1
|
Bonventre S, De Cesaris M, Bertoli M, Graziano F, Tomassini V, Brunetti M. Investigating social cognition in Multiple Sclerosis: Does Implicit Biological Motion processing affect visuo-spatial attention? Neuropsychologia 2025; 211:109131. [PMID: 40118370 DOI: 10.1016/j.neuropsychologia.2025.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
The perception of Biological Motion (BM) is critical for understanding social cues. A limited number of moving light dots resembling a moving individual, can suggest social intention information, providing an attentional orienting. This ability to predict other's intentions from BM cues refers to social cognition, an ability impaired in several neurological diseases. As in patients with Multiple Sclerosis (MS) an impairment in visuo-spatial attention and social cognition has been observed, we aim to investigate the possible differences in the visuo-spatial attention between MS patients and healthy individuals by using BM stimuli as cues. We tested 37 MS patients and 40 healthy controls (HC), who performed a modified central cue Posner task, using BM stimuli as cues that are not always predictive of the target location. They were represented by Point Light Walker (PLW) configuration, a series of dots arranged at the human joints and walking through the left or right of the screen, shown in the global (whole body) or local (two dots, indicating the feet of the PLW) configuration. MS patients exhibited overall slower responses compared to HC. In MS patients, a weaker advantage of valid trial over invalid ones was evident when cue had a local than global BM configuration. Also, MS patients showed a slower performance than HC in valid trials with local BM cues. The difference between groups was attenuated when the cue had a global BM configuration. These findings suggest possible impairment of local BM cue processing in MS patients, possibly due to delays or deficits in interpreting feet motion as biological information, reducing the cue's predictive power.
Collapse
Affiliation(s)
- Sofia Bonventre
- Institute for Advanced Biomedical Technologies (ITAB) and Department of Neurosciences, Imaging and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.
| | - Martina De Cesaris
- Institute for Advanced Biomedical Technologies (ITAB) and Department of Neurosciences, Imaging and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Massimo Bertoli
- Institute for Advanced Biomedical Technologies (ITAB) and Department of Neurosciences, Imaging and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Francesca Graziano
- Institute for Advanced Biomedical Technologies (ITAB) and Department of Neurosciences, Imaging and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Valentina Tomassini
- Institute for Advanced Biomedical Technologies (ITAB) and Department of Neurosciences, Imaging and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy; MS Centre, SS. Annunziata University Hospital, Chieti, Italy
| | - Marcella Brunetti
- Institute for Advanced Biomedical Technologies (ITAB) and Department of Neurosciences, Imaging and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
2
|
Stolowy N, Gutmann L, Lüpke M, David T, Dorr M, Mayer C, Heesen C, Oertel FC, Lin TY, Paul F, Zimmermann HG, Stellmann JP. OCT-Based Retina Assessment Reflects Visual Impairment in Multiple Sclerosis. Invest Ophthalmol Vis Sci 2025; 66:39. [PMID: 39946137 PMCID: PMC11827617 DOI: 10.1167/iovs.66.2.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Purpose To explore the relationship between visual performance and retinal morphology as assessed by optical coherence tomography (OCT), and the ability of OCT to reflect visual impairment in people with multiple sclerosis (PwMS) compared with healthy controls (HC). Methods We gathered data from two neurology referral centers on PwMS and HC. Neurological and ophthalmological assessments, including OCT, high-contrast visual acuity (HCVA) and low-contrast visual acuity (LCVA), area under the log contrast sensitivity function (AULCSF), and vision-related quality of life (National Eye Institute Visual Function Questionnaire), were conducted between 2018 and 2020, with follow-up at 1 year. Results A total of 137 PwMS (271 eyes) and 118 HC (236 eyes) were available for analysis. The peripapillary retinal nerve fiber layer (pRNFL) and the macular ganglion cell layer and inner plexiform layer volume (mGCIPL) volume were both reduced in PwMS (92 µm in PwMS vs 98 µm in HC [P < 0.001], 0.55 mm3 vs 0.62 mm3 [P < 0.001], respectively). A cutoff effect for visual impairment was observed in PwMS when pRNFL fell below 68.8 µm (HCVA), 71.4 µm (LCVA), and 72.6 µm (AULCSF). Using mixed effects models, the mGCIPL volume emerged as the variable most strongly associated with the AULCSF (P < 0.001). The AULCSF showed the strongest correlation with both pRNFL and mGCIPL (P < 0.001), with optic neuritis being a significant contributing factor (P < 0.001). Conclusions AULCSF outperformed standard HCVA and LCVA, closely reflecting retinal atrophy. mGCIPL loss showed stronger associations with vision tests and detected neurodegeneration without the cutoff effect seen in pRNFL, making it the best marker for neuronal atrophy.
Collapse
Affiliation(s)
- Natacha Stolowy
- APHM, Hopital de la Conception, Department of Ophthalmology, Marseille, France
- Aix Marseille University, CNRS, CRMBM, Marseille, France
| | - Lilija Gutmann
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Margareta Lüpke
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thierry David
- APHM, Hopital de la Conception, Department of Ophthalmology, Marseille, France
- Aix Marseille University, CNRS, Marseille, France
| | | | - Christina Mayer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederike Cosima Oertel
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ting-Yi Lin
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hanna Gwendolyn Zimmermann
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| | - Jan-Patrick Stellmann
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
| |
Collapse
|
3
|
Çakar MM, Baysal L, Garip R, Güldiken B. Microstructural Changes in Intraretinal Layers and Macular Structures of People with Epilepsy Measured Using Optical Coherence Tomography. Noro Psikiyatr Ars 2024; 67:202-207. [PMID: 39258133 PMCID: PMC11382560 DOI: 10.29399/npa.28410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/23/2023] [Indexed: 09/12/2024] Open
Abstract
Introduction Epilepsy is a network disorder that can cause alterations in retinal morphology due to microstructural changes in the brain. The aim of our study was to use spectral optical coherence tomography (OCT) to assess the possible effects of neuronal degeneration on the intraretinal layers and macular structures of people with epilepsy and epilepsy subgroups. Methods We enrolled 52 consecutive people with epilepsy (37 females, 15 males; mean age 29.8±9.9 years; range, 17-48 years) and 40 healthy volunteers (27 females, 13 males; mean age 33.3±10.2 years; range, 19-49 years) in this study. Both eyes of all participants were assessed by using spectral-domain OCT. Optical coherence tomography was used to assess the thickness of the peripapillary retinal nerve fiber layer (RNFL), ganglion cell layer-inner plexiform layer (GCC-IPL), central macula, and central macular volume. Results In comparison to healthy controls, people with epilepsy showed a thinner GCC-IPL in the superior and superior-nasal quadrants, as well as reduced macular thickness and macular volume (p<0.05). The thickness of the GCC-IPL layer in the superior and inferior subquadrants was negatively affected by frequent seizures (>5 seizures/year), polytherapy, and long-duration of epilepsy (≥10 years) (p<0.05). However, we did not find any other statistically significant associations between OCT measurements, age, sex, and epilepsy type (focal and generalized onset epilepsy). Conclusion Individuals with epilepsy exhibited microstructural alterations in the retinal layers, primarily in the superior and inferior quadrants. Frequent seizures, polytherapy, and long-duration of epilepsy may result in neuronal damage in the afferent visual system.
Collapse
Affiliation(s)
- Merve Melodi Çakar
- Trakya University Hospital, Department of Neurology, Edirne, Turkey
- Düzce Atatürk State Hospital, Department of Neurology, Düzce, Turkey
| | - Leyla Baysal
- Trakya University Hospital, Department of Neurology, Edirne, Turkey
- Ulm University, Department of Neurology, Ulm, Germany
| | - Rüveyde Garip
- Trakya University Hospital, Department of Ophthalmology, Edirne, Turkey
| | | |
Collapse
|
4
|
Alba-Arbalat S, Solana E, Lopez-Soley E, Camos-Carreras A, Martinez-Heras E, Vivó F, Pulido-Valdeolivas I, Andorra M, Sepulveda M, Cabrera JM, Fonseca E, Calvi A, Alcubierre R, Dotti-Boada M, Saiz A, Martinez-Lapiscina EH, Villoslada P, Blanco Y, Sanchez-Dalmau B, Llufriu S. Predictive value of retinal atrophy for cognitive decline across disease duration in multiple sclerosis. J Neurol Neurosurg Psychiatry 2024; 95:419-425. [PMID: 37989566 DOI: 10.1136/jnnp-2023-332332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND We investigated the association between changes in retinal thickness and cognition in people with MS (PwMS), exploring the predictive value of optical coherence tomography (OCT) markers of neuroaxonal damage for global cognitive decline at different periods of disease. METHOD We quantified the peripapillary retinal nerve fibre (pRFNL) and ganglion cell-inner plexiform (GCIPL) layers thicknesses of 207 PwMS and performed neuropsychological evaluations. The cohort was divided based on disease duration (≤5 years or >5 years). We studied associations between changes in OCT and cognition over time, and assessed the risk of cognitive decline of a pRFNL≤88 µm or GCIPL≤77 µm and its predictive value. RESULTS Changes in pRFNL and GCIPL thickness over 3.2 years were associated with evolution of cognitive scores, in the entire cohort and in patients with more than 5 years of disease (p<0.01). Changes in cognition were related to less use of disease-modifying drugs, but not OCT metrics in PwMS within 5 years of onset. A pRFNL≤88 µm was associated with earlier cognitive disability (3.7 vs 9.9 years) and higher risk of cognitive deterioration (HR=1.64, p=0.022). A GCIPL≤77 µm was not associated with a higher risk of cognitive decline, but a trend was observed at ≤91.5 µm in PwMS with longer disease (HR=1.81, p=0.061). CONCLUSIONS The progressive retinal thinning is related to cognitive decline, indicating that cognitive dysfunction is a late manifestation of accumulated neuroaxonal damage. Quantifying the pRFNL aids in identifying individuals at risk of cognitive dysfunction.
