1
|
Malard F, Sizun C, Thureau A, Carlier L, Lescop E. Structural transitions in TCTP tumor protein upon binding to the anti-apoptotic protein family member Mcl-1. J Biol Chem 2023:104830. [PMID: 37201583 PMCID: PMC10333598 DOI: 10.1016/j.jbc.2023.104830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
Translationally Controlled Tumor Protein (TCTP) serves as a pro-survival factor in tumor cells, inhibiting the mitochondrial apoptosis pathway by enhancing the function of anti-apoptotic Bcl-2 family members Mcl-1 and Bcl-xL. TCTP specifically binds to Bcl-xL, preventing Bax-dependent Bcl-xL-induced cytochrome c release, and it reduces Mcl-1 turnover by inhibiting its ubiquitination, thereby decreasing Mcl-1-mediated apoptosis. TCTP harbors a BH3-like motif that forms a β-strand buried in the globular domain of the protein. In contrast, the crystal structure of the TCTP BH3-like peptide in complex with the Bcl-2 family member Bcl-xL reveals an α-helical conformation for the BH3-like motif, suggesting significant structural changes upon complex formation. Employing biochemical and biophysical methods, including limited proteolysis, circular dichroism NMR, and SAXS, we describe the TCTP complex with the Bcl-2 homolog Mcl-1. Our findings demonstrate that full-length TCTP binds to the BH3 binding groove of Mcl-1 via its BH3-like motif, experiencing conformational exchange at the interface on a micro- to milli-second timescale. Concurrently, the TCTP globular domain becomes destabilized, transitioning into a molten-globule state. Furthermore, we establish that the non-canonical residue D16 within TCTP BH3-like motif reduces stability while enhancing the dynamics of the intermolecular interface. In conclusion, we detail the structural plasticity of TCTP and discuss its implications for partner interactions and future anticancer drug design strategies aimed at targeting TCTP complexes.
Collapse
Affiliation(s)
- Florian Malard
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | - Ludovic Carlier
- Laboratoire Des Biomolécules, LBM, Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Paris, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Lu C, Li Z, Zhang W, Guo H, Lan W, Shen G, Xia Q, Zhao P. SUMOylation of Translationally Regulated Tumor Protein Modulates Its Immune Function. Front Immunol 2022; 13:807097. [PMID: 35197979 PMCID: PMC8858932 DOI: 10.3389/fimmu.2022.807097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is a highly conserved protein possessing numerous biological functions and molecular interactions, ranging from cell growth to immune responses. However, the molecular mechanism by which TCTP regulates immune function is largely unknown. Here, we found that knockdown of Bombyx mori translationally controlled tumor protein (BmTCTP) led to the increased susceptibility of silkworm cells to virus infection, whereas overexpression of BmTCTP significantly decreased the virus replication. We further demonstrated that BmTCTP could be modified by SUMOylation molecular BmSMT3 at the lysine 164 via the conjugating enzyme BmUBC9, and the stable SUMOylation of BmTCTP by expressing BmTCTP-BmSMT3 fusion protein exhibited strong antiviral activity, which confirmed that the SUMOylation of BmTCTP would contribute to its immune responses. Further work indicated that BmTCTP is able to physically interact with interleukin enhancer binding factor (ILF), one immune molecular, involved in antivirus, and also induce the expression of BmILF in response to virus infection, which in turn enhanced antiviral activity of BmTCTP. Altogether, our present study has provided a novel insight into defending against virus via BmTCTP SUMOylation signaling pathway and interacting with key immune molecular in silkworm.
Collapse
Affiliation(s)
- Chenchen Lu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Zhiqing Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
- *Correspondence: Zhiqing Li,
| | - Wenchang Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Hao Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Weiqun Lan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Guanwang Shen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Bruckner FP, Xavier ADS, Cascardo RDS, Otoni WC, Zerbini FM, Alfenas‐Zerbini P. Translationally controlled tumour protein (TCTP) from tomato and Nicotiana benthamiana is necessary for successful infection by a potyvirus. MOLECULAR PLANT PATHOLOGY 2017; 18:672-683. [PMID: 27159273 PMCID: PMC6638207 DOI: 10.1111/mpp.12426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 05/20/2023]
Abstract
Translationally controlled tumour protein (TCTP) is a ubiquitously distributed protein in eukaryotes, involved in the regulation of several processes, including cell cycle progression, cell growth, stress protection, apoptosis and maintenance of genomic integrity. Its expression is induced during the early stages of tomato (Solanum lycopersicum) infection by the potyvirus Pepper yellow mosaic virus (PepYMV, a close relative of Potato virus Y). Tomato TCTP is a protein of 168 amino acids, which contains all the conserved domains of the TCTP family. To study the effects of TCTP silencing in PepYMV infection, Nicotiana benthamiana plants were silenced by virus-induced gene silencing (VIGS) and transgenic tomato plants silenced for TCTP were obtained. In the early stages of infection, both tomato and N. benthamiana silenced plants accumulated less virus than control plants. Transgenic tomato plants showed a drastic reduction in symptoms and no viral accumulation at 14 days post-inoculation. Subcellular localization of TCTP was determined in healthy and systemically infected N. benthamiana leaves. TCTP was observed in both the nuclei and cytoplasm of non-infected cells, but only in the cytoplasm of infected cells. Our results indicate that TCTP is a growth regulator necessary for successful PepYMV infection and that its localization is altered by the virus, probably to favour the establishment of virus infection. A network with putative interactions that may occur between TCTP and Arabidopsis thaliana proteins was built. This network brings together experimental data of interactions that occur in other eukaryotes and helps us to discuss the possibilities of TCTP involvement in viral infection.
