1
|
Saltarella I, laghetti P, Dell’Atti S, Altamura C, Desaphy JF. Pharmacological therapy of non-dystrophic myotonias. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2025; 44:23-27. [PMID: 40183437 PMCID: PMC11978426 DOI: 10.36185/2532-1900-1026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025]
Abstract
Objectives Non-dystrophic myotonias (NDM) are rare diseases due to mutations in the voltage-gated sodium (Nav1.4) and chloride (ClC-1) channels expressed in skeletal muscle fibers. We provide an up-to-date review of pharmacological treatments available for NDM patients and experimental studies aimed at identifying alternative treatments and at better understanding the mechanisms of actions. Methods Literature research was performed using PubMed and ClinicalTrial.gov. Results Today, the sodium channel blocker mexiletine is the drug of choice for treatment of NDM. Alternative drugs include other sodium channel blockers and the carbonic anhydrase inhibitor acetazolamide. Preclinical studies suggest that activators of ClC-1 channels or voltage-gated potassium channels may have antimyotonic potential. Conclusions An increasing number of antimyotonic drugs would help to design a precision therapy to address personalized treatment of myotonic individuals.
Collapse
Affiliation(s)
| | | | | | | | - Jean-François Desaphy
- Section of Pharmacology, Department of Precision and Regenerative Medicine and Ionian Area, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
2
|
Dupont C, Blake B, Voss AA, Rich MM. BK channels promote action potential repolarization in skeletal muscle but contribute little to myotonia. Pflugers Arch 2024; 476:1693-1702. [PMID: 39150500 PMCID: PMC11461784 DOI: 10.1007/s00424-024-03005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Patients with myotonia congenita suffer from slowed relaxation of muscle (myotonia), due to hyperexcitability caused by loss-of-function mutations in the ClC-1 chloride channel. A recent study suggested that block of large-conductance voltage- and Ca2+- activated K+ channels (BK) may be effective as therapy. The mechanism underlying efficacy was suggested to be lessening of the depolarizing effect of build-up of K+ in t-tubules of muscle during repetitive firing. BK channels are widely expressed in the nervous system and have been shown to play a central role in regulation of excitability, but their contribution to muscle excitability has not been determined. We performed intracellular recordings as well as force measurements in both wild type and BK-/- mouse extensor digitorum longus muscles. Action potential width was increased in BK-/- muscle due to slowing of repolarization, consistent with the possibility K+ build-up in t-tubules is lessened by block of BK channels in myotonic muscle. However, there was no difference in the severity of myotonia triggered by block of muscle Cl- channels with 9-anthracenecarboxylic acid (9AC) in wild type and BK-/- muscle fibers. Further study revealed no difference in the interspike membrane potential during repetitive firing suggesting there was no reduction in K+ build-up in t-tubules of BK-/- muscle. Force recordings following block of muscle Cl- channels demonstrated little reduction in myotonia in BK-/- muscle. In contrast, the current standard of care, mexiletine, significantly reduced myotonia. Our data suggest BK channels regulate muscle excitability, but are not an attractive target for therapy of myotonia.
Collapse
Affiliation(s)
- Chris Dupont
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, 45435, USA
| | - Brianna Blake
- Department of Biological Sciences, Wright State University, Dayton, OH, 45435, USA
| | - Andrew A Voss
- Department of Biological Sciences, Wright State University, Dayton, OH, 45435, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
3
|
Cannon SC. Periodic paralysis. HANDBOOK OF CLINICAL NEUROLOGY 2024; 203:39-58. [PMID: 39174253 PMCID: PMC11556526 DOI: 10.1016/b978-0-323-90820-7.00002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Periodic paralysis is a rare, dominantly inherited disorder of skeletal muscle in which episodic attacks of weakness are caused by a transient impairment of fiber excitability. Attacks of weakness are often elicited by characteristic environmental triggers, which were the basis for clinically delineating subtypes of periodic paralysis and are an important distinction for optimal disease management. All forms of familial periodic paralysis are caused by mutations of ion channels, often selectively expressed in skeletal muscle, that destabilize the resting potential. The missense mutations usually alter channel function through gain-of-function changes rather than producing a complete loss-of-function null. The knowledge of which channel gene harbors a variant, whether that variant is expected to (or known to) alter function, and how altered function impairs fiber excitability aides in the interpretation of patient signs and symptoms, the interpretation of gene test results, and how to optimize therapeutic intervention for symptom management and improve quality of life.
