1
|
Chaiwangyen W, Khantamat O, Kangwan N, Tipsuwan W, de Sousa FLP. MicroRNA expression in response to environmental hazards: Implications for health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 300:118420. [PMID: 40449053 DOI: 10.1016/j.ecoenv.2025.118420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/22/2025] [Accepted: 05/25/2025] [Indexed: 06/02/2025]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally and are increasingly recognized as sensitive biomarkers of environmental exposure. This review explores how various environmental hazards-including radiation, air pollutants, heavy metals, pesticides, phthalates, and pathogens-alter both cellular and circulating miRNA expression, influencing phenotypic plasticity and contributing to disease development. Environmental hazards can induce epigenetic modifications in miRNA profiles, disrupting key biological processes such as inflammation, oxidative stress, apoptosis, and DNA repair. These alterations are associated with a wide range of diseases. The review outlines miRNA biogenesis, function, and extracellular transport, highlighting their stability and tissue specificity as biomarkers of exposure and disease. It also examines the complexity of exposure-specific miRNA signatures, shaped by factors such as genetic background, co-exposures, and exposure duration, and discusses current challenges in their validation and clinical application. Overall, this review underscores the pivotal role of miRNAs in cellular responses to environmental hazards and their potential as diagnostic and therapeutic tools, with broad implications for environmental health and disease prevention.
Collapse
Affiliation(s)
- Wittaya Chaiwangyen
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000 Thailand.
| | - Orawan Khantamat
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Napapan Kangwan
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Wachiraporn Tipsuwan
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000 Thailand
| | | |
Collapse
|
2
|
Fadhil R, Good D, Wei MQ. Evaluation of Salivary Carcinogenic microR-21 and miR-125a Expression Associated with Alcohol Consumption and Smoking. Asian Pac J Cancer Prev 2025; 26:551-556. [PMID: 40022700 PMCID: PMC12118022 DOI: 10.31557/apjcp.2025.26.2.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/12/2025] [Indexed: 03/03/2025] Open
Abstract
OBJECTIVE The concept of "lifestyle" encompasses various factors, including nutrition, behavior, stress, physical activity, work habits, smoking, and alcohol consumption. Increasing evidence suggests that environmental and lifestyle factors can influence epigenetic mechanisms, such as DNA methylation, histone acetylation, and microRNA expression. Given that microRNAs (miRNAs) are an emerging focus in cancer research, there is growing interest in understanding how lifestyle choices affect miRNA responses. MiR-21 is well-established as an oncogenic miRNA, while miR-125a is reported as a tumor-suppressive miRNA in different cancers. This study aimed to analyze whether cigarette smoking and alcohol consumption are associated with altered levels of these salivary miRNAs in healthy individuals. METHODS Saliva supernatant samples from 50 healthy individuals (10% smokers and 34% alcohol drinkers) were analyzed alongside non-smokers and non-alcohol drinkers using real-time polymerase chain reaction (PCR). The expression levels of miR-21 and miR-125a were compared across samples based on demographic characteristics, social status, and smoking and drinking habits. RESULT The data showed overexpression of salivary miR-21 in individuals who regularly consumed alcohol and smoked, while miR-125a expression was not significantly affected in either group. CONCLUSION The differential expression of salivary miR-21 in healthy individuals from a localized population suggests a correlation with common lifestyle risk factors.
Collapse
Affiliation(s)
- Rushdi Fadhil
- Iraqi Center for Cancer and Medical Genetics Researches/Mustansiryah Unversity, Baghdad, Iraq.
| | - David Good
- Discipline of Physiotherapy, School of Allied Health, Australian Catholic University, Queensland, Australia.
| | - Ming Q. Wei
- School of Medical Science, Griffith University and Menzies Health Institute Queensland, Gold Coast, Australia.
| |
Collapse
|
3
|
Fanfarillo F, Ferraguti G, Lucarelli M, Fuso A, Ceccanti M, Terracina S, Micangeli G, Tarani L, Fiore M. The Impact of Alcohol-Induced Epigenetic Modifications in the Treatment of Alcohol use Disorders. Curr Med Chem 2024; 31:5837-5855. [PMID: 37828672 DOI: 10.2174/0109298673256937231004093143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/07/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Alcohol use disorders are responsible for 5.9% of all death annually and 5.1% of the global disease burden. It has been suggested that alcohol abuse can modify gene expression through epigenetic processes, namely DNA and histone methylation, histone acetylation, and microRNA expression. The alcohol influence on epigenetic mechanisms leads to molecular adaptation of a wide number of brain circuits, including the hypothalamus-hypophysis-adrenal axis, the prefrontal cortex, the mesolimbic-dopamine pathways and the endogenous opioid pathways. Epigenetic regulation represents an important level of alcohol-induced molecular adaptation in the brain. It has been demonstrated that acute and chronic alcohol exposure can induce opposite modifications in epigenetic mechanisms: acute alcohol exposure increases histone acetylation, decreases histone methylation and inhibits DNA methyltransferase activity, while chronic alcohol exposure induces hypermethylation of DNA. Some studies investigated the chromatin status during the withdrawal period and the craving period and showed that craving was associated with low methylation status, while the withdrawal period was associated with elevated activity of histone deacetylase and decreased histone acetylation. Given the effects exerted by ethanol consumption on epigenetic mechanisms, chromatin structure modifiers, such as histone deacetylase inhibitors and DNA methyltransferase inhibitors, might represent a new potential strategy to treat alcohol use disorder. Further investigations on molecular modifications induced by ethanol might be helpful to develop new therapies for alcoholism and drug addiction targeting epigenetic processes.