Collapse
Affiliation(s)
- Salut Alba-Arbalat
- Neuroimmunology and Multiple Sclerosis Unit, Hospital Clinic de Barcelona, Barcelona, Spain
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundacio Recerca Clinic Barcelona -IDIBAPS, Barcelona, Spain
| | - Elisabeth Solana
- Neuroimmunology and Multiple Sclerosis Unit, Hospital Clinic de Barcelona, Barcelona, Spain
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundacio Recerca Clinic Barcelona -IDIBAPS, Barcelona, Spain
| | - Elisabet Lopez-Soley
- Neuroimmunology and Multiple Sclerosis Unit, Hospital Clinic de Barcelona, Barcelona, Spain
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundacio Recerca Clinic Barcelona -IDIBAPS, Barcelona, Spain
| | | | - Eloy Martinez-Heras
- Neuroimmunology and Multiple Sclerosis Unit, Hospital Clinic de Barcelona, Barcelona, Spain
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundacio Recerca Clinic Barcelona -IDIBAPS, Barcelona, Spain
| | - Francesc Vivó
- Neuroimmunology and Multiple Sclerosis Unit, Hospital Clinic de Barcelona, Barcelona, Spain
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundacio Recerca Clinic Barcelona -IDIBAPS, Barcelona, Spain
| | - Irene Pulido-Valdeolivas
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundacio Recerca Clinic Barcelona -IDIBAPS, Barcelona, Spain
| | - Magi Andorra
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundacio Recerca Clinic Barcelona -IDIBAPS, Barcelona, Spain
| | - Maria Sepulveda
- Neuroimmunology and Multiple Sclerosis Unit, Hospital Clinic de Barcelona, Barcelona, Spain
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundacio Recerca Clinic Barcelona -IDIBAPS, Barcelona, Spain
| | - Jose María Cabrera
- Neuroimmunology and Multiple Sclerosis Unit, Hospital Clinic de Barcelona, Barcelona, Spain
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundacio Recerca Clinic Barcelona -IDIBAPS, Barcelona, Spain
| | - Elianet Fonseca
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundacio Recerca Clinic Barcelona -IDIBAPS, Barcelona, Spain
- Neurology Department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alberto Calvi
- Neuroimmunology and Multiple Sclerosis Unit, Hospital Clinic de Barcelona, Barcelona, Spain
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundacio Recerca Clinic Barcelona -IDIBAPS, Barcelona, Spain
| | - Rafel Alcubierre
- Ophthalmology Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Marina Dotti-Boada
- Ophthalmology Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Albert Saiz
- Neuroimmunology and Multiple Sclerosis Unit, Hospital Clinic de Barcelona, Barcelona, Spain
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundacio Recerca Clinic Barcelona -IDIBAPS, Barcelona, Spain
| | - Elena H Martinez-Lapiscina
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundacio Recerca Clinic Barcelona -IDIBAPS, Barcelona, Spain
| | - Pablo Villoslada
- Department of Neurosciences, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Yolanda Blanco
- Neuroimmunology and Multiple Sclerosis Unit, Hospital Clinic de Barcelona, Barcelona, Spain
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundacio Recerca Clinic Barcelona -IDIBAPS, Barcelona, Spain
| | | | - Sara Llufriu
- Neuroimmunology and Multiple Sclerosis Unit, Hospital Clinic de Barcelona, Barcelona, Spain
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundacio Recerca Clinic Barcelona -IDIBAPS, Barcelona, Spain
| |
Collapse
|
5
|
Filippatou AG, Calabresi PA, Saidha S, Murphy OC. Spotlight on Trans-Synaptic Degeneration in the Visual Pathway in Multiple Sclerosis. Eye Brain 2023; 15:153-160. [PMID: 38169913 PMCID: PMC10759909 DOI: 10.2147/eb.s389632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
A putative mechanism of neurodegeneration in multiple sclerosis (MS) is trans-synaptic degeneration (TSD), whereby injury to a neuron leads to degeneration of synaptically connected neurons. The visual system is commonly involved in MS and provides an ideal model to study TSD given its well-defined structure. TSD may occur in an anterograde direction (optic neuropathy causing degeneration in the posterior visual pathway including the optic radiations and occipital gray matter) and/or retrograde direction (posterior visual pathway lesions causing retinal degeneration). In the current review, we discuss evidence supporting the presence of anterograde and retrograde TSD in the visual system in MS.
Collapse
Affiliation(s)
- Angeliki G Filippatou
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Peter A Calabresi
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Shiv Saidha
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Olwen C Murphy
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Danesh-Meyer HV. An Eye on the Brain: Adding Insight to Injury. Am J Ophthalmol 2023; 255:A1-A3. [PMID: 37499892 DOI: 10.1016/j.ajo.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Affiliation(s)
- Helen V Danesh-Meyer
- The University of Auckland Faculty of Medical and Health Sciences, Auckland, New Zealand.
| |
Collapse
|
7
|
Cujba L, Stan C, Samoila O, Drugan T, Benedec Cutas A, Nicula C. Identifying Optical Coherence Tomography Markers for Multiple Sclerosis Diagnosis and Management. Diagnostics (Basel) 2023; 13:2077. [PMID: 37370972 DOI: 10.3390/diagnostics13122077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a common neurological disease affecting the optic nerve, directly or indirectly, through transsynaptic axonal degeneration along the visual pathway. New ophthalmological tools, arguably the most important being optical coherence tomography (OCT), could prove paramount in redefining MS diagnoses and shaping their follow-up protocols, even when the optic nerve is not involved. METHODS A prospective clinical study was conducted. In total, 158 eyes from patients previously diagnosed with relapsing remitting MS (RRMS)-with or without optic neuritis (ON), clinically isolated syndrome (CIS) with or without ON, and healthy controls were included. Each patient underwent an ophthalmologic exam and OCT evaluation for both eyes (a posterior pole analysis (PPA) and the optic nerve head radial circle protocol (ONH-RC)). RESULTS The macular retinal thickness (the 4 × 4, respectively, 2 × 2 grid) and thickness of the peripapillary retinal nerve fiber layer (pRNFL) were investigated. Various layers of the retina were also compared. Our study observed significant pRNFL thinning in the RRMS eyes compared to the control group, the pRNFL atrophy being more severe in the RRMS-ON eyes than the RRMS-NON eyes. In the ON group, the macular analysis showed statistically significant changes in the RRMS-ON eyes when compared only to the CIS-ON eyes, regarding decreases in the inner plexiform layer (IPL) thickness and inner nuclear layer (INL) on the central 2 × 2 macular grid. The neurodegenerative process affected both the inner retina and pRNFL, with clinical damage appearing for the latter in the following order: CIS-NON, CIS-ON, RRMS-NON, and RRMS-ON. In the presence of optic neuritis, SMRR patients presented an increase in their outer retina thickness compared to CIS patients. CONCLUSIONS To differentiate the MS patients from the CIS patients, in the absence of optic neuritis, OCT Posterior Pole Analysis could be a useful tool when using a central 2 × 2 sectors macular grid. Retinal changes in MS seem to start from the fovea and spread to the posterior pole. Finally, MS could lead to alterations in both the inner and outer retina, along with pRNFL.
Collapse
Affiliation(s)
- Larisa Cujba
- Medical Doctoral School, University of Oradea, 410087 Oradea, Romania
| | - Cristina Stan
- Department of Ophthalmology, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Ovidiu Samoila
- Department of Ophthalmology, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Tudor Drugan
- Department of Medical Informatics and Biostatistics, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ancuta Benedec Cutas
- Department of Medical Informatics and Biostatistics, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cristina Nicula
- Department of Ophthalmology, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Antal SI, Kincses B, Veréb D, Király A, Tóth E, Bozsik B, Faragó P, Szabó N, Kocsis K, Bencsik K, Klivényi P, Kincses ZT. Evaluation of transorbital sonography measures of optic nerve diameter in the context of global and regional brain volume in multiple sclerosis. Sci Rep 2023; 13:5578. [PMID: 37019969 PMCID: PMC10076391 DOI: 10.1038/s41598-023-31706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Transorbital sonography (TOS) could be a swift and convenient method to detect the atrophy of the optic nerve, possibly providing a marker that might reflect other quantitative structural markers of multiple sclerosis (MS). Here we evaluate the utility of TOS as a complementary tool for assessing optic nerve atrophy, and investigate how TOS-derived measures correspond to volumetric brain markers in MS. We recruited 25 healthy controls (HC) and 45 patients with relapsing-remitting MS and performed B-mode ultrasonographic examination of the optic nerve. Patients additionally underwent MRI scans to obtain T1-weighted, FLAIR and STIR images. Optic nerve diameters (OND) were compared between HC, MS patients with and without history of optic neuritis (non-ON) using a mixed-effects ANOVA model. The relationship between within-subject-average OND and global and regional brain volumetric measures was investigated using FSL SIENAX, voxel-based morphometry and FSL FIRST. OND was significantly different between HC-MS (HC = 3.2 ± 0.4 mm, MS = 3 ± 0.4 mm; p < 0.019) and we found significant correlation between average OND and normalised whole brain (β = 0.42, p < 0.005), grey matter (β = 0.33, p < 0.035), white matter (β = 0.38, p < 0.012) and ventricular cerebrospinal fluid volume (β = - 0.36, p < 0.021) in the MS group. History of ON had no impact on the association between OND and volumetric data. In conclusion, OND is a promising surrogate marker in MS, that can be simply and reliably measured using TOS, and its derived measures correspond to brain volumetric measures. It should be further explored in larger and longitudinal studies.
Collapse
Affiliation(s)
- Szabolcs István Antal
- Department of Radiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Bálint Kincses
- Department of Psychiatry, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Dániel Veréb
- Department of Radiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - András Király
- Department of Radiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Eszter Tóth
- Department of Radiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Bence Bozsik
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Péter Faragó
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Nikoletta Szabó
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Krisztián Kocsis
- Department of Radiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Krisztina Bencsik
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Zsigmond Tamás Kincses
- Department of Radiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.