Collapse
Affiliation(s)
- Fernanda Prieto Bruckner
- Departamento de Microbiologia/BIOAGRO/National Institute of Science and Technology in Plant‐Pest InteractionsUniversidade Federal de ViçosaViçosaMG36570‐900Brazil
| | - André Da Silva Xavier
- Departamento de Fitopatologia/BIOAGRO/National Institute of Science and Technology in Plant‐Pest InteractionsUniversidade Federal de ViçosaViçosaMG36570‐900Brazil
| | - Renan De Souza Cascardo
- Departamento de Microbiologia/BIOAGRO/National Institute of Science and Technology in Plant‐Pest InteractionsUniversidade Federal de ViçosaViçosaMG36570‐900Brazil
| | - Wagner Campos Otoni
- Departamento de Biologia Vegetal/BIOAGROUniversidade Federal de ViçosaViçosaMG36570‐900Brazil
| | - Francisco Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO/National Institute of Science and Technology in Plant‐Pest InteractionsUniversidade Federal de ViçosaViçosaMG36570‐900Brazil
| | - Poliane Alfenas‐Zerbini
- Departamento de Microbiologia/BIOAGRO/National Institute of Science and Technology in Plant‐Pest InteractionsUniversidade Federal de ViçosaViçosaMG36570‐900Brazil
| |
Collapse
|
4
|
Bonhoure A, Vallentin A, Martin M, Senff-Ribeiro A, Amson R, Telerman A, Vidal M. Acetylation of translationally controlled tumor protein promotes its degradation through chaperone-mediated autophagy. Eur J Cell Biol 2017; 96:83-98. [PMID: 28110910 DOI: 10.1016/j.ejcb.2016.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
Translationally controlled tumor protein (Tpt1/TCTP) is a multi-functional cytosolic protein whose cellular levels are finely tuned. TCTP regulates protein behavior by favoring stabilization of protein partners or on the contrary by promoting degradation of others. TCTP has been shown to be transcriptionally and translationally regulated, but much less is known about its degradation process. In this study, we present evidence that chaperone-mediated autophagy (CMA) contributes to TCTP regulation. CMA allows lysosomal degradation of specific cytosolic proteins on a molecule-by-molecule basis. It contributes to cellular homeostasis especially by acting as a quality control for cytosolic proteins in response to stress and as a way of regulating the level of specific proteins. Using a variety of approaches, we show that CMA degradation of TCTP is Hsc70 and LAMP-2A dependent. Our data indicate that (i) TCTP directly interacts with Hsc70; (ii) silencing LAMP-2A in MEFs using siRNA leads to inhibition of TCTP downregulation; (iii) TCTP is relocalized from a diffuse cytosolic pattern to a punctate lysosomal pattern when CMA is upregulated; (iv) TCTP is degraded in vitro by purified lysosomes. Importantly, using lysine-mutated forms of TCTP, we show that acetylation of Lysine 19 generates a KFERQ-like motif and promotes binding to Hsc70, lysosome targeting and TCTP degradation by CMA. Altogether these results indicate that TCTP is degraded by chaperone-mediated autophagy in an acetylation dependent manner.