Collapse
Affiliation(s)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Sapienza University of Rome, Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ginevra Micangeli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
4
|
MicroRNAs in exhaled breath condensate: A pilot study of biomarker detection for lung cancer. Cancer Treat Res Commun 2023; 35:100689. [PMID: 36773435 DOI: 10.1016/j.ctarc.2023.100689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/19/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023]
Abstract
INTRODUCTION Quantitation of microRNAs secreted by lung cells can provide valuable information regarding lung health. Exhaled breath condensate (EBC) offers a non-invasive way to sample the secreted microRNAs, and could be used as diagnostic tools for lung cancer. MATERIALS & METHODS EBC samples from twenty treatment-naïve patients with pathologically confirmed lung cancer and twenty healthy subjects were profiled for miRNAs expression. Selected microRNAs were further validated, using quantitative-PCR, in an independent set of 10 subjects from both groups. RESULTS A total of 78 miRNAs were found to be significantly upregulated in the EBC of lung cancer patients compared to the control group. Six of these 78 miRNAs were shortlisted for validation. Of these, miR-31-3p, let7i, and miR-449c were significantly upregulated, exhibited good discriminatory power. DISCUSSION Differential expression of miRNAs secreted by lung cells could be quantitated in EBC samples, and could be used as a potential non-invasive tool for early diagnosis of lung cancer.
Collapse
|
5
|
Leal DFDVB, Santana da Silva MN, Pastana LF, Fernandes MR, de Athayde ADSC, Fernandes Porchera DCR, da Silva CA, Modesto AAC, De Assumpcão PP, dos Santos SEB, dos Santos NPC. Genetic Variants of MicroRNA and DROSHA Genes in Association With the Risk of Tuberculosis in the Amazon Population. Front Genet 2022; 13:850058. [PMID: 35309115 PMCID: PMC8924412 DOI: 10.3389/fgene.2022.850058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis (TB) is a chronic infection caused by Mycobacterium tuberculosis (Mtb) with high incidence and mortality. Studies reported that host genetic variants might be associated with the risk of tuberculosis. The aim of this study was to perform an association study between 26 single nucleotide polymorphisms (SNPs) and tuberculosis and evaluate whether these SNPs may confer risk factors to tuberculosis in the Amazon population. There were 52 males and 126 females, with total of 178 healthy controls. Genotyping was performed using TaqMan Open Array Genotyping. Ancestry-informative markers were used to estimate the ancestral proportions of the individuals in the case and control groups. The results indicated that the SNPs rs10035440 (DROSHA), rs7372209 (miR26-a1), rs1834306 (miR100), rs4919510 (miR608), and rs10739971 (pri-let-7a-1) were significantly associated with high risk and rs3746444 (miR499) and rs6505162 (miR423), with low risk of developing tuberculosis in the Amazon population. Our study concluded that seven miRNA polymorphisms were associated with tuberculosis. Our study contributes to a better understanding of TB pathogenesis and may promote the development of new diagnostic tools against M. tuberculosis infection.
Collapse
Affiliation(s)
| | | | | | - Marianne Rodrigues Fernandes
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, Brazil
- *Correspondence: Marianne Rodrigues Fernandes,
| | | | | | | | | | | | - Sidney Emanuel Batista dos Santos
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | | |
Collapse
|
6
|
Circulating hsa-let-7e-5p and hsa-miR-125a-5p as Possible Biomarkers in the Diagnosis of Major Depression and Bipolar Disorders. DISEASE MARKERS 2022; 2022:3004338. [PMID: 35178127 PMCID: PMC8844308 DOI: 10.1155/2022/3004338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
Background. Evidence shows that microRNAs (miRNAs) could play a key role in the homeostasis and development of major depressive disorder and bipolar disorder. The present study is aimed at investigating the changes in circulating miRNA expression profiles in a plasma of patients suffering from major depressive disorder (MDD) and bipolar disorder (BD) to distinguish and evaluate these molecules as biomarkers for mood disorders. Methods. A study enrolled a total of 184 subjects: 74 controls, 84 MDD patients, and 26 BD patients. Small RNA sequencing revealed 11 deregulated circulating miRNAs in MDD and BD plasma, of which expression of 5, hsa-miR-139-3p, miRNAs hsa-let-7e-5p, hsa-let-7f-5p, hsa-miR-125a-5p, and hsa-miR-483-5p, were further verified using qPCR. miRNA gene expression data was evaluated alongside the data from clinical assessment questionnaires. Results. hsa-let-7e-5p and hsa-miR-125a-5p were both confirmed upregulated: 0.75-fold and 0.25-fold, respectively, in the MDD group as well as 1.36-fold and 0.68-fold in the BD group. Receiver operating curve (ROC) analysis showed mediocre diagnostic sensitivity and specificity of both hsa-let-7e-5p and hsa-miR-125a-5p with approximate area under the curve (AOC) of 0.66. ROC analysis of combined miRNA and clinical assessment data showed that hsa-let-7e-5p and hsa-miR-125a-5p testing could improve MDD and BD diagnostic accuracy by approximately 10%. Conclusions. Circulating hsa-let-7e-5 and hsa-miR-125a-5p could serve as additional peripheral biomarkers for mood disorders; however, suicidal ideation remains the major diagnostic factor for MDD and BD.