Collapse
Affiliation(s)
- Stephen C Cannon
- Departments of Physiology and of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
| |
Collapse
|
4
|
Quiñonez M, DiFranco M, Wu F, Cannon SC. Retigabine suppresses loss of force in mouse models of hypokalaemic periodic paralysis. Brain 2023; 146:1554-1560. [PMID: 36718088 PMCID: PMC10115351 DOI: 10.1093/brain/awac441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/18/2022] [Accepted: 11/12/2022] [Indexed: 02/01/2023] Open
Abstract
Recurrent episodes of weakness in periodic paralysis are caused by intermittent loss of muscle fibre excitability, as a consequence of sustained depolarization of the resting potential. Repolarization is favoured by increasing the fibre permeability to potassium. Based on this principle, we tested the efficacy of retigabine, a potassium channel opener, to suppress the loss of force induced by a low-K+ challenge in hypokalaemic periodic paralysis (HypoPP). Retigabine can prevent the episodic loss of force in HypoPP. Knock-in mutant mouse models of HypoPP (Cacna1s p.R528H and Scn4a p.R669H) were used to determine whether pre-treatment with retigabine prevented the loss of force, or post-treatment hastened recovery of force for a low-K+ challenge in an ex vivo contraction assay. Retigabine completely prevents the loss of force induced by a 2 mM K+ challenge (protection) in our mouse models of HypoPP, with 50% inhibitory concentrations of 0.8 ± 0.13 μM and 2.2 ± 0.42 μM for NaV1.4-R669H and CaV1.1-R528H, respectively. In comparison, the effective concentration for the KATP channel opener pinacidil was 10-fold higher. Application of retigabine also reversed the loss of force (rescue) for HypoPP muscle maintained in 2 mM K+. Our findings show that retigabine, a selective agonist of the KV7 family of potassium channels, is effective for the prevention of low-K+ induced attacks of weakness and to enhance recovery from an ongoing loss of force in mouse models of type 1 (Cacna1s) and type 2 (Scn4a) HypoPP. Substantial protection from the loss of force occurred in the low micromolar range, well within the therapeutic window for retigabine.
Collapse
Affiliation(s)
- Marbella Quiñonez
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Marino DiFranco
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Fenfen Wu
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Stephen C Cannon
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.,Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Borgini M, Mondal P, Liu R, Wipf P. Chemical modulation of Kv7 potassium channels. RSC Med Chem 2021; 12:483-537. [PMID: 34046626 PMCID: PMC8128042 DOI: 10.1039/d0md00328j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 01/10/2023] Open
Abstract
The rising interest in Kv7 modulators originates from their ability to evoke fundamental electrophysiological perturbations in a tissue-specific manner. A large number of therapeutic applications are, in part, based on the clinical experience with two broad-spectrum Kv7 agonists, flupirtine and retigabine. Since precise molecular structures of human Kv7 channel subtypes in closed and open states have only very recently started to emerge, computational studies have traditionally been used to analyze binding modes and direct the development of more potent and selective Kv7 modulators with improved safety profiles. Herein, the synthetic and medicinal chemistry of small molecule modulators and the representative biological properties are summarized. Furthermore, new therapeutic applications supported by in vitro and in vivo assay data are suggested.