| |
Collapse
|
9
|
Mountford S, Kahn M, Balakrishnan P, Jacyshyn-Owen E, Eberl M, Friedrich B, Joschko N, Ziemssen T. Correlation and differences of patient-reported outcomes vs. Likert-Rating of MS symptoms in a real-world cohort using a digital patient app. Digit Health 2023; 9:20552076231173520. [PMID: 37214657 PMCID: PMC10196529 DOI: 10.1177/20552076231173520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Background Multiple Sclerosis (MS) is a chronic and progressive neurological autoimmune disease currently affecting 250,000 individuals in Germany. Patients suffering from the disease can be severely impaired in their day-to-day activities. BRISA is a digital app specifically designed to help MS patients monitor their disease by regularly tracking symptoms. Lengthy and time-consuming questionnaires for patient-reported outcomes (PRO) are the standard method to assess the patients' current condition. Here, we examine whether simplified versions of these questionnaires can provide comparable information regarding individual symptom presentations in BRISA users. Methods 828 users were included in the analysis. Patients who provided onboarding information and answered at least one questionnaire and the corresponding simplified smiley symptoms assessment were included. Correlation of questionnaire and symptom scores was calculated using Pearson's correlation. Results Our analysis cohort predominantly consisted of female, 26-55-year-olds. Relapsing-remitting MS (RRMS) was the most common MS type recorded. Most patients were diagnosed 2-5 years ago. Questionnaires regarding fatigue and vision impairment were among the most answered, those regarding bowel movement and sexual satisfaction received fewest responses. Overall, the scores from questionnaires and symptoms correlated positively. Scoring correlation could also be shown across the subgroups divided by gender, age groups, type of MS, and time since diagnosis of the disease. Conclusion Scores recorded from traditional PRO questionnaires can be reflected more easily as a trend in a simplified scale using smileys. Nevertheless, traditional questionnaires are needed to also maintain a more objective assessment. In conclusion, the patient will benefit most from an adaptive combination of regular traditional PRO questionnaire assessments and simplified symptom recording.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tjalf Ziemssen
- Center of Clinical Neuroscience,
Department of Neurology, University Hospital Carl Gustav Carus, Dresden University
of Technology, Dresden, Germany
| |
Collapse
|
10
|
Miletic-Drakulic S, Miloradovic I, Jankovic V, Azanjac-Arsic A, Lazarevic S. VEP Score of a Left Eye Had Predictive Values for Achieving NEDA-3 over Ten Years in Patients with Multiple Sclerosis. SENSORS (BASEL, SWITZERLAND) 2022; 22:8849. [PMID: 36433445 PMCID: PMC9696926 DOI: 10.3390/s22228849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The aim of this study was to determine the predictive value of visual evoked potentials (VEPs) in patients with relapsing-remitting multiple sclerosis (RRMS) in achieving no evidence of disease activity-3 (NEDA-3) during up to 10 years of first-line immunomodulatory therapy and to determine whether the lateralization of optic nerve damage may have prognostic significance concerning clinical disability and response to therapy. METHODS In a retrospective study, a total of 83 patients (53 female and 30 male) with RRMS participated. The average age of patients was 38.31 ± 9.01. Patients were followed for 2, 5 or 10 years. VEPs were measured at the beginning of the follow-up and after many years of monitoring. Data on optical neuritis (ON) were obtained from medical history. The degree of disability was estimated by the neurologist (independent rater), and magnetic resonance (MR) imaging of the endocranium was performed with gadolinium contrasts. Achieving NEDA-3 is considered a favorable outcome of treatments. RESULTS Among those treated, 19 (22.9%) reached NEDA-3, while 64 (77.1%) did not reach NEDA-3. The values of the evoked potential (EP) score for the left eye (r = 0.008, odds ratio (OR) = 0.344 (0.156-0.757)) and latency for the left eye (r = 0.042, OR = 0.966 (0.934-0.999)) at the onset of disease were predictive factors for achieving NEDA-3. CONCLUSIONS A normal VEP at the beginning of RRMS increases the chance of reaching NEDA-3 by about six times.
Collapse
|
11
|
Schultheiss M, Wenzel DA, Spitzer MS, Poli S, Wilhelm H, Tonagel F, Kelbsch C. [Optical coherence tomography in the differential diagnostics of important neuro-ophthalmological disease patterns]. DIE OPHTHALMOLOGIE 2022; 119:973-986. [PMID: 35994098 DOI: 10.1007/s00347-022-01728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There are many disease patterns that are treated jointly by neurologists and ophthalmologists, for which optical coherence tomography (OCT) is of important differential diagnostic significance. In this context neurologists are mainly confronted by two patient collectives: patients with an acute ischemic event, who present with an acute but painless monocular visual deterioration (for central retinal artery occlusion) or with a monocular visual field defect (for arterial branch occlusion or anterior ischemic optic neuropathy). The second collective is patients without ophthalmological symptoms but with conspicuous optic nerve findings (papilledema or optic disc drusen). In this overview article both patient collectives are considered separately. In addition, the most important OCT findings for optic neuritis are presented. Before the disease patterns are described in detail, the normal OCT findings and the diagnostic possibilities of OCT are explained.
Collapse
Affiliation(s)
- Maximilian Schultheiss
- Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland.
| | - Daniel A Wenzel
- Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland.
- Universitäts-Augenklinik, Department für Augenheilkunde, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Straße 7, 72076, Tübingen, Deutschland.
| | - Martin S Spitzer
- Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland
| | - Sven Poli
- Neurologie mit Schwerpunkt neurovaskuläre Erkrankungen, Universitätsklinikum Tübingen, Tübingen, Deutschland
- Hertie-Institut für klinische Hirnforschung, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - Helmut Wilhelm
- Universitäts-Augenklinik, Department für Augenheilkunde, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Straße 7, 72076, Tübingen, Deutschland
| | - Felix Tonagel
- Universitäts-Augenklinik, Department für Augenheilkunde, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Straße 7, 72076, Tübingen, Deutschland
| | - Carina Kelbsch
- Universitäts-Augenklinik, Department für Augenheilkunde, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Straße 7, 72076, Tübingen, Deutschland
| |
Collapse
|
12
|
Drobnjak Nes D, Berg-Hansen P, de Rodez Benavent SA, Høgestøl EA, Beyer MK, Rinker DA, Veiby N, Karabeg M, Petrovski BÉ, Celius EG, Harbo HF, Petrovski G. Exploring Retinal Blood Vessel Diameters as Biomarkers in Multiple Sclerosis. J Clin Med 2022; 11:jcm11113109. [PMID: 35683496 PMCID: PMC9181486 DOI: 10.3390/jcm11113109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
We aimed to determine whether retinal vessel diameters and retinal oxygen saturation in newly diagnosed patients with multiple sclerosis (pwMS) are different from those of a healthy population. Retinal blood vessel diameters were measured using imaging with a spectrophotometric non-invasive retinal oximeter. Twenty-three newly diagnosed untreated relapsing-remitting MS (RRMS) patients (mean age: 32.2 ± 7.5 years, age range = 18-50 years, 56.5% female) were measured and compared to 23 age- and sex-matched healthy controls (HCs) (mean age: 34.8 ± 8.1 years). Patients with Optic Neuritis were excluded. Retinal venular diameter (143.8 µm versus 157.8 µm: mean; p = 0.0013) and retinal arteriolar diameter (112.6 µm versus 120.6 µm: mean; p = 0.0089) were smaller in pwMS when compared with HCs, respectively. There was no significant difference in the oxygen saturation in retinal venules and arterioles in pwMS (mean: 60.0% and 93.7%; p = 0.5980) compared to HCs (mean: 59.3% and 91.5%; p = 0.8934), respectively. There was a significant difference in the median low contrast visual acuity (2.5% contrast) between the pwMS and the HC groups (p = 0.0143) Retinal arteriolar and venular diameter may have potential as objective biomarkers for MS.
Collapse
Affiliation(s)
- Dragana Drobnjak Nes
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway; (D.D.N.); (S.A.d.R.B.); (N.V.); (M.K.)
| | - Pål Berg-Hansen
- Department of Neurology, Oslo University Hospital, 0372 Oslo, Norway; (P.B.-H.); (E.A.H.); (D.A.R.); (E.G.C.); (H.F.H.)
| | - Sigrid A. de Rodez Benavent
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway; (D.D.N.); (S.A.d.R.B.); (N.V.); (M.K.)
| | - Einar A. Høgestøl
- Department of Neurology, Oslo University Hospital, 0372 Oslo, Norway; (P.B.-H.); (E.A.H.); (D.A.R.); (E.G.C.); (H.F.H.)
- Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Mona K. Beyer
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (M.K.B.); (B.É.P.)
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0379 Oslo, Norway
| | - Daniel A. Rinker
- Department of Neurology, Oslo University Hospital, 0372 Oslo, Norway; (P.B.-H.); (E.A.H.); (D.A.R.); (E.G.C.); (H.F.H.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (M.K.B.); (B.É.P.)
| | - Nina Veiby
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway; (D.D.N.); (S.A.d.R.B.); (N.V.); (M.K.)
| | - Mia Karabeg
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway; (D.D.N.); (S.A.d.R.B.); (N.V.); (M.K.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (M.K.B.); (B.É.P.)
| | - Beáta Éva Petrovski
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (M.K.B.); (B.É.P.)
| | - Elisabeth G. Celius
- Department of Neurology, Oslo University Hospital, 0372 Oslo, Norway; (P.B.-H.); (E.A.H.); (D.A.R.); (E.G.C.); (H.F.H.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (M.K.B.); (B.É.P.)
| | - Hanne F. Harbo
- Department of Neurology, Oslo University Hospital, 0372 Oslo, Norway; (P.B.-H.); (E.A.H.); (D.A.R.); (E.G.C.); (H.F.H.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (M.K.B.); (B.É.P.)
| | - Goran Petrovski
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway; (D.D.N.); (S.A.d.R.B.); (N.V.); (M.K.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (M.K.B.); (B.É.P.)
- Correspondence:
| |
Collapse
|
13
|
[Optical coherence tomography in the differential diagnostics of important neuro-ophthalmological disease patterns]. DER NERVENARZT 2022; 93:629-642. [PMID: 35612648 DOI: 10.1007/s00115-022-01302-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
There are many disease patterns that are treated jointly by neurologists and ophthalmologists, for which optical coherence tomography (OCT) is of important differential diagnostic significance. In this context neurologists are mainly confronted by two patient collectives: patients with an acute ischemic event, who present with an acute but painless monocular visual deterioration (for central retinal artery occlusion) or with a monocular visual field defect (for arterial branch occlusion or anterior ischemic optic neuropathy). The second collective is patients without ophthalmological symptoms but with conspicuous optic nerve findings (papilledema or optic disc drusen). In this overview article both patient collectives are considered separately. In addition, the most important OCT findings for optic neuritis are presented. Before the disease patterns are described in detail, the normal OCT findings and the diagnostic possibilities of OCT are explained.