Collapse
Affiliation(s)
- Anne Bonhoure
- UMR 5235, CNRS, Université Montpellier, 34095 Montpellier, France
| | - Alice Vallentin
- UMR 5235, CNRS, Université Montpellier, 34095 Montpellier, France
| | - Marianne Martin
- UMR 5235, CNRS, Université Montpellier, 34095 Montpellier, France
| | - Andrea Senff-Ribeiro
- UMR 8113, École Normale Supérieure, 94235 Cachan, France; UMR 981, Institut Gustave Roussy, 94800 Villejuif, France
| | - Robert Amson
- UMR 8113, École Normale Supérieure, 94235 Cachan, France; UMR 981, Institut Gustave Roussy, 94800 Villejuif, France
| | - Adam Telerman
- UMR 8113, École Normale Supérieure, 94235 Cachan, France; UMR 981, Institut Gustave Roussy, 94800 Villejuif, France
| | - Michel Vidal
- UMR 5235, CNRS, Université Montpellier, 34095 Montpellier, France.
| |
Collapse
|
5
|
Zhang J, Shim G, de Toledo SM, Azzam EI. The Translationally Controlled Tumor Protein and the Cellular Response to Ionizing Radiation-Induced DNA Damage. Results Probl Cell Differ 2017; 64:227-253. [DOI: 10.1007/978-3-319-67591-6_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
6
|
Assrir N, Malard F, Lescop E. Structural Insights into TCTP and Its Interactions with Ligands and Proteins. Results Probl Cell Differ 2017; 64:9-46. [PMID: 29149402 DOI: 10.1007/978-3-319-67591-6_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 19-24 kDa Translationally Controlled Tumor Protein (TCTP) is involved in a wide range of molecular interactions with biological and nonbiological partners of various chemical compositions such as proteins, peptides, nucleic acids, carbohydrates, or small molecules. TCTP is therefore an important and versatile binding platform. Many of these protein-protein interactions have been validated, albeit only few received an in-depth structural characterization. In this chapter, we will focus on the structural analysis of TCTP and we will review the available literature regarding its interaction network from a structural perspective.
Collapse
Affiliation(s)
- Nadine Assrir
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Florian Malard
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Roy R, Durie D, Li H, Liu BQ, Skehel JM, Mauri F, Cuorvo LV, Barbareschi M, Guo L, Holcik M, Seckl MJ, Pardo OE. hnRNPA1 couples nuclear export and translation of specific mRNAs downstream of FGF-2/S6K2 signalling. Nucleic Acids Res 2014; 42:12483-97. [PMID: 25324306 PMCID: PMC4227786 DOI: 10.1093/nar/gku953] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 01/14/2023] Open
Abstract
The increased cap-independent translation of anti-apoptotic proteins is involved in the development of drug resistance in lung cancer but signalling events regulating this are poorly understood. Fibroblast growth factor 2 (FGF-2) signalling-induced S6 kinase 2 (S6K2) activation is necessary, but the downstream mediator(s) coupling this kinase to the translational response is unknown. Here, we show that S6K2 binds and phosphorylates hnRNPA1 on novel Ser4/6 sites, increasing its association with BCL-XL and XIAP mRNAs to promote their nuclear export. In the cytoplasm, phosphoS4/6-hnRNPA1 dissociates from these mRNAs de-repressing their IRES-mediated translation. This correlates with the phosphorylation-dependent association of hnRNPA1 with 14-3-3 leading to hnRNPA1 sumoylation on K183 and its re-import into the nucleus. A non-phosphorylatible, S4/6A mutant prevented these processes, hindering the pro-survival activity of FGF-2/S6K2 signalling. Interestingly, immunohistochemical staining of lung and breast cancer tissue samples demonstrated that increased S6K2 expression correlates with decreased cytoplasmic hnRNPA1 and increased BCL-XL expression. In short, phosphorylation on novel N-term sites of hnRNPA1 promotes translation of anti-apoptotic proteins and is indispensable for the pro-survival effects of FGF-2.