Collapse
Affiliation(s)
- Matteo Borgini
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Pravat Mondal
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Ruiting Liu
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
6
|
Metzger S, Dupont C, Voss AA, Rich MM. Central Role of Subthreshold Currents in Myotonia. Ann Neurol 2019; 87:175-183. [PMID: 31725924 DOI: 10.1002/ana.25646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 01/11/2023]
Abstract
It is generally thought that muscle excitability is almost exclusively controlled by currents responsible for generation of action potentials. We propose that smaller ion channel currents that contribute to setting the resting potential and to subthreshold fluctuations in membrane potential can also modulate excitability in important ways. These channels open at voltages more negative than the action potential threshold and are thus termed subthreshold currents. As subthreshold currents are orders of magnitude smaller than the currents responsible for the action potential, they are hard to identify and easily overlooked. Discovery of their importance in regulation of excitability opens new avenues for improved therapy for muscle channelopathies and diseases of the neuromuscular junction. ANN NEUROL 2020;87:175-183.
Collapse
Affiliation(s)
- Sabrina Metzger
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH
| | - Chris Dupont
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH
| | - Andrew A Voss
- Department of Biology, Wright State University, Dayton, OH
| | - Mark M Rich
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH
| |
Collapse
|
7
|
Dupont C, Denman KS, Hawash AA, Voss AA, Rich MM. Treatment of myotonia congenita with retigabine in mice. Exp Neurol 2019; 315:52-59. [PMID: 30738808 DOI: 10.1016/j.expneurol.2019.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/10/2019] [Accepted: 02/06/2019] [Indexed: 01/08/2023]
Abstract
Patients with myotonia congenita suffer from muscle stiffness caused by muscle hyperexcitability. Although loss-of-function mutations in the ClC-1 muscle chloride channel have been known for 25 years to cause myotonia congenita, this discovery has led to little progress on development of therapy. Currently, treatment is primarily focused on reducing hyperexcitability by blocking Na+ current. However, other approaches such as increasing K+ currents might also be effective. For example, the K+ channel activator retigabine, which opens KCNQ channels, is effective in treating epilepsy because it causes hyperpolarization of the resting membrane potential in neurons. In this study, we found that retigabine greatly reduced the duration of myotonia in vitro. Detailed study of its mechanism of action revealed that retigabine had no effect on any of the traditional measures of muscle excitability such as resting potential, input resistance or the properties of single action potentials. Instead it appears to shorten myotonia by activating K+ current during trains of action potentials. Retigabine also greatly reduced the severity of myotonia in vivo, which was measured using a muscle force transducer. Despite its efficacy in vivo, retigabine did not improve motor performance of mice with myotonia congenita. There are a number of potential explanations for the lack of motor improvement in vivo including central nervous system side effects. Nonetheless, the striking effectiveness of retigabine on muscle itself suggests that activating potassium currents is an effective method to treat disorders of muscle hyperexcitability.
Collapse
Affiliation(s)
- Chris Dupont
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, United States
| | - Kirsten S Denman
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, United States
| | - Ahmed A Hawash
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, United States
| | - Andrew A Voss
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, United States
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, United States.
| |
Collapse
|
8
|
Lawson K. Pharmacology and clinical applications of flupirtine: Current and future options. World J Pharmacol 2019; 8:1-13. [DOI: 10.5497/wjp.v8.i1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/17/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023] Open
Abstract
Flupirtine is the first representative in a class of triaminopyridines that exhibits pharmacological properties leading to the suppression of over-excitability of neuronal and non-neuronal cells. Consequently, this drug has been used as a centrally acting analgesic in patients with a range of acute and persistent pain conditions without the adverse effects characteristic of opioids and non-steroidal anti-inflammatory drug and is well tolerated. The pharmacological profile exhibited involves actions on several cellular targets, including Kv7 channels, G-protein-regulated inwardly rectifying K channels and γ-aminobutyric acid type A receptors, but also there is evidence of additional as yet unidentified mechanisms of action involved in the effects of flupirtine. Flupirtine has exhibited effects in a range of cells and tissues related to the locations of these targets. In additional to analgesia, flupirtine has demonstrated pharmacological properties consistent with use as an anticonvulsant, a neuroprotectant, skeletal and smooth muscle relaxant, in treatment of auditory and visual disorders, and treatment of memory and cognitive impairment. Flupirtine is providing important information and clues regarding novel mechanistic approaches to the treatment of a range of clinical conditions involving hyper-excitability of cells. Identification of molecules exhibiting specificity for the pharmacological targets (e.g., Kv7 isoforms) involved in the actions of flupirtine will provide further insight into clinical applications. Whether the broad-spectrum pharmacology of flupirtine or target-specific actions is preferential to gain benefit, especially in complex clinical conditions, requires further investigation. This review will consider recent advancement in understanding of the pharmacological profile and related clinical applications of flupirtine.
