ding Z, Ma L, Dai F, Xu R, Li X, Yin P, Zhao G, Wang S, Yuan J, Yang X, Ge J, Zou Y. Variations in Energy Metabolism Precede Alterations in Cardiac Structure and Function in Hypertrophic Preconditioning. Front Cardiovasc Med 2020; 7:602100. [PMID: 33426002 PMCID: PMC7793816 DOI: 10.3389/fcvm.2020.602100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
Recent studies have unveiled that myocardial hypertrophic preconditioning (HP), which is produced by de-banding (De-TAC) of short-term transverse aortic constriction (TAC), protects the heart against hypertrophic responses caused by subsequent re-constriction (Re-TAC) in mice. Although cardiac substrate metabolism is impaired in heart failure, it remains unclear about the role of HP-driven energetics in the development of cardiac hypertrophy. Here, we investigated energy metabolism, cardiac hypertrophy, and function following variational loading conditions, as well as their relationships in HP. Male C57BL/6J mice (10–12 weeks old) were randomly subjected to Sham, HP [TAC for 3days (TAC 3d), de-banding the aorta for 4 days (De-TAC 4d), and then re-banding the aorta for 4 weeks (Re-TAC 4W)], and TAC (TAC for 4 weeks without de-banding). Cardiac echocardiography, hemodynamics, and histology were utilized to evaluate cardiac remodeling and function. The mRNA expression levels of fetal genes (ANP and BNP), glucose metabolism-related genes (glut4, pdk4), and fatty acid oxidation-related genes (mcad, pgc1α, mcd, pparα) were quantitated by real-time quantitative PCR. Activation of hypertrophy regulators ERK1/2, a metabolic stress kinase AMP-activated protein kinase (AMPK), and its downstream target acetyl-coA carboxylase (ACC) were explored by western blot. Compared with TAC 4W mice, Re-TAC 4W mice showed less impairment in glucose and fatty acid metabolism, as well as less cardiac hypertrophy and dysfunction. Moreover, no significant difference was found in myocardial hypertrophy, fibrosis, and cardiac function in TAC 3d and De-TAC 4d groups compared with Sham group. However, glut4, pdk4, mcad, pgc1α, mcd, and pparα were all decreased, while AMPK and ACC were activated in TAC 3d and returned to Sham level in De-TAC 4d, suggesting that the change in myocardial energy metabolism in HP mice was earlier than that in cardiac structure and function. Collectively, HP improves energy metabolism and delays cardiac remodeling, highlighting that early metabolic improvements drive a potential beneficial effect on structural and functional restoration in cardiac hypertrophy.
Collapse
Affiliation(s)
- Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jing Lu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiayuan Huang
- Key Laboratory of Guangdong Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Jieyun You
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Leilei Ma
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fangjie Dai
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ran Xu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xuan Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peipei Yin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Gang Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Yuan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
McQuilling JP, Burnette M, Kimmerling KA, Kammer M, Mowry KC. A mechanistic evaluation of the angiogenic properties of a dehydrated amnion chorion membrane in vitro and in vivo. Wound Repair Regen 2019; 27:609-621. [PMID: 31425636 PMCID: PMC6900065 DOI: 10.1111/wrr.12757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/10/2019] [Indexed: 12/20/2022]
Abstract
Angiogenesis is essential for the successful repair of tissues; however, in many chronic conditions, angiogenesis is inhibited. Placental tissues have been shown to illicit an angiogenic response both in vitro and in vivo, and the angiogenic properties of these tissues likely contribute to observed clinical outcomes. Although there is some work describing the angiogenic effects of these tissues, comparatively little has been done to determine the possible mechanisms responsible for this effect. The purpose of this study was to conduct a thorough evaluation of a commercially available dehydrated amnion chorion membrane to better understand how these tissues may promote angiogenesis. The proteomic content of this tissue was evaluated using a high throughput proteomic microarray, and then the effects of these grafts were evaluated in vivo using subcutaneous gelfoam sponge implants containing conditioned media (CM) from the graft. Human microvascular endothelial cells were then used to determine how released factors effect migration, proliferation, gene expression, and protein production in vitro. Finally, to elucidate potential signaling‐pathways through which tissue‐derived factors act to induce pro‐angiogenetic phenotypes in endothelial cells in vitro, we performed a global analysis of both serine/threonine and tyrosine kinase activity. Kinomic and proteomic data were then combined to generate protein–protein interaction networks that enabled the identification of multiple growth factors and cytokines with both pro‐ and anti‐angiogenetic properties. In vivo, the addition of CM resulted in increased CD31 and αSMA staining and increases in pro‐angiogenic gene expression. In vitro, CM resulted in significant increases in endothelial proliferation, migration, and the expression of granulocyte‐macrophage colony‐stimulating factor, hepatocyte growth factor, and transforming growth factor beta‐3. Integrated kinomic analysis implicated ERK1/2 signaling as the primary pathway activated following culture of endothelial cells with dehydrated amnion/chorion membrane (dACM) CM. In conclusion, dACM grafts triggered pro‐angiogenic responses both in vitro and in vivo that are likely at least partially mediated by ERK1/2 signaling.