Collapse
Affiliation(s)
- Rajat Roy
- Division of Cancer, Department of Surgery and Cancer, 1st Floor, ICTEM Building, Hammersmith Hospitals Campus of Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Danielle Durie
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Hui Li
- Department of Biochemistry, Wuhan University, Wuhan, China
| | - Bing-Qian Liu
- Department of Biochemistry, Wuhan University, Wuhan, China
| | - John Mark Skehel
- Protein Analysis and Proteomics Laboratory, London Research Institute, South Mimms, EN6 3LD, UK
| | - Francesco Mauri
- Department of Histopathology, Hammersmith Hospital Campus, Imperial College, London W120NN, UK
| | | | | | - Lin Guo
- Department of Biochemistry, Wuhan University, Wuhan, China
| | - Martin Holcik
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Michael J Seckl
- Division of Cancer, Department of Surgery and Cancer, 1st Floor, ICTEM Building, Hammersmith Hospitals Campus of Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Olivier E Pardo
- Division of Cancer, Department of Surgery and Cancer, 1st Floor, ICTEM Building, Hammersmith Hospitals Campus of Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
8
|
Zhang ZX, Geng DY, Han Q, Liang SD, Guo HR. The C-terminal cysteine of turbot Scophthalmus maximus translationally controlled tumour protein plays a key role in antioxidation and growth-promoting functions. JOURNAL OF FISH BIOLOGY 2013; 83:1287-1301. [PMID: 24124757 DOI: 10.1111/jfb.12231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 08/10/2013] [Indexed: 06/02/2023]
Abstract
The translationally controlled tumour protein (TCTP) of turbot Scophthalmus maximus (SmTCTP) contains only one cysteine (Cys¹⁷⁰) at the C-terminal end. The biological role of this C-terminal Cys¹⁷⁰ in the antioxidation and growth-promoting functions of SmTCTP was examined by site-directed mutation of C170A (Cys¹⁷⁰ →Ala¹⁷⁰). It was found that C170A mutation not only obviously decreased the antioxidation capacity of the mutant-smtctp-transformed bacteria exposed to 0·22 mM hydrogen peroxide, but also significantly interrupted the normal growth and survival of the mutant-smtctp-transformed bacteria and flounder Paralichthys olivaceus gill (FG) cells, indicating a key role played by Cys¹⁷⁰ in the antioxidation and growth-promoting functions of SmTCTP. This study also suggested that the self-dimerization or dimerization with other interacting proteins is critical to the growth-promoting function of SmTCTP.
Collapse
Affiliation(s)
- Z-X Zhang
- Department of Marine Biology, Ocean University of China, Qingdao, 266003, P. R. China
| | | | | | | | | |
Collapse
|
9
|
Sheverdin V, Jung J, Lee K. Immunohistochemical localization of translationally controlled tumor protein in the mouse digestive system. J Anat 2013; 223:278-88. [PMID: 23834399 DOI: 10.1111/joa.12077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2013] [Indexed: 01/30/2023] Open
Abstract
Translationally controlled tumor protein (TCTP) is a housekeeping protein, highly conserved among various species. It plays a major role in cell differentiation, growth, proliferation, apoptosis and carcinogenesis. Studies reported so far on TCTP expression in different digestive organs have not led to any understanding of the role of TCTP in digestion, so we localized TCTP in organs of the mouse digestive system employing immunohistochemical techniques. Translationally controlled tumor protein was found expressed in all organs studied: tongue, salivary glands, esophagus, stomach, small and large intestines, liver and pancreas. The expression of TCTP was found to be predominant in epithelia and neurons of myenteric nerve ganglia; high in serous glands (parotid, submandibular, gastric, intestinal crypts, pancreatic acini) and in neurons of myenteric nerve ganglia, and moderate to low in epithelia. In epithelia, expression of TCTP varied depending on its type and location. In enteric neurons, TCTP was predominantly expressed in the processes. Translationally controlled tumor protein expression in the liver followed porto-central gradient with higher expression in pericentral hepatocytes. In the pancreas, TCTP was expressed in both acini and islet cells. Our finding of nearly universal localization and expression of TCTP in mouse digestive organs points to the hitherto unrecognized functional importance of TCTP in the digestive system and suggests the need for further studies of the possible role of TCTP in the proliferation, secretion, absorption and neural regulation of the digestive process and its importance in the physiology and pathology of digestive process.
Collapse
Affiliation(s)
- Vadim Sheverdin
- College of Pharmacy, Center for Cell Signaling & Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | | | | |
Collapse
|
10
|
Epigenetics and the environment: in search of the "toleroasome" vital to execution of ischemic preconditioning. Transl Stroke Res 2013; 4:56-62. [PMID: 24323190 DOI: 10.1007/s12975-012-0235-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 01/02/2023]
Abstract
Activation and repression of gene expression are key features of ischemic tolerance. Converging lines of inquiry from several groups suggests that epigenetic proteins may transduce sublethal stresses, including bioenergetic or oxidative stress into durable (2-3 days) changes in gene expression that mediate ischemic tolerance. Here we discuss the potential mechanisms by which changes in cell state (e.g., ATP, NAD+, and oxygen) can modify specific targets including polycomb complexes, jumonji domain histone demethylases, and zinc and NAD-dependent histone decetylases and thus trigger an adaptive program. A major unanswered question is whether these proteins work in parallel or convergently as part of a "tolerosome" (tolero is the Latin word for tolerance), a multiprotein complex recruited to promoters or enhancers of specific genes, to mediate preconditioning. Whatever the case may be, epigenetic proteins are fertile targets for the treatment of stroke.
Collapse
|