1
|
Chen B, Wang Y, Tang W, Chen Y, Liu C, Kang M, Xie J. Association between PPARγ, PPARGC1A, and PPARGC1B genetic variants and susceptibility of gastric cancer in an Eastern Chinese population. BMC Med Genomics 2022; 15:274. [PMID: 36587194 PMCID: PMC9805199 DOI: 10.1186/s12920-022-01428-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Previous studies showed that peroxisome proliferator-activated receptor gamma (PPARγ) and PPARγ coactivator1 family (PPARGC1A and PPARGC1B) gene single nucleotide variants (SNVs)were strongly associated with cancer susceptibility. The purpose of this study was to investigate the association of PPARγ, PPARGC1A, and PPARGC1B variants with the risk of gastric cancer (GC). PATIENTS AND METHODS We performed a case-control study of 490 GC cases and 1,476 healthy controls from eastern China. PPARγ rs1801282 C > G, rs3856806 C > T, PPARGC1A rs2970847 C > T, rs8192678 C > T and PPARGC1B rs7732671 G > C, rs17572019 G > A SNVs were selected to investigate the association between these SNVs and GC susceptibility. Genotypes of the SNVs were assessed by multiplex fluorescent PCR using a custom-by-design 48-Plex SNPscantm Kit. RESULTS The PPARγ rs1801282 SNV was associated with a decreased risk for GC (GC vs. CC: odds ratio (OR) = 0.62, 95% confidence interval (95%CI) = 0.42-0.93, adjusted P = 0.019; GC + GG vs. GG: OR = 0.63 95%CI = 0.42-0.93, adjusted P = 0.019; respectively). In addition, stratified analysis revealed that the PPARγ rs1801282 SNV was correlated with the risk of GC in subgroups of age ≥ 61, no smoking, and no alcohol consuming. We also confirmed that the PPARγ rs3856806 C > T SNV promoted the risk of GC in women. The PPARGC1A rs8192678 TT genotype decreased the susceptibility of GC in men. The PPARGC1A rs2970847 C > T SNV decreased the susceptibility of GC in the subgroup of BMI ≥ 24 kg/m2. The PPARGC1B rs7732671 G > C and rs17572019 G > A SNVs promoted the risk of GC in the subgroup of BMI ≥ 24 kg/m2. CONCLUSION This study indicates that the PPARγ, PPARGC1A, and PPARGC1B SNVs may be associated with the susceptibility of GC in eastern Chinese population. Future studies with larger populations, detailed H. pylori infection status for subgroup analysis, and functional study are needed to further clarify the relationship between these SNVs and GC risk.
Collapse
Affiliation(s)
- Boyang Chen
- grid.440618.f0000 0004 1757 7156Department of Cardiothoracic Surgery, The Affiliated Hospital of Putian University, Putian, 351100 Fujian Province China
| | - Yafeng Wang
- Department of Cardiology, The People’s Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan Province China
| | - Weifeng Tang
- grid.428392.60000 0004 1800 1685Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province China
| | - Yu Chen
- grid.415110.00000 0004 0605 1140Department of Medical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province China
| | - Chao Liu
- grid.452247.2Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu Province China
| | - Mingqiang Kang
- grid.440618.f0000 0004 1757 7156Department of Cardiothoracic Surgery, The Affiliated Hospital of Putian University, Putian, 351100 Fujian Province China ,grid.411176.40000 0004 1758 0478Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian Province China
| | - Jinbiao Xie
- grid.440618.f0000 0004 1757 7156Department of Cardiothoracic Surgery, The Affiliated Hospital of Putian University, Putian, 351100 Fujian Province China
| |
Collapse
|
2
|