Collapse
|
7
|
Buchanan SR, Miller RM, Nguyen M, Black CD, Kellawan JM, Bemben MG, Bemben DA. Circulating microRNA responses to acute whole-body vibration and resistance exercise in postmenopausal women. Front Endocrinol (Lausanne) 2022; 13:1038371. [PMID: 36440217 PMCID: PMC9692005 DOI: 10.3389/fendo.2022.1038371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Evaluating alterations in circulating microRNA (c-miRNA) expression may provide deeper insight into the role of exercise in the attenuation of the negative effects of aging on musculoskeletal health. Currently, there are sparse data on c-miRNA responses to acute exercise in postmenopausal women. The purpose of this study was to characterize the effects of acute bouts of resistance exercise and whole-body vibration on expression of selected c-miRNAs in postmenopausal women aged 65-76 years (n=10). We also examined relationships between c-miRNAs and muscle strength and bone characteristics. This randomized crossover design study compared c-miRNA responses to a bout of resistance exercise (RE) (3 sets 10 reps 70% 1 repetition maximum (1RM), 5 exercises) and a bout of whole-body vibration (WBV) (5 sets 1 min bouts 20Hz 3.38mm peak to peak displacement, Vibraflex vibration platform). DXA was used to measure body composition and areal bone mineral density (aBMD) of the total body, AP lumbar spine, and dual proximal femur. pQCT was used to measure tibia bone characteristics (4%, 38%, 66% sites). Blood samples were collected before exercise (Pre), immediately-post (IP), 60 minutes post (60P), 24 hours (24H), and 48 hours (48H) after exercise to measure serum miR-21-5p, -23a-3p, -133a-3p, -148a-3p (qPCR) and TRAP5b (ELISA). There was a significant modality × time interaction for c-miR-21-5p expression (p=0.019), which decreased from 60P to 24H after WBV only. TRAP5b serum concentrations significantly increased IP then decreased below Pre at 24H for both WBV and RE (p<0.01). Absolute changes in TRAP5b were negatively correlated with c-miR-21-5p fold changes (r= -0.642 to -0.724, p<0.05) for both exercise modalities. There were significant negative correlations between baseline c-miRNAs and bone status variables (r= -0.639 to -0.877, p<0.05). Our findings suggest that whole-body vibration is a sufficient mechanical stimulus for altering c-miR-21-5p expression, whereas a high intensity resistance exercise protocol did not elicit any c-miRNA responses in postmenopausal women. Increases in the bone resorption marker, TRAP5b, were associated with greater downregulation of c-miR-21-5p expression.
Collapse
Affiliation(s)
- Samuel R. Buchanan
- Department of Health and Human Performance, University of Texas Rio Grande Valley, Edinburg, TX, United States
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
- *Correspondence: Samuel R. Buchanan,
| | - Ryan M. Miller
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Michelle Nguyen
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Christopher D. Black
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - J. Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Michael G. Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Debra A. Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
8
|
El-Komy M, Amin I, El-Hawary MS, Saadi D, Shaker O. Upregulation of the miRNA-155, miRNA-210, and miRNA-20b in psoriasis patients and their relation to IL-17. Int J Immunopathol Pharmacol 2021; 34:2058738420933742. [PMID: 32602388 PMCID: PMC7328219 DOI: 10.1177/2058738420933742] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Psoriasis is an immune-mediated disease, with genetic background and triggering
environmental factors; however, several gaps are still present in understanding
the intertwined relationship between these elements. Epigenetic mechanisms,
including microRNAs (miRNAs), play an important role in the pathogenesis of
psoriasis. The relationship between interleukin (IL)-17, a key cytokine in
psoriasis, and these epigenetic mechanisms still needs to be elucidated. This
study aimed at assessing the expression of miRNA-155, miRNA-210, and miRNA-20b
in skin and sera of psoriasis patients in relation to IL-17 levels. For 20
psoriasis patients and 20 matching controls, the expression of miRNA-155,
miRNA-210, and miRNA-20b was assessed using real-time polymerase chain reaction
(RT-PCR), whereas IL-17/IL-17A levels were measured using quantitative
enzyme-linked immunosorbent assay (ELISA) technique. MiRNA-155 expression was
significantly higher in lesional skin compared to controls
(P = 0.001). MiRNA-210 expression was significantly higher in
both, lesional skin (P = 0.010) and sera of patients
(P = 0.001) in comparison with controls. A statistically
significant positive correlation was found between serum miRNA-210 expression
and serum levels of IL-17/IL-17A (P = 0.010, rs = 0.562).
MiRNA-20b lesional and non-lesional expression was significantly higher than
controls (P < 0.001; P = 0.018). In
conclusion, the expression of miRNA-155, miRNA-210, and miRNA-20b is exaggerated
in psoriasis and they may be involved in disease pathogenesis. A possible
relationship between miRNA-210 and IL-17 may be suggested; however, further
studies are still needed to verify this relation.