Collapse
Affiliation(s)
- John P McQuilling
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| | - Miranda Burnette
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| | - Kelly A Kimmerling
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| | - MaryRose Kammer
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| | - Katie C Mowry
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| |
Collapse
|
3
|
Huang J, Wu J, Wang S, You J, Ye Y, Ding Z, Yang F, Wang X, Guo J, Ma L, Yuan J, Shen Y, Yang X, Sun A, Jiang H, Bu L, Backx PH, Ge J, Zou Y. Ultrasound biomicroscopy validation of a murine model of cardiac hypertrophic preconditioning: comparison with a hemodynamic assessment. Am J Physiol Heart Circ Physiol 2017; 313:H138-H148. [PMID: 28455286 DOI: 10.1152/ajpheart.00004.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/23/2017] [Accepted: 04/06/2017] [Indexed: 01/09/2023]
Abstract
In mice, myocardial hypertrophic preconditioning (HP), which is produced by the removal of short-term transverse aortic constriction (TAC), was recently reported to render the heart resistant to hypertrophic responses induced by subsequent reconstriction (Re-TAC). However, there is no efficient noninvasive method for ensuring that the repeated aortic manipulations were successfully performed. We previously demonstrated that ultrasound biomicroscopy (UBM) is a noninvasive and effective approach for predicting TAC success. Here, we investigated the value of UBM for serial predictions of load conditions in establishing a murine HP model. C57BL/6J mice were subjected to a sham operation, TAC, or Re-TAC, and the peak flow velocity at the aortic banding site (PVb) was measured by UBM. Left ventricular end-systolic pressure (LVESP) was examined by micromanometric catheterization. The PVb was positively associated with LVESP (R2 = 0.8204, P < 0.001, for TAC at 3 days and R2 = 0.7746, P < 0.001, for Re-TAC at 4 wk). PVb and LVESP values were markedly elevated after aortic banding, became attenuated to the sham-operated level after debanding, and increased after aortic rebanding. The cardiac hypertrophic responses were examined by UBM, histology, RT-PCR, and Western blot analysis. Four weeks after the last operation, with PVb ≥ 3.5 m/s as an indicator of successful aortic constriction, Re-TAC mice showed less cardiac hypertrophy, fetal gene expression, and ERK1/2 activation than TAC mice. Therefore, we successfully established a UBM protocol for the serial assessment of aortic flow and the prediction of LVESP during repeated aortic manipulations in mice, which might be useful for noninvasive evaluations of the murine HP model.NEW & NOTEWORTHY We successfully developed an ultrasound biomicroscopy protocol for the serial assessment of aortic bandings and the relevant left ventricular pressure in a murine model of cardiac hypertrophic preconditioning. The protocol may be of great importance in the successful establishment of the hypertrophic preconditioning model for further mechanistic and pharmacological studies.
Collapse
Affiliation(s)
- Jiayuan Huang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jieyun You
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yong Ye
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Fenghua Yang
- Guangdong Laboratory Animal Monitoring Institute, Guangzhou, People's Republic of China
| | - Xingxu Wang
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Junjie Guo
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China.,Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Leilei Ma
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jie Yuan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yunli Shen
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Hong Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Liping Bu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Peter H Backx
- Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario; and.,Division of Cardiology, University Health Network, Toronto, Ontario, Canada
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China;
| |
Collapse
|
4
|
Guan AL, He T, Shao YB, Chi YF, Dai HY, Wang Y, Xu L, Yang X, Ding HM, Cai SL. Role of Jagged1-Hey1 Signal in Angiotensin II-induced Impairment of Myocardial Angiogenesis. Chin Med J (Engl) 2017; 130:328-333. [PMID: 28139517 PMCID: PMC5308016 DOI: 10.4103/0366-6999.198928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Angiotensin II (Ang II) is a major contributor to the development of heart failure. However, the molecular and cellular mechanisms that underlie this process remain elusive. Inadequate angiogenesis in the myocardium leads to a transition from cardiac hypertrophy to dysfunction, and our previous study showed that Ang II significantly impaired the angiogenesis response. The current study was designed to examine the role of Jagged1-Notch signaling in the effect of Ang II during impaired angiogenesis and cardiac hypertrophy. METHODS Ang II was subcutaneously infused into 8-week-old male C57BL/6 mice at a dose of 200 ng·kg-1·min-1 for 2 weeks using Alzet micro-osmotic pumps. N-[N-(3, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine tert-butyl ester (DAPT), a γ-secretase inhibitor, was injected subcutaneously during Ang II infusion at a dose of 10.0 mg·kg-1·d-1. Forty mice were divided into four groups (n = 10 per group): control group; Ang II group, treated with Ang II; DAPT group, treated with DAPT; and Ang II + DAPT group, treated with both Ang II and DAPT. At the end of experiments, myocardial (left ventricle [LV]) tissue from each experimental group was evaluated using immunohistochemistry, Western blotting, and real-time polymerase chain reaction. Data were analyzed using one-way analysis of variance test followed by the least significant difference method or independent samples t-test. RESULTS Ang II treatment significantly induced cardiac hypertrophy and impaired the angiogenesis response compared to controls, as shown by hematoxylin and eosin (HE) staining and immunohistochemistry for CD31, a vascular marker (P < 0.05 for both). Meanwhile, Jagged1 protein was significantly increased, but gene expression for both Jag1 and Hey1 was decreased in the LV following Ang II treatment, compared to that in controls (relative ratio for Jag1 gene: 0.45 ± 0.13 vs. 0.84 ± 0.15; relative ratio for Hey1 gene: 0.51 ± 0.08 vs. 0.91 ± 0.09; P < 0.05). All these cellular and molecular effects induced by Ang II in the hearts of mice were reduced by DAPT treatment. Interestingly, Ang II stimulated Hey1, a known Notch target, but did not affect the expression of Hey2, another Notch target gene. CONCLUSIONS A Jagged1-Hey1 signal might mediate the impairment of angiogenesis induced by Ang II during cardiac hypertrophy.