Yue H, Tian Y, Zhao Z, Bo Y, Guo Y, Wang J. Comparative Study of Docosahexaenoic Acid with Different Molecular Forms for Promoting Apoptosis of the 95D Non-Small-Cell Lung Cancer Cells in a PPARγ-Dependent Manner. Mar Drugs 2022; 20:md20100599. [PMID: 36286423 PMCID: PMC9604550 DOI: 10.3390/md20100599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is a leading cause of death in worldwide. Growing evidence has shown that docosahexaenoic acid (DHA) has ameliorative effects on cancer. However, the effects of DHA-enriched phosphatidylcholine (DHA-PC) and efficacy differences between DHA-PC, DHA-triglyceride (DHA-TG), and DHA- ethyl esters (DHA-EE) on cancer cells had not been studied. In this study, 95D lung cancer cells in vitro were used to determine the effects and underlying mechanisms of DHA with different molecular forms. The results showed that DHA-PC and DHA-TG treatment significantly inhibited the growth of 95D cells by 53.7% and 33.8%, whereas DHA-EE had no significantly effect. Morphological analysis showed that DHA-PC and DHA-TG prompted promoted cell contraction, increased concentration of cell heterochromatin, vacuolization of cytoplasm, and edema of endoplasmic reticulum and mitochondria. TUNEL and AO/EB staining indicated that both DHA-PC and DHA-TG promoted cell apoptosis, in which DHA-PC performed better than DHA-TG. Mechanistically, DHA-PC and DHA-TG treatment up-regulated the PPARγ and RXRα signal, inhibited the expression of NF-κB and Bcl-2, and enhanced the expression of Bax and caspase-3, thereby promoting cell apoptosis. In conclusion, DHA-PC exerted superior effects to DHA-TG and DHA-EE in promoting apoptosis in 95D non-small-cell lung cancer cells. These data provide new evidence for the application of DHA in treatment of cancer.
Collapse
Affiliation(s)
- Hao Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yingying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Zifang Zhao
- Hainan Huayan Collagen Technology Co., Ltd., Haikou 571000, China
| | - Yuying Bo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yao Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Correspondence: ; Tel./Fax: +86-0532-82031967
| |
Collapse
|
3
|
Guo Y, Zhao Q, Tian Y, Liu Y, Yan Z, Xue C, Wang J. Study on the effects of the different polar group of EPA-enriched phospholipids on the proliferation and apoptosis in 95D cells. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:519-528. [PMID: 37073266 PMCID: PMC10077167 DOI: 10.1007/s42995-021-00097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/02/2021] [Indexed: 05/03/2023]
Abstract
EPA-enriched phosphatidylcholine (EPA-PC) and EPA-enriched phosphatidylethanolamine (EPA-PE) are newly identified marine phospholipids. The polar group of phospholipids is known to influence EPA-phospholipid activity. However, the differences in anti-tumor effects between EPA-PC and EPA-PE have not been reported. In this study, we evaluated the effects of two forms of EPA on the proliferation and apoptosis in the lung-cancer cell line 95D as well as possible molecular mechanisms. Our results showed that EPA-PC effectively inhibited proliferative activity and promoted apoptosis of 95D cells in a dose-dependent manner, while EPA-PE had no effect on cell proliferation, although it slightly promoted apoptosis. Western blot results showed that EPA-PC and EPA-PE upregulated the expression of PPARγ, RXRα, and PTEN, and downregulated the PI3K/AKT signaling pathway. Furthermore, EPA-PC and EPA-PE induced the expression of the pro-apoptotic gene, Bax, and reduced the expression of the anti-apoptotic gene, Bcl-xl. Additionally, EPA-PC and EPA-PE promoted the release of cytochrome c and activated the apoptotic enzyme-cleaved caspase-3. These data suggest that the anti-tumor effect of EPA-phospholipids may be exerted via a PPARγ-related mechanism. EPA-PC was more efficacious as compared to EPA-PE, which might be due to the different polar groups of phospholipids.
