1
|
Disseminated Pulmonary Mycosis Caused by Candida tropicalis in an 11-Year-Old Male Patient with Chronic Granulomatous Disease. Case Rep Pediatr 2022; 2022:7089907. [PMID: 36193209 PMCID: PMC9526550 DOI: 10.1155/2022/7089907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Invasive fungal infection is a major threat to chronic granulomatous disease (CGD) patients. We present a rare case of invasive mycosis in a CGD boy. An 11-year-old preadolescent boy presented with fever, hypoxia, and dyspnea. Physical examination revealed left neck enlarged lymph nodes with healed scars. The chest revealed bilateral diminished air entry with bilateral coarse crackles. Peripheral blood leukocyte count was 28.260/μL with 84% neutrophil, 11% lymphocyte, and 4.4% monocyte. The patient's condition deteriorated regardless of the empirical antibacterial against MRSA and suspected tuberculosis. A sputum sample was submitted for mycological investigation, and budding yeasts with pseudohyphae were detected in the direct smear and were isolated in pure culture using Sabouraud agar. Candida tropicalis was identified from cultural and microscopic features and confirmed by the Vitek 2 automated system. This result confirmed the invasive mycosis, obviously due to the underlying primary immunodeficiency, chronic granulomatous disease (CGD). Amphotericin was added, and he also received IV methylprednisolone for seven days. The patient improved and was weaned off oxygen with no fever. However, the patient was referred to a higher center for further workup, which confirmed CGD's diagnosis. He is on the list for HLA-identical bone marrow transplantation (BMT).
Collapse
|
2
|
Mortaz E, Azempour E, Mansouri D, Tabarsi P, Ghazi M, Koenderman L, Roos D, Adcock IM. Common Infections and Target Organs Associated with Chronic Granulomatous Disease in Iran. Int Arch Allergy Immunol 2019; 179:62-73. [PMID: 30904913 DOI: 10.1159/000496181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/12/2018] [Indexed: 11/19/2022] Open
Abstract
Recurrent severe bacterial and fungal infections are characteristic features of the rare genetic immunodeficiency disorder chronic granulomatous disease (CGD). The disease usually manifests within the first years of life with an incidence of 1 in approximately 200,000 live births. The incidence is higher in Iran and Morocco where it reaches 1.5 per 100,000 live births. Mutations have been described in the 5 subunits of NADPH oxidase, mostly in gp91phox and p47phox, with fewer mutations reported in p67phox, p22phox, and p40phox. These mutations cause loss of superoxide production in phagocytic cells. CYBB, the gene encoding the large gp91phox subunit of the transmembrane component cytochrome b558 of the NADPH oxidase complex, is localized on the X-chromosome. Genetic defects in CYBB are responsible for the disease in the majority of male CGD patients. CGD is associated with the development of granulomatous reactions in the skin, lungs, bones, and lymph nodes, and chronic infections may be seen in the liver, gastrointestinal tract, brain, and eyes. There is usually a history of repeated infections, including inflammation of the lymph glands, skin infections, and pneumonia. There may also be a persistent runny nose, inflammation of the skin, and inflammation of the mucous membranes of the mouth. Gastrointestinal problems can also occur, including diarrhea, abdominal pain, and perianal abscesses. Infection of the bones, brain abscesses, obstruction of the genitourinary tract and/or gastrointestinal tract due to the formation of granulomatous tissue, and delayed growth are also symptomatic of CGD. The prevention of infectious complications in patients with CGD involves targeted prophylaxis against opportunistic microorganisms such as Staphylococcus aureus, Klebsiella spp., Salmonella spp. and Aspergillus spp. In this review, we provide an update on organ involvement and the association with specific isolated microorganisms in CGD patients.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Tuberculosis and Epidemiology Research Center, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Azempour
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Mansouri
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Ghazi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leo Koenderman
- Department of Respiratory Medicine and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dirk Roos
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, The Netherlands
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom, .,Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia,
| |
Collapse
|