Collapse
Affiliation(s)
- Mohamed El-Komy
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Iman Amin
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Dina Saadi
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Olfat Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Siomek-Gorecka A, Dlugosz A, Czarnecki D. The Molecular Basis of Alcohol Use Disorder (AUD). Genetics, Epigenetics, and Nutrition in AUD: An Amazing Triangle. Int J Mol Sci 2021; 22:ijms22084262. [PMID: 33924016 PMCID: PMC8072802 DOI: 10.3390/ijms22084262] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol use disorder (AUD) is a very common and complex disease, as alcohol is the most widely used addictive drug in the world. This disorder has an enormous impact on public health and social and private life, and it generates a huge number of social costs. Alcohol use stimulates hypothalamic-pituitary-adrenal (HPA) axis responses and is the cause of many physical and social problems (especially liver disease and cancer), accidental injury, and risky sexual behavior. For years, researchers have been trying to identify the genetic basis of alcohol use disorder, the molecular mechanisms responsible for its development, and an effective form of therapy. Genetic and environmental factors are known to contribute to the development of AUD, and the expression of genes is a complicated process that depends on epigenetic modulations. Dietary nutrients, such as vitamins, may serve as one these modulators, as they have a direct impact on epigenomes. In this review, we connect gathered knowledge from three emerging fields-genetics, epigenetics, and nutrition-to form an amazing triangle relating to alcohol use disorder.
Collapse
Affiliation(s)
- Agnieszka Siomek-Gorecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-095 Bydgoszcz, Poland
- Correspondence: ; Tel.: +48-52-585-37-48
| | - Anna Dlugosz
- Department of Engineering and Chemical and Food Analytics, Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, 85-326 Bydgoszcz, Poland;
| | - Damian Czarnecki
- Department of Preventive Nursing, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-821 Bydgoszcz, Poland;
| |
Collapse
|
10
|
The role of miRNA in plant-virus interaction: a review. Mol Biol Rep 2021; 48:2853-2861. [PMID: 33772417 DOI: 10.1007/s11033-021-06290-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/13/2021] [Indexed: 01/20/2023]
Abstract
Plant viruses affect crop production both quantitatively and qualitatively. The viral genome consists of either DNA or RNA. However, most plant viruses are positive single-strand RNA viruses. MicroRNAs are involved in gene regulation and affect development as well as host-virus interaction. They are non-coding short with 20-24 nucleotides long capable of regulating gene expression. The miRNA gene is transcribed by RNA polymerase II to form pri-miRNA which will later cleaved by Dicer-like 1 to produce pre-miRNA with the help of HYPONASTIC LEAVES1 and SERRATE which finally methylated and exported via nucleopore with the help of HASTY. The outcome of plant virus interaction depends on the effectiveness of host defense and the ability of a virus counter-defense mechanism. In plants, miRNAs are involved in the repression of gene expression through transcript cleavage. On the other hand, viruses use viral suppressors of RNA silencing (VSRs) which affect RISC assembly and subsequent mRNA degradation. Passenger strands, miRNA*, have a significant biological function in plant defense response as well as plant development.
Collapse
|
11
|
Hsa-miR-3658 down-regulates OCT4 gene expression followed by suppressing SW480 cell proliferation and migration. Biochem J 2020; 477:2281-2293. [PMID: 32478824 DOI: 10.1042/bcj20190619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 01/04/2023]
Abstract
The pluripotency factor, OCT4 gene is a stemness marker that is involved in the tumorigenicity of different cancer types and knowing about molecular mechanisms of its regulation is crucially important. To date, a few microRNAs (miRNAs) are known to be regulators of OCT4 gene expression. Looking for the novel miRNAs which are capable of regulating OCT4 gene expression, our bioinformatics analysis introduced hsa-miR-3658 (miR-3658) as a bona fide candidate. Then, RT-qPCR results indicated that miR-3658 expression is decreased in colorectal cancer (CRC) tumor tissues, compared with normal pairs. Furthermore, RT-qPCR and western blot analysis showed that the OCT4 gene has been down-regulated following the miR-3658 overexpression. Consistently, dual-luciferase assay supported the direct interaction of miR-3658 with the 3'-UTR sequence of OCT4 gene. Unlike in HCT116 cells, overexpression of miR-3658 in SW480 cells brought about growth inhibition, cell cycle arrest and reduced cell migration, detected by flow cytometry, and scratch test assay. Overall, these findings demonstrated that miR-3658 as a tumor suppressor miRNA exerts its effect against OCT4 gene expression, and it has the potential of being used as a prognostic marker and therapeutic target against colorectal cancer.