Collapse
Affiliation(s)
- Yao Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Qin Zhao
- School of Food Engineering, Ludong University, Yantai, 264025 China
| | - Yingying Tian
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266061 China
| | - Yuanyuan Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Ziyi Yan
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
4
|
Xu Y, Li X, Han Y, Wang Z, Han C, Ruan N, Li J, Yu X, Xia Q, Wu G. A New Prognostic Risk Model Based on PPAR Pathway-Related Genes in Kidney Renal Clear Cell Carcinoma. PPAR Res 2020; 2020:6937475. [PMID: 33029112 PMCID: PMC7527891 DOI: 10.1155/2020/6937475] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE This study is aimed at using genes related to the peroxisome proliferator-activated receptor (PPAR) pathway to establish a prognostic risk model in kidney renal clear cell carcinoma (KIRC). METHODS For this study, we first found the PPAR pathway-related genes on the gene set enrichment analysis (GSEA) website and found the KIRC mRNA expression data and clinical data through TCGA database. Subsequently, we used R language and multiple R language expansion packages to analyze the expression, hazard ratio analysis, and coexpression analysis of PPAR pathway-related genes in KIRC. Afterward, using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) website, we established the protein-protein interaction (PPI) network of genes related to the PPAR pathway. After that, we used LASSO regression curve analysis to establish a prognostic survival model in KIRC. Finally, based on the model, we conducted correlation analysis of the clinicopathological characteristics, univariate analysis, and multivariate analysis. RESULTS We found that most of the genes related to the PPAR pathway had different degrees of expression differences in KIRC. Among them, the high expression of 27 genes is related to low survival rate of KIRC patients, and the high expression of 13 other genes is related to their high survival rate. Most importantly, we used 13 of these genes successfully to establish a risk model that could accurately predict patients' prognosis. There is a clear correlation between this model and metastasis, tumor, stage, grade, and fustat. CONCLUSIONS To the best of our knowledge, this is the first study to analyze the entire PPAR pathway in KIRC in detail and successfully establish a risk model for patient prognosis. We believe that our research can provide valuable data for future researchers and clinicians.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiunan Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Yuqing Han
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zilong Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Chenglin Han
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Ningke Ruan
- The Nursing College of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianyi Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiao Yu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
5
|
Xu Y, Li X, Han Y, Wang Z, Han C, Ruan N, Li J, Yu X, Xia Q, Wu G. A New Prognostic Risk Model Based on PPAR Pathway-Related Genes in Kidney Renal Clear Cell Carcinoma. PPAR Res 2020; 2020:6937475. [PMID: 33029112 PMCID: PMC7527891 DOI: 10.1155/2020/6937475;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 10/11/2024] Open
Abstract
Objective This study is aimed at using genes related to the peroxisome proliferator-activated receptor (PPAR) pathway to establish a prognostic risk model in kidney renal clear cell carcinoma (KIRC). Methods For this study, we first found the PPAR pathway-related genes on the gene set enrichment analysis (GSEA) website and found the KIRC mRNA expression data and clinical data through TCGA database. Subsequently, we used R language and multiple R language expansion packages to analyze the expression, hazard ratio analysis, and coexpression analysis of PPAR pathway-related genes in KIRC. Afterward, using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) website, we established the protein-protein interaction (PPI) network of genes related to the PPAR pathway. After that, we used LASSO regression curve analysis to establish a prognostic survival model in KIRC. Finally, based on the model, we conducted correlation analysis of the clinicopathological characteristics, univariate analysis, and multivariate analysis. Results We found that most of the genes related to the PPAR pathway had different degrees of expression differences in KIRC. Among them, the high expression of 27 genes is related to low survival rate of KIRC patients, and the high expression of 13 other genes is related to their high survival rate. Most importantly, we used 13 of these genes successfully to establish a risk model that could accurately predict patients' prognosis. There is a clear correlation between this model and metastasis, tumor, stage, grade, and fustat. Conclusions To the best of our knowledge, this is the first study to analyze the entire PPAR pathway in KIRC in detail and successfully establish a risk model for patient prognosis. We believe that our research can provide valuable data for future researchers and clinicians.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiunan Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Yuqing Han