Collapse
|
14
|
Hanson JVM, Ng MY, Hayward-Koennecke HK, Schippling S, Reeve KA, Gerth-Kahlert C. A three-year longitudinal study of retinal function and structure in patients with multiple sclerosis. Doc Ophthalmol 2022; 144:3-16. [PMID: 34705132 PMCID: PMC8882570 DOI: 10.1007/s10633-021-09855-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Researchers have in recent years begun to investigate ophthalmological manifestations of multiple sclerosis (MS) other than optic neuritis (ON), and it is now clear that changes to retinal function (measured using the electroretinogram, ERG) and structure (measured using optical coherence tomography, OCT) are found in MS patients irrespective of prior ON episodes. ERG results are consistent with dysfunctional bipolar cells, as in other autoimmune diseases. To date, studies have presented only cross-sectional data regarding ERG and OCT. We, therefore, studied the longitudinal course of ERG and OCT in patients with MS, as well as the effect of disability changes and non-ON clinical relapses on these functional and structural measures. METHODS MS patients (n = 23) participating in an ongoing longitudinal observational study were invited to take part in a 3-year ophthalmological substudy. ERG and OCT were performed, and measures of MS-related disability and relapse history were obtained. Study visits were repeated annually. ERG peak times, rod b-wave amplitude, mixed rod/cone and cone b-/a-wave amplitude ratios, thickness of the peripapillary retinal nerve fibre layer, and volumes of the segmented retinal layers/complexes were analysed. Using generalised estimating equation models adjusted for age, ON, and MS treatment status, we assessed changes to ERG and OCT over the study duration, the effect of changes in disability and recent non-ON MS relapses on ERG and OCT, and the effect of selected OCT parameters on corresponding ERG parameters. RESULTS At the group level, small fluctuations of several ERG peak times were recorded, with OCT values remaining stable. Increased disability between visits was associated with significant prolongation of mixed rod-cone ERG b-wave peak times. No evidence of associations between OCT and ERG parameters was observed. CONCLUSIONS Retinal bipolar cell function may be affected by changes in disability in patients with MS; however, recent non-ON MS clinical relapses appear not to affect ERG or OCT results. As ERG changes in MS patients over 3 years are likely to be small and of uncertain clinical relevance, longitudinal studies of retinal function in MS should be planned over an extended period.
Collapse
Affiliation(s)
- James V. M. Hanson
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 24, 8091 Zurich, Switzerland
| | - Mei-Yee Ng
- Masters Program in Biostatistics, University of Zurich, Hirschengraben 84, 8001 Zurich, Switzerland
| | - Helen K. Hayward-Koennecke
- Clinic for Neurology, Neuroimmunology and Multiple Sclerosis Research, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Sven Schippling
- Multimodal Imaging in Neuroimmunological Diseases (MINDS), University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Kelly A. Reeve
- Institute for Epidemiology, Biostatistics, and Prevention, Department of Biostatistics, University of Zurich, Hirschengraben 84, 8001 Zurich, Switzerland
| | - Christina Gerth-Kahlert
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 24, 8091 Zurich, Switzerland
| |
Collapse
|
15
|
Erythropoietin and optic neuritis in the TONE study. Lancet Neurol 2021; 20:970-971. [PMID: 34800402 DOI: 10.1016/s1474-4422(21)00378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022]
|
16
|
Siger M, Owidzka M, Świderek-Matysiak M, Omulecki W, Stasiołek M. Optical Coherence Tomography in the Differential Diagnosis of Patients with Multiple Sclerosis and Patients with MRI Nonspecific White Matter Lesions. SENSORS 2021; 21:s21217127. [PMID: 34770434 PMCID: PMC8588219 DOI: 10.3390/s21217127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
In the differential diagnosis of nonspecific white matter lesions (NSWMLs) detected on magnetic resonance imaging (MRI), multiple sclerosis (MS) should be taken into consideration. Optical coherence tomography (OCT) is a promising tool applied in the differential diagnostic process of MS. We tested whether OCT may be useful in distinguishing between MS and NSWMLs patients. In patients with MS (n = 41) and NSWMLs (n = 19), the following OCT parameters were measured: thickness of the peripapillary Retinal Nerve Fibre Layer (pRNFL) in superior, inferior, nasal, and temporal segments; thickness of the ganglion cell-inner plexiform layer (GCIPL); thickness of macular RNFL (mRNFL); and macular volume (MV). In MS patients, GCIPL was significantly lower than in NSWMLs patients (p = 0.024). Additionally, in MS patients, mRNFL was significantly lower than in NSWMLs patients (p = 0.030). The average segmental pRNFL and MV did not differ between MS and NSWMLs patients (p > 0.05). GCIPL and macular RNFL thinning significantly influenced the risk of MS (18.6% [95% CI 2.7%, 25.3%]; 27.4% [95% CI 4.5%, 62.3%]), and reduced GCIPL thickness appeared to be the best predictor of MS. We conclude that OCT may be helpful in the differential diagnosis of MS and NSWMLs patients in real-world settings.
Collapse
Affiliation(s)
- Małgorzata Siger
- Department of Neurology, Medical University of Lodz, 90-419 Lodz, Poland; (M.Ś.-M.); (M.S.)
- Correspondence:
| | - Marta Owidzka
- Department of Eye Disease, Medical University of Lodz, 90-419 Lodz, Poland; (M.O.); (W.O.)
| | | | - Wojciech Omulecki
- Department of Eye Disease, Medical University of Lodz, 90-419 Lodz, Poland; (M.O.); (W.O.)
| | - Mariusz Stasiołek
- Department of Neurology, Medical University of Lodz, 90-419 Lodz, Poland; (M.Ś.-M.); (M.S.)
| |
Collapse
|
17
|
Phuljhele S, Kedar S, Saxena R. Approach to optic neuritis: An update. Indian J Ophthalmol 2021; 69:2266-2276. [PMID: 34427197 PMCID: PMC8544067 DOI: 10.4103/ijo.ijo_3415_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022] Open
Abstract
Over the past few years, there has been remarkable development in the area of optic neuritis. The discovery of new antibodies has improved our understanding of the pathology of the disease. Antiaquaporin4 antibodies and antimyelin oligodendrocytes antibodies are now considered as distinct entities of optic neuritis with their specific clinical presentation, neuroimaging characteristics, treatment options, and course of the disease. Similarly, there has been a substantial change in the treatment of optic neuritis which was earlier limited to steroids and interferons. The development of new immunosuppressant drugs and monoclonal antibodies has reduced the relapses and improved the prognosis of optic neuritis as well as an associated systemic disease. This review article tends to provide an update on the approach and management of optic neuritis.
Collapse
Affiliation(s)
- Swati Phuljhele
- Neuro-ophthalmology and Strabismus Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sachin Kedar
- Department of Ophthalmology, Emory University School of Medicine, USA
| | - Rohit Saxena
- Neuro-ophthalmology and Strabismus Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
18
|
Evaluation of Retinal Structure and Optic Nerve Function Changes in Multiple Sclerosis: Longitudinal Study with 1-Year Follow-Up. Neurol Res Int 2021; 2021:5573839. [PMID: 34221503 PMCID: PMC8225456 DOI: 10.1155/2021/5573839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022] Open
Abstract
Background Multiple sclerosis (MS) is an autoimmune disease characterized by inflammation and demyelination of the central nervous system which often involves the optic nerve even though only 20% of the patients experience optic neuritis (ON). Objective This study aims to compare the retinal structure and optic nerve function between patients with MS and healthy controls (HCs), evaluate optic nerve alterations in MS over 1-year follow-up, and analyze its correlations with disease duration, number of relapses, degree of disability, and different subtypes. Methods This is a prospective cohort study involving 58 eyes of MS patients. Optic nerve function was evaluated with best-corrected visual acuity (BCVA), contrast sensitivity, and P100 latency, while the retinal structure was evaluated from the GCIPL and RNFL thickness measured with optical coherence tomography (OCT) and fundus photography. Results The MS group had lower BCVA (p=0.001), contrast sensitivity (p < 0.001), mean GCIPL thickness (p < 0.001), and mean RNFL thickness (p < 0.001) than HC. At 6 and 12 months of observations, GCIPL and RNFL (nasal quadrant) of MS patients decreased significantly (p=0.007 and p=0.004, respectively). Disease duration and the number of relapses correlated with delayed P100 latency (r = −0.61, p < 0.001 and r = −0.46, p=0.02). GCIPL and RNFL in the SPMS subtype were thinner than in RRMS. Conclusions The retinal structure and optic nerve function of MS patients are worse than those of normal individuals. GCIPL and RNFL thinning occurs at 6 and 12 months but do not correlate with disease duration, the number of relapses, and degree of disability.
Collapse
|
19
|
Multimodal Evoked Potentials as Candidate Prognostic and Response Biomarkers in Clinical Trials of Multiple Sclerosis. J Clin Neurophysiol 2021; 38:171-180. [PMID: 33958567 DOI: 10.1097/wnp.0000000000000723] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SUMMARY Evoked potentials (EPs) measure quantitatively and objectively the alterations of central signal propagation in multiple sclerosis and have long been used for diagnosis. More recently, their utility for prognosis has been demonstrated in several studies, summarizing multiple EP modalities in a single score. In particular, visual, somatosensory, and motor EPs are useful because of their sensitivity to pathology in the frequently affected optic nerve, somatosensory tract, and pyramidal system. Quantitative EP scores show higher sensitivity to change than clinical assessment and may be used to monitor disease progression. Visual EP and the visual system have served as a model to study remyelinating therapies in the setting of acute and chronic optic neuritis. This review presents rationale and evidence for using multimodal EP as prognostic and response biomarkers in clinical trials, targeting remyelination or halting disease progression in multiple sclerosis.
Collapse
|
20
|
Trans-synaptic degeneration in the visual pathway: Neural connectivity, pathophysiology, and clinical implications in neurodegenerative disorders. Surv Ophthalmol 2021; 67:411-426. [PMID: 34146577 DOI: 10.1016/j.survophthal.2021.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
There is a strong interrelationship between eye and brain diseases. It has been shown that neurodegenerative changes can spread bidirectionally in the visual pathway along neuronal projections. For example, damage to retinal ganglion cells in the retina leads to degeneration of the visual cortex (anterograde degeneration) and vice versa (retrograde degeneration). The underlying mechanisms of this process, known as trans-synaptic degeneration (TSD), are unknown, but TSD contributes to the progression of numerous neurodegenerative disorders, leading to clinical and functional deterioration. The hierarchical structure of the visual system comprises of a strong topographic connectivity between the retina and the visual cortex and therefore serves as an ideal model to study the cellular effect, clinical manifestations, and deterioration extent of TSD. With this review we provide comprehensive information about the neural connectivity, synapse function, molecular changes, and pathophysiology of TSD in visual pathways. We then discuss its bidirectional nature and clinical implications in neurodegenerative diseases. A thorough understanding of TSD in the visual pathway can provide insights into progression of neurodegenerative disorders and its potential as a therapeutic target.