Collapse
|
12
|
Finicelli M, Squillaro T, Galderisi U, Peluso G. Micro-RNAs: Crossroads between the Exposure to Environmental Particulate Pollution and the Obstructive Pulmonary Disease. Int J Mol Sci 2020; 21:7221. [PMID: 33007849 PMCID: PMC7582315 DOI: 10.3390/ijms21197221] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Environmental pollution has reached a global echo and represents a serious problem for human health. Air pollution encompasses a set of hazardous substances, such as particulate matter and heavy metals (e.g., cadmium, lead, and arsenic), and has a strong impact on the environment by affecting groundwater, soil, and air. An adaptive response to environmental cues is essential for human survival, which is associated with the induction of adaptive phenotypes. The epigenetic mechanisms regulating the expression patterns of several genes are promising candidates to provide mechanistic and prognostic insights into this. Micro-RNAs (miRNAs) fulfil these features given their ability to respond to environmental factors and their critical role in determining phenotypes. These molecules are present in extracellular fluids, and their expression patterns are organ-, tissue-, or cell-specific. Moreover, the experimental settings for their quantitative and qualitative analysis are robust, standardized, and inexpensive. In this review, we provide an update on the role of miRNAs as suitable tools for understanding the mechanisms behind the physiopathological response to toxicants and the prognostic value of their expression pattern associable with specific exposures. We look at the mechanistic evidence associable to the role of miRNAs in the processes leading to environmental-induced pulmonary disease (i.e., chronic obstructive pulmonary disease).
Collapse
Affiliation(s)
- Mauro Finicelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Pietro Castellino 111, 80131 Naples, Italy
| | - Tiziana Squillaro
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (T.S.); (U.G.)
| | - Umberto Galderisi
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (T.S.); (U.G.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
13
|
Singh T, Yadav S. Role of microRNAs in neurodegeneration induced by environmental neurotoxicants and aging. Ageing Res Rev 2020; 60:101068. [PMID: 32283224 DOI: 10.1016/j.arr.2020.101068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/02/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
The progressive loss of neuronal structure and functions resulting in the death of neurons is considered as neurodegeneration. Environmental toxicants induced degeneration of neurons is accelerated with aging. In adult brains, most of the neurons are post-mitotic, and their loss results in the development of diseases like amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). Neurodegenerative diseases have several similarities at the sub-cellular and molecular levels, such as synaptic degeneration, oxidative stress, inflammation, and cognitive decline, which are also known in brain aging. Identification of these similarities at the molecular level offers hope for the development of new therapeutics to ameliorate all neurodegenerative diseases simultaneously. Aging is known as the most strongly associated additive factor in the pathogenesis of neurodegenerative diseases. Studies carried out so far identified several genes, which are responsible for selective degeneration of neurons in different neurodegenerative diseases. Countless efforts have been made in identifying therapeutics for neurodegenerative diseases; however, the discovery of effective therapy remains elusive. Findings made in the last two decades identified microRNAs (miRNAs) as the most potent post-transcription regulatory RNA molecule, which can condition protein levels in the cell and tissue-specific manner. Identification of miRNAs, which regulate both neurotoxicant and aging-associated degeneration of brain cells, raises the possibility that roads leading to aging and neurotoxicant induced neurodegeneration cross at some point. Identification of miRNAs, which are common to aging and neurotoxicant induced neurodegeneration, will help in understanding the complex mechanism of neurodegenerative disease development. In the future, the use of natural miRNAs in vivo in therapy will be able to tackle several issues of aging and neurodegeneration. In the present review, we have provided a summary of findings made on the role of miRNAs in neurodegeneration and explored the common link made by miRNAs between aging and neurotoxicants induced neurodegeneration.
Collapse
Affiliation(s)
- Tanisha Singh
- Developmental Toxicology Division, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan,31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Department of Neurological Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, Pennsylvania-15213, USA.
| | - Sanjay Yadav
- Developmental Toxicology Division, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan,31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raebareli, Munsiganj, Raebareli 229405, UP, India.
| |
Collapse
|
14
|
Aoki H, Tani H, Nakamura K, Sato H, Torimura M, Nakazato T. MicroRNA biomarkers for chemical hazard screening identified by RNA deep sequencing analysis in mouse embryonic stem cells. Toxicol Appl Pharmacol 2020; 392:114929. [PMID: 32105654 DOI: 10.1016/j.taap.2020.114929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
We investigated the responses of microRNAs (miRNAs) using mouse embryonic stem cells (mESCs) exposed to nine chemicals (bis(2-ethylhexyl)phthalate, p-cresol, p-dichlorobenzene, phenol, pyrocatecol, chloroform, tri-n-butyl phosphate, trichloroethylene, and benzene), which are listed as "Class I Designated Chemical Substances" from the Japan Pollutant Release and Transfer Register. Using deep sequencing analysis (RNA-seq), several miRNAs were identified that show a substantial response to general chemical toxicity (i.e., to these nine chemicals considered as a group) and several miRNA biomarkers that show a substantial and specific response to benzene. The functions of the identified miRNAs were investigated in accordance with Gene Ontology terms of their predicted target genes, indicating regulation of cellular processes. We compared the results with those for the long non-coding RNAs (ncRNAs) and mRNAs reported in our previous studies in addition to previously identified miRNAs that are either up- or down-regulated in response to the benzene as stimuli. We also observed that the changes in expression of miRNAs were smaller than those for long ncRNAs and mRNAs. Taken together the current and previous results revealed that toxic chemical stimuli regulate the expression of miRNAs. We believe that the use of miRNAs, including the thus identified miRNAs, as biomarkers contribute to predicting the potential toxicity of particular chemicals or identifying human individuals that have been exposed to chemical hazards.