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zilong Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Chenglin Han
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Ningke Ruan
- The Nursing College of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianyi Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiao Yu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
6
|
Dinić J, Efferth T, García-Sosa AT, Grahovac J, Padrón JM, Pajeva I, Rizzolio F, Saponara S, Spengler G, Tsakovska I. Repurposing old drugs to fight multidrug resistant cancers. Drug Resist Updat 2020; 52:100713. [PMID: 32615525 DOI: 10.1016/j.drup.2020.100713] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023]
Abstract
Overcoming multidrug resistance represents a major challenge for cancer treatment. In the search for new chemotherapeutics to treat malignant diseases, drug repurposing gained a tremendous interest during the past years. Repositioning candidates have often emerged through several stages of clinical drug development, and may even be marketed, thus attracting the attention and interest of pharmaceutical companies as well as regulatory agencies. Typically, drug repositioning has been serendipitous, using undesired side effects of small molecule drugs to exploit new disease indications. As bioinformatics gain increasing popularity as an integral component of drug discovery, more rational approaches are needed. Herein, we show some practical examples of in silico approaches such as pharmacophore modelling, as well as pharmacophore- and docking-based virtual screening for a fast and cost-effective repurposing of small molecule drugs against multidrug resistant cancers. We provide a timely and comprehensive overview of compounds with considerable potential to be repositioned for cancer therapeutics. These drugs are from diverse chemotherapeutic classes. We emphasize the scope and limitations of anthelmintics, antibiotics, antifungals, antivirals, antimalarials, antihypertensives, psychopharmaceuticals and antidiabetics that have shown extensive immunomodulatory, antiproliferative, pro-apoptotic, and antimetastatic potential. These drugs, either used alone or in combination with existing anticancer chemotherapeutics, represent strong candidates to prevent or overcome drug resistance. We particularly focus on outcomes and future perspectives of drug repositioning for the treatment of multidrug resistant tumors and discuss current possibilities and limitations of preclinical and clinical investigations.
Collapse
Affiliation(s)
- Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | | | - Jelena Grahovac
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, E-38071 La Laguna, Spain.
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 301724 Venezia-Mestre, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10, Hungary
| | - Ivanka Tsakovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| |
Collapse
|
7
|
Higuchi T, Yamamoto J, Sugisawa N, Tashiro Y, Nishino H, Yamamoto N, Hayashi K, Kimura H, Miwa S, Igarashi K, Bouvet M, Singh SR, Tsuchiya H, Hoffman RM. PPARγ Agonist Pioglitazone in Combination With Cisplatinum Arrests a Chemotherapy-resistant Osteosarcoma PDOX Model. Cancer Genomics Proteomics 2020; 17:35-40. [PMID: 31882549 DOI: 10.21873/cgp.20165] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIM Cisplatinum (CDDP) is a first-line drug in osteosarcoma treatment and the acquisition of resistance to CDDP is associated with a poor prognosis. Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear hormone receptor that plays important roles in cell proliferation, differentiation, development, metabolism and cell death. Recently, PPARγ was reported to enhance the efficacy, overcome resistance, and decrease the toxicity of CDDP in various human cancers. In this study we tested whether pioglitazone (PIO), a PPARγ agonist, could overcome CDDP resistance in osteosarcoma. MATERIALS AND METHODS In this study, we used a human osteosarcoma cell line and a patient-derived orthotopic xenograft (PDOX) models of osteosarcoma. We measured cell viability of 143B human osteosarcoma cells when treated with CDDP and PIO. We randomized PDOX models of osteosarcoma into four treatment groups: Group 1, Untreated control; Group 2, PIO alone; Group 3, CDDP alone; Group 4, a combination of CDDP and PIO. Each group comprised six mice. Mice were treated for 14 days and tumor size and body weight were measured. RESULTS Cell viability of 143B human osteosarcoma cells was significantly reduced when PIO (50 μmol/l) was combined with CDDP compared to CDDP alone. PDOX osteosarcoma tumors treated with the CDDP-PIO combination showed the strongest tumor growth inhibition compared to other treatment groups. PDOX osteosarcoma tumors treated with the CDDP-PIO combination had the least cancer cells and the most necrosis in histological section. CONCLUSION These results suggest that combining PIO along with CDDP could be an effective treatment strategy for osteosarcoma and has important clinical potential for patients.