Collapse
|
21
|
Non-standard computer perimetry in the diagnosis of some optic neuropathies. OPHTHALMOLOGY JOURNAL 2021. [DOI: 10.17816/ov60059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Modern computer perimetry is divided into traditional white stimulus-on-white background, the gold standard of which is perimetry performed by using expert class perimeters Humphrey and Octopus and therefore called standard automatic or automated perimetry (SAP), and non-traditional or non-standard perimetry, which differs, first of all, in a different nature of a stimulus. The article is a review devoted to the assessment of the diagnostic capabilities of non-standard computer perimetry in the form of different variants of perimetry with doubling the spatial frequency (Frequency Doubling Technology Perimetry or FDT perimetry), which is performed by using perimeters of the 1st (Carl Zeiss Humphrey 710 Visual Field / FDT, 1997) and the 2nd (Carl Zeiss Humphrey Matrix / HM 715, 800 Visual Field Analyzer, 2005, 2010) generation. Most authors consider that FDT perimetry is effective in a glaucoma screening and, possibly, in monitoring a glaucomatous process, but only a few authors consider that non-standard perimetry method can be useful in diagnosing optic neuropathies of a different nature.
Collapse
|
22
|
Lee GI, Park KA, Oh SY, Kong DS, Hong SD. Inner and outer retinal layer thickness alterations in pediatric and juvenile craniopharyngioma. Sci Rep 2021; 11:2840. [PMID: 33531536 PMCID: PMC7854727 DOI: 10.1038/s41598-021-82107-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/14/2021] [Indexed: 11/15/2022] Open
Abstract
We evaluated postoperative retinal thickness in pediatric and juvenile craniopharyngioma (CP) patients with chiasmal compression using optical coherence tomography (OCT) auto-segmentation. We included 18 eyes of 18 pediatric or juvenile patients with CP and 20 healthy controls. Each thickness of the macular retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer, outer plexiform layer, outer nuclear layer, and photoreceptor layer was compared between the CP patients and healthy controls. There was significant thinning in the macular RNFL (estimates [μm], superior, − 10.68; inferior, − 7.24; nasal, − 14.22), all quadrants of GCL (superior, − 16.53; inferior, − 14.37; nasal, − 24.34; temporal, − 9.91) and IPL (superior, − 11.45; inferior, − 9.76; nasal, − 15.25; temporal, − 4.97) in pediatric and juvenile CP patients postoperatively compared to healthy control eyes after adjusting for age and refractive errors. Thickness reduction in the average and nasal quadrant of RNFL, GCL, and IPL was associated with peripapillary RNFL thickness, and reduced nasal quadrant GCL and IPL thicknesses were associated with postoperative visual field defects. In pediatric and juvenile patients with CP, decreased inner retinal layer thickness following chiasmal compression was observed. The changes in retinal structures were closely related to peripapillary RNFL thinning and functional outcomes.
Collapse
Affiliation(s)
- Ga-In Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Kyung-Ah Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Sei Yeul Oh
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| | - Doo-Sik Kong
- Department of Neurosurgery, Endoscopic Skull Base Surgery Clinic, Brain Tumor Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Duk Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
23
|
Miguel JM, Roldán M, Pérez-Rico C, Ortiz M, Boquete L, Blanco R. Using advanced analysis of multifocal visual-evoked potentials to evaluate the risk of clinical progression in patients with radiologically isolated syndrome. Sci Rep 2021; 11:2036. [PMID: 33479457 PMCID: PMC7820316 DOI: 10.1038/s41598-021-81826-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/12/2021] [Indexed: 11/09/2022] Open
Abstract
This study aimed to assess the role of multifocal visual-evoked potentials (mfVEPs) as a guiding factor for clinical conversion of radiologically isolated syndrome (RIS). We longitudinally followed a cohort of 15 patients diagnosed with RIS. All subjects underwent thorough ophthalmological, neurological and imaging examinations. The mfVEP signals were analysed to obtain features in the time domain (SNRmin: amplitude, Latmax: monocular latency) and in the continuous wavelet transform (CWT) domain (bmax: instant in which the CWT function maximum appears, Nmax: number of CWT function maximums). The best features were used as inputs to a RUSBoost boosting-based sampling algorithm to improve the mfVEP diagnostic performance. Five of the 15 patients developed an objective clinical symptom consistent with an inflammatory demyelinating central nervous system syndrome during follow-up (mean time: 13.40 months). The (SNRmin) variable decreased significantly in the group that converted (2.74 ± 0.92 vs. 4.07 ± 0.95, p = 0.01). Similarly, the (bmax) feature increased significantly in RIS patients who converted (169.44 ± 24.81 vs. 139.03 ± 11.95 (ms), p = 0.02). The area under the curve analysis produced SNRmin and bmax values of 0.92 and 0.88, respectively. These results provide a set of new mfVEP features that can be potentially useful for predicting prognosis in RIS patients.
Collapse
Affiliation(s)
- J M Miguel
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - M Roldán
- Department of Ophthalmology, Príncipe de Asturias University Hospital, Madrid, Spain
| | - C Pérez-Rico
- Department of Ophthalmology, Príncipe de Asturias University Hospital, Madrid, Spain.,Department of Surgery, Medical and Social Sciences, University of Alcalá, Carretera Alcalá-Meco S/N, 28805, Alcalá de Henares, Madrid, Spain
| | - M Ortiz
- School of Physics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - L Boquete
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - R Blanco
- Department of Surgery, Medical and Social Sciences, University of Alcalá, Carretera Alcalá-Meco S/N, 28805, Alcalá de Henares, Madrid, Spain. .,Ramón Y Cajal Health Research Institute (IRYCIS), 28034, Madrid, Spain.
| |
Collapse
|
24
|
Lo C, Vuong LN, Micieli JA. Recent advances and future directions on the use of optical coherence tomography in neuro-ophthalmology. Taiwan J Ophthalmol 2021; 11:3-15. [PMID: 33767951 PMCID: PMC7971436 DOI: 10.4103/tjo.tjo_76_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
Optical coherence tomography (OCT) is a noninvasive imaging technique used to qualitatively and quantitatively analyze various layers of the retina. OCT of the retinal nerve fiber layer (RNFL) and ganglion cell-inner plexiform layer (GCIPL) is particularly useful in neuro-ophthalmology for the evaluation of patients with optic neuropathies and retrochiasmal visual pathway disorders. OCT allows for an objective quantification of edema and atrophy of the RNFL and GCIPL, which may be evident before obvious clinical signs and visual dysfunction develop. Enhanced depth imaging OCT allows for visualization of deep structures of the optic nerve and has emerged as the gold standard for the detection of optic disc drusen. In the evaluation of compressive optic neuropathies, OCT RNFL and GCIPL thicknesses have been established as the most important visual prognostic factor. There is increasing evidence that inclusion of OCT as part of the diagnostic criteria for multiple sclerosis (MS) increases its sensitivity. Moreover, OCT of the RNFL and GCIPL may be helpful in the early detection and monitoring the treatment of conditions such as MS and Alzheimer's disease. OCT is an important aspect of the neuro-ophthalmologic assessment and its use is likely to increase moving forward.
Collapse
Affiliation(s)
- Cody Lo
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Laurel N. Vuong
- The New England Eye Center, Tufts Medical Center, Boston, MA, USA
| | - Jonathan A. Micieli
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Abstract
PURPOSE Woodhouse-Sakati syndrome is a rare autosomal recessive syndrome caused by homozygous mutations in the DCAF17 gene, characterized by marked neurologic and endocrine manifestations in the setting of brain iron accumulation and white matter lesions on neuroimaging. Here, we report electrophysiologic profiles in Woodhouse-Sakati syndrome and their possible value in understanding disease pathophysiology and phenotypic variability. METHODS Thirteen genetically confirmed Woodhouse-Sakati syndrome patients were evaluated via different evoked potential (EP) modalities, including brainstem auditory EPs, pattern reversal visual EPs, and somatosensory EPs to tibial and/or median nerves. RESULTS All EP modalities showed variable abnormalities. Pattern reversal visual EPs were recorded in all patients, with nine patients exhibiting abnormal results. From those, seven patients showed prolonged P100 latencies after stimulation of right and left eyes for each in turn. Two patients showed P100 latency abnormality after single eye stimulation recorded from midoccipital electrode. Median somatosensory EPs were recorded in 10 patients, with 6 patients having a prolonged cortical N19 response. Tibial somatosensory EP was performed for 11 patients, and 8 patients showed abnormal results where P37 cortical response was absent or prolonged, whereas peripheral potentials at the popliteal fossa were normal. Brainstem auditory EPs were abnormal only in two patients, with prolonged wave III and V latencies. Five patients with hearing impairment presented with normal brainstem auditory EP results. CONCLUSIONS Multiple EP abnormalities are observed in Woodhouse-Sakati syndrome patients, mainly in pattern reversal visual EPs and somatosensory EPs. These findings indicate potential myelin dysfunction that has a role in the underlying pathophysiology, disease course, and phenotypic variability.
Collapse
|
26
|
Marenna S, Huang SC, Castoldi V, d’Isa R, Costa GD, Comi G, Leocani L. Functional evolution of visual involvement in experimental autoimmune encephalomyelitis. Mult Scler J Exp Transl Clin 2020; 6:2055217320963474. [PMID: 35145730 PMCID: PMC8822451 DOI: 10.1177/2055217320963474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/12/2020] [Indexed: 12/21/2022] Open
Abstract
Background Experimental autoimmune encephalomyelitis (EAE) is a common animal model of multiple sclerosis (MS). C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein exhibit chronic disease course, together with optic neuritis, consisting of demyelination/axonal loss of the optic nerve. Objectives To characterize functional and structural visual damages in two different phases of EAE: pre- and post-motor onset. Methods Visual alterations were detected with Visual Evoked Potential (VEP), Electroretinogram (ERG) and Optical Coherence Tomography (OCT). Optic nerve histology was performed at 7 (pre-motor onset) or 37 (post-motor onset) days post-immunization (dpi). Results At 7 dpi, optic nerve inflammation was similar in EAE eyes with and without VEP latency delay. Demyelination was detected in EAE eyes with latency delay (p < 0.0001), while axonal loss (p < 0.0001) and ERG b-wave amplitude (p = 0.004) were decreased in EAE eyes without latency delay compared to Healthy controls. At 37 dpi, functional and structural optic nerve damage were comparable between EAE groups, while a decrease of ERG amplitude and NGCC thickness were found in EAE eyes with VEP latency delay detected post-motor onset. Conclusions Thanks to non-invasive methods, we studied the visual system in a MS model, which could be useful for developing specific therapeutic strategies to target different disease phases.