Collapse
Affiliation(s)
- Kim Lawson
- Department of Biosciences and Chemistry, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| |
Collapse
|
9
|
Zagorchev P, Apostolova E, Kokova V, Peychev L. Activation of KCNQ channels located on the skeletal muscle membrane by retigabine and its influence on the maximal muscle force in rat muscle strips. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2016; 389:439-46. [PMID: 26815201 DOI: 10.1007/s00210-016-1211-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
Abstract
Retigabine is a new antiepileptic drug with the main mechanism of action: activation of voltage-gated potassium channels (Kv7) represented in many tissues including the excitable cells-neuronal and muscular. The aim of this article is to determine the role of potassium channels located on the skeletal muscle membrane in the in vivo and in vitro reduction of muscle contractile activity induced by retigabine. We studied the effects of retigabine on the motor function in vivo using a bar holding test and exploratory activity using open field test in rats. Electrical field stimulation (EFS) was applied to skeletal muscle strips in vitro in order to evaluate muscular activity. We registered a significant decrease in the muscle tone and exploratory activity of rats, treated orally with 60 mg/kg bw retigabine. In vitro experiments showed decrease in the maximal muscle force of strips in the presence of retigabine in the medium after both indirect (nerve-like) and direct (muscle-like) stimulation. The effects were fully antagonized by XE-991 (Kv7 channel blocker), which supports our hypothesis about the relation between these types of potassium channels and the observed change in the muscle force. Based on these results, we can conclude that skeletal muscle Kv7 channels play a significant role in the myorelaxation and reduced muscle force registered after treatment with Kv7 channels openers (e.g., retigabine). The hyperpolarization of skeletal muscle membrane caused by accelerated K(+) efflux may be the underlying cause for the effect of retigabine on the muscle tone.
Collapse
Affiliation(s)
- P Zagorchev
- Department of Biophysics, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4000, Plovdiv, Bulgaria
| | - E Apostolova
- Department of Pharmacology and Drug Toxicology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4000, Plovdiv, Bulgaria.
| | - V Kokova
- Department of Pharmacology and Drug Toxicology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4000, Plovdiv, Bulgaria
| | - L Peychev
- Department of Pharmacology and Drug Toxicology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4000, Plovdiv, Bulgaria
| |
Collapse
|
10
|
Flupirtine, a re-discovered drug, revisited. Inflamm Res 2013; 62:251-8. [PMID: 23322112 DOI: 10.1007/s00011-013-0592-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/20/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022] Open
Abstract
Flupirtine was developed long before K(V)7 (KCNQ) channels were known. However, it was clear from the beginning that flupirtine is neither an opioid nor a nonsteroidal anti-inflammatory analgesic. Its unique muscle relaxing activity was discovered by serendipity. In the meantime, broad and intensive research has resulted in a partial clarification of its mode of action. Flupirtine is the first therapeutically used K(V)7 channel activator with additional GABA(A)ergic mechanisms and thus the first representative of a novel class of analgesics. The presently accepted main mode of its action, potassium K(V)7 (KCNQ) channel activation, opens a series of further therapeutic possibilities. One of them has now been realized: its back-up compound, the bioisostere retigabine, has been approved for the treatment of epilepsy.