Collapse
Affiliation(s)
- Takashi Higuchi
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A.,Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Jun Yamamoto
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Norihiko Sugisawa
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Yoshihiko Tashiro
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Hiroto Nishino
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Shree Ram Singh
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, U.S.A.
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, U.S.A. .,Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
8
|
Heudobler D, Rechenmacher M, Lüke F, Vogelhuber M, Pukrop T, Herr W, Ghibelli L, Gerner C, Reichle A. Peroxisome Proliferator-Activated Receptors (PPAR)γ Agonists as Master Modulators of Tumor Tissue. Int J Mol Sci 2018; 19:ijms19113540. [PMID: 30424016 PMCID: PMC6274845 DOI: 10.3390/ijms19113540] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/27/2018] [Accepted: 11/06/2018] [Indexed: 02/08/2023] Open
Abstract
In most clinical trials, thiazolidinediones do not show any relevant anti-cancer activity when used as mono-therapy. Clinical inefficacy contrasts ambiguous pre-clinical data either favoring anti-tumor activity or tumor promotion. However, if thiazolidinediones are combined with additional regulatory active drugs, so-called ‘master modulators’ of tumors, i.e., transcriptional modulators, metronomic low-dose chemotherapy, epigenetically modifying agents, protein binding pro-anakoinotic drugs, such as COX-2 inhibitors, IMiDs, etc., the results indicate clinically relevant communicative reprogramming of tumor tissues, i.e., anakoinosis, meaning ‘communication’ in ancient Greek. The concerted activity of master modulators may multifaceted diversify palliative care or even induce continuous complete remission in refractory metastatic tumor disease and hematologic neoplasia by establishing novel communicative behavior of tumor tissue, the hosting organ, and organism. Re-modulation of gene expression, for example, the up-regulation of tumor suppressor genes, may recover differentiation, apoptosis competence, and leads to cancer control—in contrast to an immediate, ‘poisoning’ with maximal tolerable doses of targeted/cytotoxic therapies. The key for uncovering the therapeutic potential of Peroxisome proliferator-activated receptor γ (PPARγ) agonists is selecting the appropriate combination of master modulators for inducing anakoinosis: Now, anakoinosis is trend setting by establishing a novel therapeutic pillar while overcoming classic obstacles of targeted therapies, such as therapy resistance and (molecular-)genetic tumor heterogeneity.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Michael Rechenmacher
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Florian Lüke
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Martin Vogelhuber
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Tobias Pukrop
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Lina Ghibelli
- Department Biology, Universita' di Roma Tor Vergata, 00173 Rome, Italy.
| | - Christopher Gerner
- Institut for Analytical Chemistry, Faculty Chemistry, University Vienna, Vienna A-1090, Austria.
| | - Albrecht Reichle
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| |
Collapse
|
9
|
Research Advances in the Correlation between Peroxisome Proliferator-Activated Receptor- γ and Digestive Cancers. PPAR Res 2018; 2018:5289859. [PMID: 29483923 PMCID: PMC5816837 DOI: 10.1155/2018/5289859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/14/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a class of ligand-activated nuclear transcription factors, which is a member of type II nuclear receptor superfamily. Previous studies demonstrate that PPARγ is expressed in a variety of tumor tissues and is closely associated with the proliferation and prognosis of digestive system tumors by its roles in mediation of cell differentiation, induction of cell apoptosis, and inhibition of cell proliferation.