Collapse
Affiliation(s)
- Silvia Marenna
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy
| | - Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy
| | - Raffaele d’Isa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy
| | - Gloria Dalla Costa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy
| | - Giancarlo Comi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
27
|
Lee GI, Son KY, Park KA, Kong DS, Oh SY. Longitudinal Changes in the Retinal Microstructures of Eyes With Chiasmal Compression. Neurology 2020; 96:e131-e140. [PMID: 33093228 DOI: 10.1212/wnl.0000000000011087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To test the hypothesis that there was a temporal change in the retinal microstructure after decompression surgery for chiasmal compression, the 1-year longitudinal changes in the inner and outer retinal thickness after decompression surgery were analyzed using spectral-domain optical coherence tomography (SD-OCT) with linear mixed-effects models. METHODS SD-OCT was obtained from 87 eyes with chiasmal compression and compared to 100 healthy controls. The preoperative and 1-year postoperative longitudinal changes in the retinal layer thickness were measured. The thickness of each of the following retinal layers was analyzed: the macular retinal nerve fiber layer (RNFL), the ganglion cell layer (GCL), the inner plexiform layer (IPL), the inner nuclear layer, the outer plexiform layer, the outer nuclear layer, and the photoreceptor layer. RESULTS The RNFL, GCL, and IPL showed thinning at a rate of 1.068 μm/y (95% confidence interval [CI], 0.523, 1.613), 1.189 μm/y (95% CI 0.452, 1.925), and 1.177 μm/y (95% CI 0.645, 1.709), respectively, after decompression surgery. The preoperative thickness of the intraretinal layer was associated with postoperative visual field recovery (RNFL, odds ratio [OR] 1.221, 95% CI 1.058, 1.410; GCL, OR 1.133, 95% CI 1.024, 1.254; and IPL, OR 1.174, 95% CI 1.002, 1.376). CONCLUSIONS The changes in retinal microstructure persisted and progressed in eyes with chiasmal compression after decompression surgery. The findings provide insight into the biological and anatomical sequelae following chiasmal compression. The preoperative thickness of the inner retinal layers was associated with postoperative visual field recovery.
Collapse
Affiliation(s)
- Ga-In Lee
- From the Department of Ophthalmology (G.-I.L., K.Y.S., K.-A.P., S.Y.O.) and Department of Neurosurgery, Endoscopic Skull Base Surgery Clinic, Brain Tumor Center (D.-S.K.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki Young Son
- From the Department of Ophthalmology (G.-I.L., K.Y.S., K.-A.P., S.Y.O.) and Department of Neurosurgery, Endoscopic Skull Base Surgery Clinic, Brain Tumor Center (D.-S.K.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung-Ah Park
- From the Department of Ophthalmology (G.-I.L., K.Y.S., K.-A.P., S.Y.O.) and Department of Neurosurgery, Endoscopic Skull Base Surgery Clinic, Brain Tumor Center (D.-S.K.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Doo-Sik Kong
- From the Department of Ophthalmology (G.-I.L., K.Y.S., K.-A.P., S.Y.O.) and Department of Neurosurgery, Endoscopic Skull Base Surgery Clinic, Brain Tumor Center (D.-S.K.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sei Yeul Oh
- From the Department of Ophthalmology (G.-I.L., K.Y.S., K.-A.P., S.Y.O.) and Department of Neurosurgery, Endoscopic Skull Base Surgery Clinic, Brain Tumor Center (D.-S.K.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
28
|
Evidence of retinal anterograde neurodegeneration in the very early stages of multiple sclerosis: a longitudinal OCT study. Neurol Sci 2020; 41:3175-3183. [DOI: 10.1007/s10072-020-04431-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
|
29
|
Carcelén-Gadea M, Quintanilla-Bordás C, Gracia-García A, García-Villanueva C, Jannone-Pedro N, Álvarez-Sánchez L, Vilaplana-Domínguez L, Blanco-Hernández T, Pons-Amate JM, Cervelló-Donderis A. Functional and structural changes in the visual pathway in multiple sclerosis. Brain Behav 2019; 9:e01467. [PMID: 31733096 PMCID: PMC6908881 DOI: 10.1002/brb3.1467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/15/2019] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is a heterogeneous disease with an unpredictable course. Visual pathway is a target of the disease and may reflect mechanisms that lead to disability. Structural and functional changes in the visual pathway may be studied by noninvasive techniques such as optical coherence tomography (OCT), visual evoked potentials (VEP), or B-mode transorbital sonography (TOS). OBJECTIVES The aim is to assess changes in the visual pathway in eyes of MS patients with and without a history of optic neuritis over a 3-year period and to explore their relationship with disability. MATERIALS AND METHODS In total, 112 eyes from 56 patients with relapsing MS were recruited: 29 with, and 83 without a history of ON (hON and nhON, respectively). Several parameters were measured by OCT, VEP, and TOS. Baseline measurements were also compared to 29 healthy controls. At 36 months, measurements were repeated in all eyes. RESULTS At baseline, all tests showed significant differences in optic nerve structure and function in both patient cohorts in all the parameters studied, suggestive of more impairment of the visual pathway among the hON cohort. OCT showed significant differences between healthy controls and the nhON cohort. At 36 months, the nhON cohort showed significant changes by OCT, VEP, and TOS suggestive of further visual pathway impairment. OCT measurements also correlated with baseline EDSS among the nhON cohort. CONCLUSIONS OCT is the most suitable technique and outperforms VEP and TOS to detect subclinical damage in the visual pathway. It discriminated MS patients from healthy controls and showed a progressive decline in optic nerve thickness over time among these patients.
Collapse
Affiliation(s)
- María Carcelén-Gadea
- Department of Neurology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | | | - Alicia Gracia-García
- Department of Ophthalmology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | | | - Nicolás Jannone-Pedro
- Department of Neurology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Lourdes Álvarez-Sánchez
- Department of Neurology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | | | - Trinidad Blanco-Hernández
- Department of Clinical Neurophysiology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - José Miguel Pons-Amate
- Department of Neurology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | | |
Collapse
|
30
|
Manogaran P, Samardzija M, Schad AN, Wicki CA, Walker-Egger C, Rudin M, Grimm C, Schippling S. Retinal pathology in experimental optic neuritis is characterized by retrograde degeneration and gliosis. Acta Neuropathol Commun 2019; 7:116. [PMID: 31315675 PMCID: PMC6637505 DOI: 10.1186/s40478-019-0768-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022] Open
Abstract
The exact mechanisms and temporal sequence of neurodegeneration in multiple sclerosis are still unresolved. The visual pathway including its unmyelinated retinal axons, can serve as a prototypic model of neurodegeneration in experimental optic neuritis. We conducted a longitudinal study combining retinal imaging through optical coherence tomography (OCT) with immunohistochemical analyses of retinal and optic nerve tissue at various time points in experimental autoimmune encephalomyelitis (EAE).Inner retinal layer (IRL) thickness was measured in 30 EAE and 14 healthy control C57BL/6 J mice using OCT. Distribution of marker proteins was assessed by immunofluorescence staining and retinal mRNA levels were assayed using real-time PCR. Histological morphology was evaluated on light and electron microscopy images.Signs of inflammatory edema 11 days post immunisation coincided with IRL thickening, while neuro-axonal degeneration throughout the disease course contributed to IRL thinning observed after 20 days post immunisation. Retinal pathology, including axonal transport impairment, was observed early, prior to cellular infiltration (i.e. T-cells) in the optic nerve 11 days post immunisation. Yet, the effects of early retinal damage on OCT-derived readouts were outweighed by the initial inflammatory edema. Early microglial activation and astrocytosis was detected in the retina prior to retinal ganglion cell loss and persisted until 33 days post immunisation. Müller cell reactivity (i.e. aquaporin-4 and glutamine synthetase decrease) presented after 11 days post immunisation in the IRL. Severe neuro-axonal degeneration was observed in the optic nerve and retina until 33 days post immunisation.Initial signs of retinal pathology subsequent to early glial activity, suggests a need for prophylactic treatment of optic neuritis. Following early inflammation, Müller cells possibly respond to retinal pathology with compensatory mechanisms. Although the majority of the IRL damage observed is likely due to retrograde degeneration following optic neuritis, initial pathology, possibly due to gliosis, may contribute further to IRL thinning. These results add morphological substrate to our OCT findings. The extent and rapid onset of axonal and neuronal damage in this model appears relevant for testing interventions scaled to human optic neuritis.
Collapse
Affiliation(s)
- Praveena Manogaran
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marijana Samardzija
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Zurich, Switzerland
| | - Anaïs Nura Schad
- Department of Biology, University of Zurich, Zurich, Switzerland
| | - Carla Andrea Wicki
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Christine Walker-Egger
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Markus Rudin
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland
- Institue for Biomedical Engineering, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Christian Grimm
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Zurich, Switzerland
| | - Sven Schippling
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
New Ways of "Seeing" the Mechanistic Heterogeneity of Multiple Sclerosis Plaque Pathogenesis. J Neuroophthalmol 2019; 38:91-100. [PMID: 29438266 DOI: 10.1097/wno.0000000000000633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Over the past few decades, we have witnessed a transformation with respect to the principles and pathobiological underpinnings of multiple sclerosis (MS). From the traditional rubric of MS as an inflammatory and demyelinating disorder restricted to central nervous system (CNS) white matter, our contemporary view has evolved to encompass a broader understanding of the variable mechanisms that contribute to tissue injury, in a disorder now recognized to affect white and grey matter compartments. EVIDENCE ACQUISITION A constellation of inflammation, ion channel derangements, bioenergetic supply: demand mismatches within the intra-axonal compartment, and alterations in the dynamics and oximetry of blood flow in CNS tissue compartments are observed in MS. These findings have raised questions regarding how histopathologic heterogeneity may influence the diverse clinical spectrum of MS; and, accordingly, how individual treatment needs vary from 1 patient to the next. RESULTS We are now on new scaffolding in MS; one that promises to translate key clinical and laboratory observations to the application of emerging patient-centered therapies. CONCLUSIONS This review highlights our current knowledge of the underlying disease mechanisms in MS, explores the inflammatory and neurodegenerative consequences of tissue damage, and examines physiologic factors that contribute to bioenergetic homeostasis within the CNS of affected patients.
Collapse
|
32
|
Optical coherence tomography as a means to characterize visual pathway involvement in multiple sclerosis. Curr Opin Neurol 2019; 31:662-668. [PMID: 30074495 DOI: 10.1097/wco.0000000000000604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Optical coherence tomography (OCT) is a noninvasive in-vivo imaging tool that enables the quantification of the various retinal layer thicknesses. Given the frequent involvement of the visual pathway in multiple sclerosis, OCT has become an important tool in clinical practice, research and clinical trials. In this review, the role of OCT as a means to investigate visual pathway damage in multiple sclerosis is discussed. RECENT FINDINGS Evidence from recent OCT studies suggests that the peripapillary retinal nerve fibre layer (pRNFL) appears to be an ideal marker of axonal integrity, whereas the macular ganglion cell and inner plexiform layer (GCIP) thickness enables early detection of neuronal degeneration in multiple sclerosis. The thickness of the macular inner nuclear layer (INL) has been suggested as a biomarker for inflammatory disease activity and treatment response in multiple sclerosis. OCT parameters may also be used as an outcome measure in clinical trials evaluating the neuroprotective or regenerative potential of new treatments. SUMMARY OCT provides insights into multiple sclerosis beyond the visual pathway. It is capable of quantifying the major pathological hallmarks of the disease, specifically inflammation and neuroaxonal degeneration. OCT, therefore, has the potential to become another mainstay in the monitoring of multiple sclerosis patients.