Collapse
|
11
|
Desaphy JF, Costanza T, Carbonara R, Conte Camerino D. In vivo evaluation of antimyotonic efficacy of β-adrenergic drugs in a rat model of myotonia. Neuropharmacology 2012; 65:21-7. [PMID: 23000075 PMCID: PMC3546166 DOI: 10.1016/j.neuropharm.2012.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/27/2012] [Accepted: 09/04/2012] [Indexed: 11/26/2022]
Abstract
The sodium channel blocker mexiletine is considered the first-line drug in myotonic syndromes, a group of muscle disorders characterized by membrane over-excitability. We previously showed that the β-adrenoceptor modulators, clenbuterol and propranolol, block voltage-gated sodium channels in a manner reminiscent to mexiletine, whereas salbutamol and nadolol do not. We now developed a pharmacological rat model of myotonia congenita to perform in vivo preclinical test of antimyotonic drugs. Myotonia was induced by i.p. injection of 30 mg/kg of anthracene-9-carboxylic acid (9-AC), a muscle chloride channel blocker, and evaluated by measuring the time of righting reflex (TRR). The TRR was prolonged from <0.5 s in control conditions to a maximum of ∼4 s, thirty minutes after 9-AC injection, then gradually recovered in a few hours. Oral administration of mexiletine twenty minutes after 9-AC injection significantly hampered the TRR prolongation, with an half-maximum efficient dose (ED(50)) of 12 mg/kg. Both propranolol and clenbuterol produced a dose-dependent antimyotonic effect similar to mexiletine, with ED(50) values close to 20 mg/kg. Antimyotonic effects of 40 mg/kg mexiletine and propranolol lasted for 2 h. We also demonstrated, using patch-clamp methods, that both propranolol enantiomers exerted a similar block of skeletal muscle hNav1.4 channels expressed in HEK293 cells. The two enantiomers (15 mg/kg) also showed a similar antimyotonic activity in vivo in the myotonic rat. Among the drugs tested, the R(+)-enantiomer of propranolol may merit further investigation in humans, because it exerts antimyotonic effect in the rat model, while lacking of significant activity on the β-adrenergic pathway. This study provides a new and useful in vivo preclinical model of myotonia congenita in order to individuate the most promising antimyotonic drugs to be tested in humans.
Collapse
Affiliation(s)
- Jean-François Desaphy
- Section of Pharmacology, Department of Pharmacy, University of Bari-Aldo Moro, Via Orabona 4 - Campus, 70125 Bari, Italy.
| | | | | | | |
Collapse
|
12
|
Evidence for inhibitory effects of flupirtine, a centrally acting analgesic, on delayed rectifier k(+) currents in motor neuron-like cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:148403. [PMID: 22888361 PMCID: PMC3408763 DOI: 10.1155/2012/148403] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/18/2012] [Indexed: 12/25/2022]
Abstract
Flupirtine (Flu), a triaminopyridine derivative, is a centrally acting, non-opiate analgesic agent. In this study, effects of Flu on K+ currents were explored in two types of motor neuron-like cells. Cell exposure to Flu decreased the amplitude of delayed rectifier K+ current (IK(DR)) with a concomitant raise in current inactivation in NSC-34 neuronal cells. The dissociation constant for Flu-mediated increase of IK(DR) inactivation rate was about 9.8 μM. Neither linopirdine (10 μM), NMDA (30 μM), nor gabazine (10 μM) reversed Flu-induced changes in IK(DR) inactivation. Addition of Flu shifted the inactivation curve of IK(DR) to a hyperpolarized potential. Cumulative inactivation for IK(DR) was elevated in the presence of this compound. Flu increased the amplitude of M-type K+ current (IK(M)) and produced a leftward shift in the activation curve of IK(M). In another neuronal cells (NG108-15), Flu reduced IK(DR) amplitude and enhanced the inactivation rate of IK(DR). The results suggest that Flu acts as an open-channel blocker of delayed-rectifier K+ channels in motor neurons. Flu-induced block of IK(DR) is unlinked to binding to NMDA or GABA receptors and the effects of this agent on K+ channels are not limited to its action on M-type K+ channels.
Collapse
|