Collapse
Affiliation(s)
- Hiroshi Aoki
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Hidenori Tani
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Kaoru Nakamura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Hiroaki Sato
- Research Institute of Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Masaki Torimura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Tetsuya Nakazato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
15
|
Khachigian LM. Transcription Factors Targeted by miRNAs Regulating Smooth Muscle Cell Growth and Intimal Thickening after Vascular Injury. Int J Mol Sci 2019; 20:ijms20215445. [PMID: 31683712 PMCID: PMC6861964 DOI: 10.3390/ijms20215445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/20/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Neointima formation after percutaneous coronary intervention (PCI) is a manifestation of “phenotype switching” by vascular smooth muscle cells (SMC), a process that involves de-differentiation from a contractile quiescent phenotype to one that is richly synthetic. In response to injury, SMCs migrate, proliferate, down-regulate SMC-specific differentiation genes, and later, can revert to the contractile phenotype. The vascular response to injury is regulated by microRNAs (or miRNAs), small non-coding RNAs that control gene expression. Interactions between miRNAs and transcription factors impact gene regulatory networks. This article briefly reviews the roles of a range of miRNAs in molecular and cellular processes that control intimal thickening, focusing mainly on transcription factors, some of which are encoded by immediate-early genes. Examples include Egr-1, junB, KLF4, KLF5, Elk-1, Ets-1, HMGB1, Smad1, Smad3, FoxO4, SRF, Rb, Sp1 and c-Myb. Such mechanistic information could inform the development of strategies that block SMC growth, neointima formation, and potentially overcome limitations of lasting efficacy following PCI.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney NSW 2052, Australia.
| |
Collapse
|
16
|
Aoki H, Corn RM, Matthews B. MicroRNA detection on microsensor arrays by SPR imaging measurements with enzymatic signal enhancement. Biosens Bioelectron 2019; 142:111565. [DOI: 10.1016/j.bios.2019.111565] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/03/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
|
17
|
Fabris G, Dumortier O, Pisani DF, Gautier N, Van Obberghen E. Amino acid-induced regulation of hepatocyte growth: possible role of Drosha. Cell Death Dis 2019; 10:566. [PMID: 31332188 PMCID: PMC6646398 DOI: 10.1038/s41419-019-1779-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/23/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022]
Abstract
In an adult healthy liver, hepatocytes are in a quiescent stage unless a physical injury, such as ablation, or a toxic attack occur. Indeed, to maintain their crucial organismal homeostatic role, the damaged or remaining hepatocytes will start proliferating to restore their functional mass. One of the limiting conditions for cell proliferation is amino-acid availability, necessary both for the synthesis of proteins important for cell growth and division, and for the activation of the mTOR pathway, known for its considerable role in the regulation of cell proliferation. The overarching aim of our present work was to investigate the role of amino acids in the regulation of the switch between quiescence and growth of adult hepatocytes. To do so we used non-confluent primary adult rat hepatocytes as a model of partially ablated liver. We discovered that the absence of amino acids induces in primary rat hepatocytes the entrance in a quiescence state together with an increase in Drosha protein, which does not involve the mTOR pathway. Conversely, Drosha knockdown allows the hepatocytes, quiescent after amino-acid deprivation, to proliferate again. Further, hepatocyte proliferation appears to be independent of miRNAs, the canonical downstream partners of Drosha. Taken together, our observations reveal an intriguing non-canonical action of Drosha in the control of growth regulation of adult hepatocytes responding to a nutritional strain, and they may help to design novel preventive and/or therapeutic approaches for hepatic failure.
Collapse
Affiliation(s)
- Gaia Fabris
- Université Côte d'Azur, Inserm, CNRS, IRCAN, Nice, France.,Université Côte d'Azur, CNRS, LP2M, Nice, France
| | | | | | - Nadine Gautier
- Université Côte d'Azur, Inserm, CNRS, IRCAN, Nice, France.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Emmanuel Van Obberghen
- Université Côte d'Azur, CHU, Inserm, CNRS, IRCAN, Nice, France. .,Université Côte d'Azur, CHU, CNRS, LP2M, Nice, France.
| |
Collapse
|
18
|
Seong KM, Coates BS, Pittendrigh BR. Impacts of Sub-lethal DDT Exposures on microRNA and Putative Target Transcript Expression in DDT Resistant and Susceptible Drosophila melanogaster Strains. Front Genet 2019; 10:45. [PMID: 30804985 PMCID: PMC6370691 DOI: 10.3389/fgene.2019.00045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/21/2019] [Indexed: 01/06/2023] Open
Abstract
Ten constitutively differentially expressed miRNAs were previously described between DDT-resistant 91-R and -susceptible control Drosophila melanogaster strains, and among their predicted target genes were those associated with metabolic DDT resistance mechanisms. The present study evaluated the inducibility of miRNA expression and putative downstream regulation of cytochrome P450s in response to DDT exposure in a time-dependent manner in 91-R and the susceptible Canton-S strain. Specifically, RT-qPCR analysis showed that DDT exposures led to the significant down-regulation (repression) of miR-310-3p, miR-311-3p, miR-312-3p, miR-313-3p, and miR-92a-3p levels in Canton-S. This is contrasted with the lack of significant changes in 91-R at most time-points following DDT exposure. The levels of expression among miRNAs exhibited opposite expression patterns compared to their corresponding putative target cytochrome P450s at the same time points after DDT exposure. Collectively, results from this study suggest that miR-310-3p, miR-311-3p, miR-312-3p, miR-313-3p, and miR-92a-3p might have a potential role in the control of DDT detoxification through the post-transcriptional regulation of target cytochrome P450s in Canton-S. Conversely, the lack of significant changes of these same miRNAs in 91-R following DDT-exposure suggests a possible adaptive mutation that removes repressive control mechanisms. These data are important for the understanding impact of adaptive changes in miRNA expression on post-transcriptional regulatory mechanism involved in the evolution of DDT resistance in 91-R.