Collapse
|
33
|
Papadopoulou A, Gaetano L, Pfister A, Altermatt A, Tsagkas C, Morency F, Brandt AU, Hardmeier M, Chakravarty MM, Descoteaux M, Kappos L, Sprenger T, Magon S. Damage of the lateral geniculate nucleus in MS: Assessing the missing node of the visual pathway. Neurology 2019; 92:e2240-e2249. [PMID: 30971483 DOI: 10.1212/wnl.0000000000007450] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/10/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To study if the thalamic lateral geniculate nucleus (LGN) is affected in multiple sclerosis (MS) due to anterograde degeneration from optic neuritis (ON) or retrograde degeneration from optic radiation (OR) pathology, and if this is relevant for visual function. METHODS In this cross-sectional study, LGN volume of 34 patients with relapsing-remitting MS and 33 matched healthy controls (HC) was assessed on MRI using atlas-based automated segmentation (MAGeT). ON history, thickness of the ganglion cell-inner plexiform layer (GC-IPL), OR lesion volume, and fractional anisotropy (FA) of normal-appearing OR (NAOR-FA) were assessed as measures of afferent visual pathway damage. Visual function was tested, including low-contrast letter acuity (LCLA) and Hardy-Rand-Rittler (HRR) plates for color vision. RESULTS LGN volume was reduced in patients vs HC (165.5 ± 45.5 vs 191.4 ± 47.7 mm3, B = -25.89, SE = 5.83, p < 0.001). It was associated with GC-IPL thickness (B = 0.95, SE = 0.33, p = 0.006) and correlated with OR lesion volume (Spearman ρ = -0.53, p = 0.001), and these relationships remained after adjustment for normalized brain volume. There was no association between NAOR-FA and LGN volume (B = -133.28, SE = 88.47, p = 0.137). LGN volume was not associated with LCLA (B = 5.5 × 10-5, SE = 0.03, p = 0.998), but it correlated with HRR color vision (ρ = 0.39, p = 0.032). CONCLUSIONS LGN volume loss in MS indicates structural damage with potential functional relevance. Our results suggest both anterograde degeneration from the retina and retrograde degeneration from the OR lesions as underlying causes. LGN volume is a promising marker reflecting damage of the visual pathway in MS, with the advantage of individual measurement per patient on conventional MRI.
Collapse
Affiliation(s)
- Athina Papadopoulou
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland.
| | - Laura Gaetano
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Armanda Pfister
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Anna Altermatt
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Charidimos Tsagkas
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Felix Morency
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Alexander U Brandt
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Martin Hardmeier
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Mallar M Chakravarty
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Maxime Descoteaux
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Ludwig Kappos
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Till Sprenger
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Stefano Magon
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| |
Collapse
|
34
|
Xu SC, Kardon RH, Leavitt JA, Flanagan EP, Pittock SJ, Chen JJ. Optical coherence tomography is highly sensitive in detecting prior optic neuritis. Neurology 2019; 92:e527-e535. [PMID: 30674600 DOI: 10.1212/wnl.0000000000006873] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 12/06/2018] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To explore sensitivity of optical coherence tomography (OCT) in detecting prior unilateral optic neuritis. METHODS This is a retrospective, observational clinical study of all patients who presented from January 1, 2014, to January 6, 2017, with unilateral optic neuritis and OCT available at least 3 months after the attack. We compared OCT retinal nerve fiber layer (RNFL) and ganglion cell inner plexiform layer (GCIPL) thicknesses between affected and unaffected contralateral eyes. We excluded patients with concomitant glaucoma or other optic neuropathies. Based on analysis of normal controls, thinning was considered significant if RNFL was at least 9 µm or GCIPL was at least 6 µm less in the affected eye compared to the unaffected eye. RESULTS Fifty-one patients (18 male and 33 female) were included in the study. RNFL and GCIPL thicknesses were significantly lower in eyes with optic neuritis compared to unaffected eyes (p < 0.001). RNFL was thinner by ≥9 µm in 73% of optic neuritis eyes compared to the unaffected eye. GCIPL was thinner by ≥6 µm in 96% of optic neuritis eyes, which was more sensitive than using RNFL (p < 0.001). When using a threshold ≤1st percentile of age-matched controls, sensitivities were 37% for RNFL and 76% for GCIPL, each of which was lower than those calculated using the intereye difference as the threshold (p < 0.01). CONCLUSIONS OCT, especially with GCIPL analysis, is a highly sensitive modality in detecting prior optic neuritis, which is made more robust by using intereye differences to approximate change. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that OCT accurately identifies patients with prior unilateral optic neuritis.
Collapse
Affiliation(s)
- Sarah Chaoying Xu
- From the Departments of Ophthalmology (S.C.X., J.A.L., J.J.C.) and Neurology (E.P.F., S.J.P., J.J.C.), Mayo Clinic, Rochester, MN; and Department of Ophthalmology (R.H.K.), University of Iowa, Iowa City
| | - Randy H Kardon
- From the Departments of Ophthalmology (S.C.X., J.A.L., J.J.C.) and Neurology (E.P.F., S.J.P., J.J.C.), Mayo Clinic, Rochester, MN; and Department of Ophthalmology (R.H.K.), University of Iowa, Iowa City
| | - Jacqueline A Leavitt
- From the Departments of Ophthalmology (S.C.X., J.A.L., J.J.C.) and Neurology (E.P.F., S.J.P., J.J.C.), Mayo Clinic, Rochester, MN; and Department of Ophthalmology (R.H.K.), University of Iowa, Iowa City
| | - Eoin P Flanagan
- From the Departments of Ophthalmology (S.C.X., J.A.L., J.J.C.) and Neurology (E.P.F., S.J.P., J.J.C.), Mayo Clinic, Rochester, MN; and Department of Ophthalmology (R.H.K.), University of Iowa, Iowa City
| | - Sean J Pittock
- From the Departments of Ophthalmology (S.C.X., J.A.L., J.J.C.) and Neurology (E.P.F., S.J.P., J.J.C.), Mayo Clinic, Rochester, MN; and Department of Ophthalmology (R.H.K.), University of Iowa, Iowa City
| | - John J Chen
- From the Departments of Ophthalmology (S.C.X., J.A.L., J.J.C.) and Neurology (E.P.F., S.J.P., J.J.C.), Mayo Clinic, Rochester, MN; and Department of Ophthalmology (R.H.K.), University of Iowa, Iowa City.
| |
Collapse
|
35
|
Castoldi V, Marenna S, Santangelo R, d'Isa R, Cursi M, Chaabane L, Quattrini A, Comi G, Leocani L. Optic nerve involvement in experimental autoimmune encephalomyelitis to homologous spinal cord homogenate immunization in the dark agouti rat. J Neuroimmunol 2018; 325:1-9. [PMID: 30340030 DOI: 10.1016/j.jneuroim.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Dark-Agouti rats were immunized with spinal cord homogenate to develop Experimental Autoimmune Encephalomyelitis, a model of multiple sclerosis. We assessed motor signs and recorded VEPs for five or eight weeks with epidural or epidermal electrodes, respectively, with final histopathology of optic nerves (ONs). Injected rats exhibited motor deficits a week after immunization. VEP delays arose from the 2nd to the 5th week, when a recovery occurred in epidermal-recorded rats. ON damage appeared in epidural-, but not in epidermal-recorded rats, probably due to a remyelination process. VEP could be exploited as neurophysiological marker to test novel treatments against neurodegeneration involving ONs.
Collapse
Affiliation(s)
- Valerio Castoldi
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Silvia Marenna
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | | | - Raffaele d'Isa
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Marco Cursi
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Linda Chaabane
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Angelo Quattrini
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Giancarlo Comi
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Letizia Leocani
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
36
|
Costello F, Burton JM. Retinal imaging with optical coherence tomography: a biomarker in multiple sclerosis? Eye Brain 2018; 10:47-63. [PMID: 30104912 PMCID: PMC6074809 DOI: 10.2147/eb.s139417] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Multiple sclerosis (MS) is a progressive neurological disorder characterized by both inflammatory and degenerative components that affect genetically susceptible individuals. Currently, the cause of MS remains unclear, and there is no known cure. Commonly used therapies tend to target inflammatory aspects of MS, but may not halt disease progression, which may be governed by the slow, subclinical accumulation of injury to neuroaxonal structures in the central nervous system (CNS). A recognized challenge in the field of MS relates to the need for better methods of detecting, quantifying, and ameliorating the effects of subclinical disease. Simply stated, better biomarkers are required. To this end, optical coherence tomography (OCT) provides highly reliable, reproducible measures of axonal damage and neuronal loss in MS patients. OCT-detected decrements in retinal nerve fiber layer thickness and ganglion-cell layer-inner plexiform layer thickness, which represent markers of axonal damage and neuronal injury, respectively, have been shown to correlate with worse visual outcomes, increased clinical disability, and magnetic resonance imaging-measured burden of disease in MS patients. Recent reports have also suggested that OCT-measured microcystic macular edema and associated thickening of the retinal inner nuclear layer represent markers of active CNS inflammatory activity. Using the visual system as a putative clinical model in MS, OCT measures of neuroaxonal structure can be correlated with functional outcomes to help us elucidate mechanisms of CNS injury and repair. In this review, we evaluate evidence from the published literature and ongoing clinical trials that support the emerging role of OCT in diagnosing, staging, and determining response to therapy in MS patients.