Collapse
|
10
|
The multifaceted factor peroxisome proliferator-activated receptor γ (PPARγ) in metabolism, immunity, and cancer. Arch Pharm Res 2015; 38:302-12. [DOI: 10.1007/s12272-015-0559-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
|
11
|
Ferrara G, Pancione M, Votino C, Quaglino P, Tomasini C, Santucci M, Pimpinelli N, Cusano F, Sabatino L, Colantuoni V. A specific DNA methylation profile correlates with a high risk of disease progression in stage I classical (Alibert-Bazin type) mycosis fungoides. Br J Dermatol 2014; 170:1266-75. [PMID: 24641245 DOI: 10.1111/bjd.12717] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma; in its classical presentation it evolves slowly, but it can have an aggressive course in a subset of patients. OBJECTIVES To investigate the impact of epigenetic mechanisms on the progression of early stage MF. METHODS We analysed DNA methylation at 12 different loci and long interspersed nucleotide elements-1 (LINE-1), as a surrogate marker of global methylation, on tissue samples from 41 patients with stage I MF followed up for at least 12 years or until disease progression. The methylation profiles were also analysed in two T-cell lymphoma cell lines and correlated with gene expression. RESULTS The selected loci were methylated in a tumour-specific manner; concomitant hypermethylation of at least four loci was more frequent in cases progressing within 1-3 and 3-6 years than in late-progressive or non-progressive cases. LINE-1 methylation was significantly lower in rapidly progressive MF at 3 years (61%, P < 0·001) than in those at 12 years (67%). PPARG, SOCS1 and NEUROG1 methylation showed remarkable differences among the prognostic groups, but only PPARG was a significant predictor of disease progression within 6 years, after adjustment for patients' age or gender. Strikingly, a methylation profile similar to progressive cases was found in highly proliferative Sézary-derived HUT78 cells but not in MF-derived HUT102 cells. Exposure to a DNA demethylating agent restored sensitivity to apoptosis and cell cycle arrest. CONCLUSIONS Epigenetic silencing of specific biomarkers can predict the risk of disease progression in early-stage MF, providing insights into its pathogenesis, prognosis and therapy.
Collapse
Affiliation(s)
- G Ferrara
- Department of Oncology, Pathology Unit, "Gaetano Rummo" General Hospital, Benevento, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Joshi H, Pal T, Ramaa CS. A new dawn for the use of thiazolidinediones in cancer therapy. Expert Opin Investig Drugs 2014; 23:501-10. [DOI: 10.1517/13543784.2014.884708] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
PPARγ1 phosphorylation enhances proliferation and drug resistance in human fibrosarcoma cells. Exp Cell Res 2014; 322:30-8. [PMID: 24440556 DOI: 10.1016/j.yexcr.2014.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/02/2014] [Accepted: 01/09/2014] [Indexed: 11/24/2022]
Abstract
Post-translational regulation plays a critical role in the control of cell growth and proliferation. The phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ) is the most important post-translational modification. The function of PPARγ phosphorylation has been studied extensively in the past. However, the relationship between phosphorylated PPARγ1 and tumors remains unclear. Here we investigated the role of PPARγ1 phosphorylation in human fibrosarcoma HT1080 cell line. Using the nonphosphorylation (Ser84 to alanine, S84A) and phosphorylation (Ser84 to aspartic acid, S84D) mutant of PPARγ1, the results suggested that phosphorylation attenuated PPARγ1 transcriptional activity. Meanwhile, we demonstrated that phosphorylated PPARγ1 promoted HT1080 cell proliferation and this effect was dependent on the regulation of cell cycle arrest. The mRNA levels of cyclin-dependent kinase inhibitor (CKI) p21(Waf1/Cip1) and p27(Kip1) descended in PPARγ1(S84D) stable HT1080 cell, whereas the expression of p18(INK4C) was not changed. Moreover, compared to the PPARγ1(S84A), PPARγ1(S84D) up-regulated the expression levels of cyclin D1 and cyclin A. Finally, PPARγ1 phosphorylation reduced sensitivity to agonist rosiglitazone and increased resistance to anticancer drug 5-fluorouracil (5-FU) in HT1080 cell. Our findings establish PPARγ1 phosphorylation as a critical event in human fibrosarcoma growth. These findings raise the possibility that chemical compounds that prevent the phosphorylation of PPARγ1 could act as anticancer drugs.