Collapse
Affiliation(s)
- Keon Mook Seong
- Department of Entomology, Michigan State University, East Lansing, MI, United States
| | - Brad S Coates
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA, United States
| | - Barry R Pittendrigh
- Department of Entomology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
19
|
Nonprotein-coding RNAs in Fetal Alcohol Spectrum Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:299-342. [PMID: 29933954 DOI: 10.1016/bs.pmbts.2017.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early developmental exposure to ethanol, a known teratogen, can result in a range of neurodevelopmental disorders, collectively referred to as Fetal Alcohol Spectrum Disorders (FASDs). Changes in the environment, including exposure to teratogens, can result in long term alterations to the epigenetic landscape of a cell, thereby altering gene expression. Noncoding RNAs (ncRNAs) can affect transcription and translation of networks of genes. ncRNAs are dynamically expressed during development and have been identified as a target of alcohol. ncRNAs therefore make for attractive targets for novel therapeutics to address the developmental deficits associated with FASDs.
Collapse
|
20
|
Abstract
An individual's risk of developing a common disease typically depends on an interaction of genetic and environmental factors. Epigenetic research is uncovering novel ways through which environmental factors such as diet, air pollution, and chemical exposure can affect our genes. DNA methylation and histone modifications are the most commonly studied epigenetic mechanisms. The role of long non-coding RNAs (lncRNAs) in epigenetic processes has been more recently highlighted. LncRNAs are defined as transcribed RNA molecules greater than 200 nucleotides in length with little or no protein-coding capability. While few functional lncRNAs have been well characterized to date, they have been demonstrated to control gene regulation at every level, including transcriptional gene silencing via regulation of the chromatin structure and DNA methylation. This review aims to provide a general overview of lncRNA function with a focus on their role as key regulators of health and disease and as biomarkers of environmental exposure.
Collapse
Affiliation(s)
- Oskar Karlsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, 171 76, Stockholm, Sweden.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
21
|
Figueroa-Romero C, Hur J, Lunn JS, Paez-Colasante X, Bender DE, Yung R, Sakowski SA, Feldman EL. Expression of microRNAs in human post-mortem amyotrophic lateral sclerosis spinal cords provides insight into disease mechanisms. Mol Cell Neurosci 2015; 71:34-45. [PMID: 26704906 DOI: 10.1016/j.mcn.2015.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis is a late-onset and terminal neurodegenerative disease. The majority of cases are sporadic with unknown causes and only a small number of cases are genetically linked. Recent evidence suggests that post-transcriptional regulation and epigenetic mechanisms, such as microRNAs, underlie the onset and progression of neurodegenerative disorders; therefore, altered microRNA expression may result in the dysregulation of key genes and biological pathways that contribute to the development of sporadic amyotrophic lateral sclerosis. Using systems biology analyses on postmortem human spinal cord tissue, we identified dysregulated mature microRNAs and their potential targets previously implicated in functional process and pathways associated with the pathogenesis of ALS. Furthermore, we report a global reduction of mature microRNAs, alterations in microRNA processing, and support for a role of the nucleotide binding protein, TAR DNA binding protein 43, in regulating sporadic amyotrophic lateral sclerosis-associated microRNAs, thereby offering a potential underlying mechanism for sporadic amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | - Junguk Hur
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | - J Simon Lunn
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | | | - Diane E Bender
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Raymond Yung
- Division of Geriatrics and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Geriatric Research, Education and Clinical Care Center, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA
| | - Stacey A Sakowski
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA.,A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Le Carré J, Lamon S, Léger B. Validation of a multiplex reverse transcription and pre-amplification method using TaqMan(®) MicroRNA assays. Front Genet 2014; 5:413. [PMID: 25505484 PMCID: PMC4244598 DOI: 10.3389/fgene.2014.00413] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/06/2014] [Indexed: 12/27/2022] Open
Abstract
Since the discovery of microRNAs (miRNAs), different approaches have been developed to label, amplify and quantify miRNAs. The TaqMan® technology, provided by Applied Biosystems (ABIs), uses a stem-loop reverse transcription primer system to reverse transcribe the RNA and amplify the cDNA. This method is widely used to identify global differences between the expression of 100s of miRNAs across comparative samples. This technique also allows the quantification of the expression of targeted miRNAs to validate observations determined by whole-genome screening or to analyze few specific miRNAs on a large number of samples. Here, we describe the validation of a method published by ABIs on their web site allowing to reverse transcribe and pre-amplify multiple miRNAs and snoRNAs simultaneously. The validation of this protocol was performed on human muscle and plasma samples. Fast and cost efficient, this method achieves an easy and convenient way to screen a relatively large number of miRNAs in parallel.