Collapse
Affiliation(s)
- Ai-Li Guan
- Department of Cardiology, Heart Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266071, China
| | - Tao He
- Department of Cardiology, Heart Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266071, China
| | - Yi-Bing Shao
- Department of Cardiology, Heart Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266071, China
| | - Yi-Fan Chi
- Department of Cardiology, Heart Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266071, China
| | - Hong-Yan Dai
- Department of Cardiology, Heart Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266071, China
| | - Yan Wang
- Department of Cardiology, Heart Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266071, China
| | - Li Xu
- Department of Cardiology, Heart Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266071, China
| | - Xuan Yang
- Department of Cardiology, Heart Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266071, China
| | - Hua-Min Ding
- Department of Cardiology, Heart Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266071, China
| | - Shang-Lang Cai
- Department of Cardiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266005, China
| |
Collapse
|
5
|
Deb A, Wang Y. Hypertrophic preconditioning: short-term tricks for long-term gain. Circulation 2015; 131:1468-70. [PMID: 25820337 DOI: 10.1161/circulationaha.115.016330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Arjun Deb
- From David Geffen School of Medicine, University of California, Los Angeles
| | - Yibin Wang
- From David Geffen School of Medicine, University of California, Los Angeles.
| |
Collapse
|
6
|
Guan A, Gong H, Ye Y, Jia J, Zhang G, Li B, Yang C, Qian S, Sun A, Chen R, Ge J, Zou Y. Regulation of p53 by jagged1 contributes to angiotensin II-induced impairment of myocardial angiogenesis. PLoS One 2013; 8:e76529. [PMID: 24098521 PMCID: PMC3789680 DOI: 10.1371/journal.pone.0076529] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/30/2013] [Indexed: 11/21/2022] Open
Abstract
Angiotensin II (AngII) is a major contributor to the development of heart failure, however, the molecular and cellular mechanisms still remain elucidative. Inadequate angiogenesis in myocardium leads to transition from cardiac hypertrophy to dysfunction, this study was therefore conducted to examine the effects of AngII on myocardial angiogenesis and the underlying mechanisms. AngII treatment significantly impaired angiogenetic responses, which were determined by counting the capillaries either in matrigel formed by cultured cardiac microvascular endothelial cells (CMVECs) or in myocardium of mice and by measuring the in vitro and in vivo production of VEGF proteins, and stimulated accumulation and phosphorylation of cytosolic p53 which led to increases in phosphorylated p53 and decreases of hypoxia inducible factor (Hif-1) in nucleus. All of these cellular and molecular events induced by AngII in CEMCs and hearts of mice were largely reduced by a p53 inhibitor, pifithrin-α (PFT-α). Interestingly, AngII stimulated the upregulation of Jagged1, a ligand of Notch, but it didn't affect the expression of Delta-like 4 (Dll-4), another ligand of Notch. Inhibition of p53 by PFT-α partly abolished this effect of AngII. Further experiments showed that knockdown ofJagged1 by addition of siRNA to cultured CMVECs dramatically declined AngII-stimulated accumulation and phosphorylation of p53 in cytosol, upregulation of phosphorylated p53 and downregulation of Hif-1 expression in nucleus, decrease of VEGF production and impairment of capillary-like tube formation by the cells. Our data collectively suggest that AngII impairs myocardial angiogenetic responses through p53-dependent downregulation of Hif-1 which is regulated by Jagged1/Notch1 signaling.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Benzothiazoles/pharmacology
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cell Nucleus/metabolism
- Collagen/chemistry
- Drug Combinations
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gene Expression Regulation
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Infusion Pumps, Implantable
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Jagged-1 Protein
- Laminin/chemistry
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Myocardium/cytology
- Myocardium/metabolism
- Neovascularization, Physiologic/drug effects
- Primary Cell Culture
- Proteoglycans/chemistry
- Rats
- Rats, Wistar
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Serrate-Jagged Proteins
- Signal Transduction
- Toluene/analogs & derivatives
- Toluene/pharmacology
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Aili Guan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, China
| | - Hui Gong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yong Ye
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianguo Jia
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guoping Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Bingyu Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chunjie Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Sanli Qian
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ruizhen Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|