Collapse
|
14
|
Komatsu Y, Yoshino T, Yamazaki K, Yuki S, Machida N, Sasaki T, Hyodo I, Yachi Y, Onuma H, Ohtsu A. Phase 1 study of efatutazone, a novel oral peroxisome proliferator-activated receptor gamma agonist, in combination with FOLFIRI as second-line therapy in patients with metastatic colorectal cancer. Invest New Drugs 2013; 32:473-80. [PMID: 24337768 PMCID: PMC4045340 DOI: 10.1007/s10637-013-0056-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/01/2013] [Indexed: 11/26/2022]
Abstract
Background Efatutazone, a novel oral highly-selective peroxisome proliferator-activated receptor gamma (PPARγ) agonist, has demonstrated some inhibitory effects on disease stabilization in patients with metastatic colorectal cancer (mCRC) enrolled in previous phase I studies. Here, we evaluate the safety and pharmacokinetics of efatutazone combined with FOLFIRI (5-fluorouracil, levo-leucovorin, and irinotecan) as second-line chemotherapy in Japanese patients with mCRC. Methods Dose-limiting toxicities (DLTs) were evaluated at 2 efatutazone dose levels of 0.25 and 0.50 mg (the recommended dose [RD] of efatutazone monotherapy) twice daily in combination with FOLFIRI in a 3–9 patient cohort. Furthermore, tolerability at the RD level was assessed in additional patients, up to 12 in total. Blood samples for pharmacokinetics and biomarkers and tumor samples for archival tissues were collected from all patients. Results Fifteen patients (0.25 mg, 3; 0.5 mg, 12) were enrolled. No DLTs were observed. Most patients experienced weight increase (100 %) and edema (80.0 %), which were manageable with diuretics. Common grade 3/4 toxicities were neutropenia (93.3 %), leukopenia (46.7 %), and anemia (33.3 %). Stable disease was observed in 8 of the 14 patients evaluable for tumor response. The plasma adiponectin levels increased over time and increased dose. No clear relationship was detected between treatment efficacies and plasma levels of adiponectin as well as the expression levels of PPARγ and the retinoid X receptor in tumor tissues. Conclusions Efatutazone combined with FOLFIRI demonstrates an acceptable safety profile and evidence of disease stabilization in Japanese patients with mCRC. The RD for efatutazone monotherapy can be used in combination with FOLFIRI.
Collapse
Affiliation(s)
- Yoshito Komatsu
- Hokkaido University Hospital Cancer Center, Kita 14 Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fuentes E, Guzmán-Jofre L, Moore-Carrasco R, Palomo I. Role of PPARs in inflammatory processes associated with metabolic syndrome (Review). Mol Med Rep 2013; 8:1611-6. [PMID: 24100795 DOI: 10.3892/mmr.2013.1714] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 07/24/2013] [Indexed: 12/23/2022] Open
Abstract
Metabolic syndrome (MS) includes the presence of arterial hypertension, insulin resistance, dyslipidemia, cardiovascular disease (CVD) and abdominal obesity, which is associated with a chronic inflammatory response, characterized by abnormal adipokine production, and the activation of certain pro-inflammatory signaling pathways. Furthermore, the changes presented by the adipose tissue in MS favors the secretion of several molecular mediators capable of activating or suppressing a number of transcription factors, such as the peroxisome proliferator-activated receptors (PPARs), whose main functions include storage regulation and fatty acid catabolization. When they are activated by their ligands (synthetic or endogenous), they control several genes involved in intermediate metabolism, which make them, together with the PPAR gamma coactivator-1-α (PGC-1) and the silent information regulator T1 (SIRT1), good targets for treating metabolic diseases and their cardiovascular complications.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, 3460000 Talca, Chile
| | | | | | | |
Collapse
|
16
|
Apostoli AJ, Skelhorne-Gross GEA, Rubino RE, Peterson NT, Di Lena MA, Schneider MM, SenGupta SK, Nicol CJB. Loss of PPARγ expression in mammary secretory epithelial cells creates a pro-breast tumorigenic environment. Int J Cancer 2013; 134:1055-66. [PMID: 23934545 PMCID: PMC4233966 DOI: 10.1002/ijc.28432] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 07/25/2013] [Indexed: 01/25/2023]
Abstract