Collapse
Affiliation(s)
- Joane Le Carré
- Institute for Research in Rehabilitation, SuvaCare Rehabilitation Clinic Sion, Switzerland
| | - Séverine Lamon
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| | - Bertrand Léger
- Institute for Research in Rehabilitation, SuvaCare Rehabilitation Clinic Sion, Switzerland
| |
Collapse
|
23
|
Computational prediction of microRNA networks incorporating environmental toxicity and disease etiology. Sci Rep 2014; 4:5576. [PMID: 24992957 PMCID: PMC4081875 DOI: 10.1038/srep05576] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/17/2014] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in multiple biological processes and have attracted much scientific attention recently. Their expression can be altered by environmental factors (EFs), which are associated with many diseases. Identification of the phenotype-genotype relationships among miRNAs, EFs, and diseases at the network level will help us to better understand toxicology mechanisms and disease etiologies. In this study, we developed a computational systems toxicology framework to predict new associations among EFs, miRNAs and diseases by integrating EF structure similarity and disease phenotypic similarity. Specifically, three comprehensive bipartite networks: EF-miRNA, EF-disease and miRNA-disease associations, were constructed to build predictive models. The areas under the receiver operating characteristic curves using 10-fold cross validation ranged from 0.686 to 0.910. Furthermore, we successfully inferred novel EF-miRNA-disease networks in two case studies for breast cancer and cigarette smoke. Collectively, our methods provide a reliable and useful tool for the study of chemical risk assessment and disease etiology involving miRNAs.
Collapse
|
24
|
Kariya A, Furusawa Y, Yunoki T, Kondo T, Tabuchi Y. A microRNA-27a mimic sensitizes human oral squamous cell carcinoma HSC-4 cells to hyperthermia through downregulation of Hsp110 and Hsp90. Int J Mol Med 2014; 34:334-40. [PMID: 24789751 DOI: 10.3892/ijmm.2014.1758] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/27/2014] [Indexed: 11/05/2022] Open
Abstract
Hyperthermia (HT) is an important modality in cancer treatment; however, the acquisition of thermal resistance in cancer cells due to the elevation of heat shock proteins (HSPs) makes HT less effective. Accumulating evidence suggests that microRNAs (miRNAs) play an important role in regulating cellular stress sensitivities, such as drug sensitivity and radio-sensitivity, in cancer cells. However, few studies have investigated the involvement of miRNAs in thermal sensitivity. The aim of this study was thus to investigate the contribution of miRNAs to the thermal sensitivity of human oral squamous cell carcinoma (OSCC) cells. When the HSC-2, HSC-3 and HSC-4 OSCC cell lines were treated with HT at 44˚C for 60 min, a significant increase in cell death was observed in HSC-2 and HSC-3 cells but not HSC-4 cells, suggesting that HSC-4 cells were thermally resistant under the present experimental conditions. Moreover, the expression levels of HSPs were most elevated in HSC-4 cells. When the basal expression levels of miRNAs were monitored using two different microarray systems in thermal-sensitive HSC-2 and HSC-3 cells and thermal-resistant HSC-4 cells, five miRNAs that were differentially expressed were identified. Among these miRNAs, the expression level of miR-27a in HSC-4 cells was markedly reducec compared to the expression levels in HSC-2 and HSC-3 cells. Interestingly, treatment of HSC-4 cells with a miR-27a mimic oligonucleotide significantly enhanced HT-induced cell death. Furthermore, the miR-27a mimic oligonucleotide suppressed the elevation of the expression of Hsp90 and Hsp110 in HSC-4 cells, suggesting that these HSPs may be involved in a mechanism of thermal resistance. From these findings, we concluded that in OSCC cells, miR-27a may contribute to thermal sensitivity by modulating the HSP expression.
Collapse
Affiliation(s)
- Ayako Kariya
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yukihiro Furusawa
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Tatsuya Yunoki
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
25
|
Grissom N, Bowman N, Reyes TM. Epigenetic programming of reward function in offspring: a role for maternal diet. Mamm Genome 2013; 25:41-8. [PMID: 24317506 DOI: 10.1007/s00335-013-9487-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/22/2013] [Indexed: 12/15/2022]
Abstract
Early life development, through gestation and lactation, represents a timeframe of extreme vulnerability for the developing fetus in general, and for the central nervous system in particular. An adverse perinatal environment can have a lasting negative impact on brain development, increasing the risk for developmental disorders and broader psychopathologies. A major determinant of the fetal developmental environment is maternal diet. The present review summarizes the current literature regarding the effect of poor maternal perinatal nutrition on offspring brain development, with an emphasis on reward-related neural systems and behaviors. Epigenetic mechanisms represent a likely link between maternal diet and persistent changes in offspring brain development, and these mechanisms are presented and discussed within the context of perinatal maternal nutrition.
Collapse
Affiliation(s)
- Nicola Grissom
- Department of Pharmacology, Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, 10-131 Smilow Center for Translational Research, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|