Breast cancer is the leading cause of new cancer diagnoses among women. Using peroxisome proliferator-activated receptor (PPAR)γ((+/-)) mice, we showed normal expression of PPARγ was critical to stop 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast tumorigenesis. PPARγ is expressed in many breast cell types including mammary secretory epithelial (MSE) cells. MSEs proliferate as required during pregnancy, and undergo apoptosis or reversible transdifferentiation during involution once lactation is complete. Thus, MSE-specific loss of PPARγ was hypothesized to enhance DMBA-mediated breast tumorigenesis. To test this, MSE cell-specific PPARγ knockout (PPARγ-MSE KO) and control (PPARγ-WT) mice were generated, mated and allowed to nurse for three days. One week after involution, dams were treated with DMBA to initiate breast tumors, and randomized on week 7 to continue receiving a normal chow diet (DMBA Only: PPARγ-WT, n = 15; PPARγ-MSE KO, n = 25) or one supplemented with a PPARγ activating drug (DMBA + ROSI: PPARγ-WT, n = 17; PPARγ-MSE KO, n = 24), and monitored for changes in breast tumor outcomes. PPARγ-MSE KOs had significantly lower overall survival and decreased mammary tumor latency as compared to PPARγ-WT controls. PPARγ activation significantly reduced DMBA-mediated malignant mammary tumor volumes irrespective of genotype. MSE-specific PPARγ loss resulted in decreased mammary gland expression of PTEN and Bax, increased superoxide anion production, and elevated serum eotaxin and RANTES, creating a protumorigenic environment. Moreover, PPARγ activation in MSEs delayed mammary tumor growth in part by down-regulating Cox-1, Cox-2 and cyclin D1. Collectively, these studies highlight a protective role of MSE-specific PPARγ during breast tumorigenesis, and support a novel chemotherapeutic role of PPARγ activation in breast cancer.
Collapse
Affiliation(s)
- Anthony J Apostoli
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Chen GL, Miller GM. Extensive alternative splicing of the repressor element silencing transcription factor linked to cancer. PLoS One 2013; 8:e62217. [PMID: 23614038 PMCID: PMC3628349 DOI: 10.1371/journal.pone.0062217] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/18/2013] [Indexed: 12/15/2022] Open
Abstract
The repressor element silencing transcription factor (REST) is a coordinate transcriptional and epigenetic regulator which functions as a tumor suppressor or an oncogene depending on cellular context, and a truncated splice variant REST4 has been linked to various types of cancer. We performed a comprehensive analysis of alternative splicing (AS) of REST by rapid amplification of cDNA ends and PCR amplification of cDNAs from various tissues and cell lines with specific primers. We identified 8 novel alternative exons including an alternate last exon which doubles the REST gene boundary, along with numerous 5'/3' splice sites and ends in the constitutive exons. With the combination of various splicing patterns (e.g. exon skipping and alternative usage of the first and last exons) that are predictive of altered REST activity, at least 45 alternatively spliced variants of coding and non-coding mRNA were expressed in a species- and cell-type/tissue-specific manner with individual differences. By examining the repertoire of REST pre-mRNA splicing in 27 patients with kidney, liver and lung cancer, we found that all patients without exception showed differential expression of various REST splice variants between paired tumor and adjacent normal tissues, with striking cell-type/tissue and individual differences. Moreover, we revealed that exon 3 skipping, which causes no frame shift but loss of a domain essential for nuclear translocation, was affected by pioglitazone, a highly selective activator of the peroxisome proliferator-activated receptor gamma (PPARγ) which contributes to cell differentiation and tumorigenesis besides its metabolic actions. Accordingly, this study demonstrates an extensive AS of REST pre-mRNA which redefines REST gene boundary and structure, along with a general but differential link between REST pre-mRNA splicing and various types of cancer. These findings advance our understanding of the complex, context-dependent regulation of REST gene expression and function, and provide potential biomarkers and therapeutic targets for cancer.
Collapse
Affiliation(s)
- Guo-Lin Chen
- Division of Neuroscience, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America.
| | | |
Collapse
|