Collapse
Affiliation(s)
- Fiona Costello
- Department of Clinical Neurosciences, .,Department of Surgery,
| | - Jodie M Burton
- Department of Clinical Neurosciences, .,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
37
|
Manogaran P, Walker-Egger C, Samardzija M, Waschkies C, Grimm C, Rudin M, Schippling S. Exploring experimental autoimmune optic neuritis using multimodal imaging. Neuroimage 2018; 175:327-339. [PMID: 29627590 DOI: 10.1016/j.neuroimage.2018.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/13/2018] [Accepted: 04/02/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neuro-axonal injury is a key contributor to non-reversible long-term disability in multiple sclerosis (MS). However, the underlying mechanisms are not yet fully understood. Visual impairment is common among MS patients, in which episodes of optic neuritis (ON) are often followed by structural retinal damage and sustained functional impairment. Alterations in the optic nerve and retina have also been described in experimental autoimmune encephalomyelitis (EAE), a rodent model of MS. Thus, investigating structural anterior visual pathway damage may constitute a unique model for assessing mechanisms and temporal sequence of neurodegeneration in MS. We used a multimodal imaging approach utilizing optical coherence tomography (OCT) and diffusion tensor imaging (DTI) to explore the mechanisms and temporal dynamics of visual pathway damage in the animal model of MS. METHODS 7 EAE-MOG35-55 and 5 healthy female C57BL/6J mice were used in this study. Ganglion cell complex (GCC) thickness was derived from an OCT volume scan centred over the optic nerve head, while the structure of the optic nerve and tracts was assessed from DTI and co-registered T2-weighted sequences performed on a 7T MRI scanner. Data was acquired at baseline, disease onset, peak of disease and recovery. Linear mixed effect models were used to account for intra-subject, inter-eye dependencies, group and time point. Correlation analyses assessed the relationship between GCC thickness and DTI parameters. Immunofluorescence staining of retina and optic nerve sections was used to assess distribution of marker proteins for microglia and neurodegeneration (nerve filaments). RESULTS In EAE mice, a significant increase in GCC thickness was observed at disease onset (p < 0.001) followed by a decrease at recovery (p < 0.001) compared to controls. The EAE group had significant GCC thinning at recovery compared to all other time points (p < 0.001 for each). Signal increase on T2-weighted images around the optic nerves indicative of inflammation was seen in most of the EAE mice but in none of the controls. A significant decrease in axial diffusivity (AD) and increase in radial diffusivity (RD) values in EAE optic nerves (AD: p = 0.02, RD: p = 0.01) and tract (AD: p = 0.02, RD: p = 0.006) was observed compared to controls. GCC at recovery was positively correlated with AD (optic nerve: rho = 0.74, p = 0.04, optic tract: rho = 0.74, p = 0.04) and negatively correlated with RD (optic nerve: rho = -0.80, p = 0.02, optic tract: rho = -0.75, p = 0.04). Immunofluorescence analysis indicated the presence of activated microglia in the retina and optic nerves in addition to astrocytosis and axonal degeneration in the optic nerve of EAE mice. CONCLUSION OCT detected GCC changes in EAE may resemble what is observed in MS-related acute ON: an initial phase of swelling (indicative of inflammatory edema) followed by a decrease in thickness over time (representative of neuro-axonal degeneration). In line with OCT findings, DTI of the visual pathway identifies EAE induced pathology (decreased AD, and increased RD). Immunofluorescence analysis provides support for inflammatory pathology and axonal degeneration. OCT together with DTI can detect retinal and optic nerve damage and elucidate to the temporal sequence of neurodegeneration in this rodent model of MS in vivo.
Collapse
Affiliation(s)
- Praveena Manogaran
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland.
| | - Christine Walker-Egger
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Conny Waschkies
- Institue for Biomedical Engineering, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland; Visceral and Transplant Surgery Research, University Hospital Zurich, Zurich, Switzerland
| | - Christian Grimm
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Markus Rudin
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland; Institue for Biomedical Engineering, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland; Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Sven Schippling
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Alves C, Batista S, d'Almeida OC, Sousa L, Cunha L, Bernardes R, Castelo‐Branco M. The retinal ganglion cell layer predicts normal-appearing white matter tract integrity in multiple sclerosis: A combined diffusion tensor imaging and optical coherence tomography approach. Hum Brain Mapp 2018; 39:1712-1720. [PMID: 29334156 PMCID: PMC6866258 DOI: 10.1002/hbm.23946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/08/2017] [Accepted: 01/01/2018] [Indexed: 01/06/2023] Open
Abstract
We investigated the relationship between retinal layers and normal-appearing white matter (WM) integrity in the brain of patients with relapsing-remitting multiple sclerosis (MS), using a combined diffusion tensor imaging and high resolution optical coherence tomography approach. Fifty patients and 62 controls were recruited. The patients were divided into two groups according to presence (n = 18) or absence (n = 32) of optic neuritis. Diffusion tensor data were analyzed with a voxel-wise whole brain analysis of diffusion metrics in WM with tract-based spatial statistics. Thickness measurements were obtained for each individual retinal layer. Partial correlation and multivariate regression analyses were performed, assessing the association between individual retinal layers and diffusion metrics across all groups. Region-based analysis was performed, by focusing on tracts associated with the visual system. Receiver operating characteristic (ROC) curves were computed to compare the biomarker potential for the diagnosis of MS, using the thickness of each retinal layer and diffusion metrics. In patients without optic neuritis, both ganglion cell layer (GCL) and inner plexiform layer thickness correlated with the diffusion metrics within and outside the visual system. GCL thickness was a significant predictor of diffusion metrics in the whole WM skeleton, unlike other layers. No association was observed for either controls or patients with a history of optic neuritis. ROC analysis showed that the biomarker potential for the diagnosis of MS based on the GCL was high when compared to other layers. We conclude that GCL integrity is a predictor of whole-brain WM disruption in MS patients without optic neuritis.
Collapse
Affiliation(s)
- Carolina Alves
- Visual Neuroscience LaboratoryInstitute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of CoimbraCoimbraPortugal
- Centre for Neuroscience and Cell Biology (CNC).IBILIUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of CoimbraCoimbraPortugal
- CIBIT – Coimbra Institute for Biomedical Imaging and Life SciencesCoimbraPortugal
| | - Sónia Batista
- Department of NeurologyCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
- Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| | - Otília C. d'Almeida
- Visual Neuroscience LaboratoryInstitute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of CoimbraCoimbraPortugal
- Centre for Neuroscience and Cell Biology (CNC).IBILIUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of CoimbraCoimbraPortugal
- CIBIT – Coimbra Institute for Biomedical Imaging and Life SciencesCoimbraPortugal
| | - Lívia Sousa
- Department of NeurologyCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
- Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| | - Luís Cunha
- Department of NeurologyCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
- Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| | - Rui Bernardes
- Visual Neuroscience LaboratoryInstitute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of CoimbraCoimbraPortugal
- Centre for Neuroscience and Cell Biology (CNC).IBILIUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of CoimbraCoimbraPortugal
- CIBIT – Coimbra Institute for Biomedical Imaging and Life SciencesCoimbraPortugal
| | - Miguel Castelo‐Branco
- Visual Neuroscience LaboratoryInstitute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of CoimbraCoimbraPortugal
- Centre for Neuroscience and Cell Biology (CNC).IBILIUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of CoimbraCoimbraPortugal
- CIBIT – Coimbra Institute for Biomedical Imaging and Life SciencesCoimbraPortugal
| |
Collapse
|
39
|
Oberwahrenbrock T, Traber GL, Lukas S, Gabilondo I, Nolan R, Songster C, Balk L, Petzold A, Paul F, Villoslada P, Brandt AU, Green AJ, Schippling S. Multicenter reliability of semiautomatic retinal layer segmentation using OCT. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 5:e449. [PMID: 29552598 PMCID: PMC5852947 DOI: 10.1212/nxi.0000000000000449] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022]
Abstract
Objective To evaluate the inter-rater reliability of semiautomated segmentation of spectral domain optical coherence tomography (OCT) macular volume scans. Methods Macular OCT volume scans of left eyes from 17 subjects (8 patients with MS and 9 healthy controls) were automatically segmented by Heidelberg Eye Explorer (v1.9.3.0) beta-software (Spectralis Viewing Module v6.0.0.7), followed by manual correction by 5 experienced operators from 5 different academic centers. The mean thicknesses within a 6-mm area around the fovea were computed for the retinal nerve fiber layer, ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer, outer plexiform layer (OPL), and outer nuclear layer (ONL). Intraclass correlation coefficients (ICCs) were calculated for mean layer thickness values. Spatial distribution of ICC values for the segmented volume scans was investigated using heat maps. Results Agreement between raters was good (ICC > 0.84) for all retinal layers, particularly inner retinal layers showed excellent agreement across raters (ICC > 0.96). Spatial distribution of ICC showed highest values in the perimacular area, whereas the ICCs were poorer for the foveola and the more peripheral macular area. The automated segmentation of the OPL and ONL required the most correction and showed the least agreement, whereas differences were less prominent for the remaining layers. Conclusions Automated segmentation with manual correction of macular OCT scans is highly reliable when performed by experienced raters and can thus be applied in multicenter settings. Reliability can be improved by restricting analysis to the perimacular area and compound segmentation of GCL and IPL.
Collapse
Affiliation(s)
- Timm Oberwahrenbrock
- NeuroCure Clinical Research Center (T.O., F.P., A.U.B.), Charité-Universitätsmedizin Berlin, Germany; Department of Ophthalmology (G.L.T.), University Hospital Zurich, University of Zurich; Neuroimmunology and Multiple Sclerosis Research Section (S.L., S.S.), Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland; Center of Neuroimmunology (I.G., P.V.), Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; Division of Neuroinflammation and Glial Biology (R.N., C.S., A.J.G.), Department of Neurology, University of California San Francisco; Neuro-ophthalmology Division (A.J.G.), Department of Ophthalmology, University of California, San Francisco; Multiple Sclerosis Center (L.B., A.P.), Departments of Neurology and Ophthalmology, Neuro-ophthalmology Expertise Centre, VUmc, Amsterdam and Moorfields Eye Hospital (A.P.), The National Hospital for Neurology and Neurosurgery and UCL, United Kingdom; Clinical and Experimental Multiple Sclerosis Research Center (F.P.), Department of Neurology, Charité-Universitätsmedizin Berlin; Experimental and Clinical Research Center (F.P., A.U.B.), Charité-Universitätsmedizin Berlin and Max-Delbrück Center for Molecular Medicine, Germany; Department of Methods and Experimental Psychology (I.G.), Faculty of Psychology and Education, Universidad de Deusto, Bilbao, Spain
| | - Ghislaine L Traber
- NeuroCure Clinical Research Center (T.O., F.P., A.U.B.), Charité-Universitätsmedizin Berlin, Germany; Department of Ophthalmology (G.L.T.), University Hospital Zurich, University of Zurich; Neuroimmunology and Multiple Sclerosis Research Section (S.L., S.S.), Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland; Center of Neuroimmunology (I.G., P.V.), Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; Division of Neuroinflammation and Glial Biology (R.N., C.S., A.J.G.), Department of Neurology, University of California San Francisco; Neuro-ophthalmology Division (A.J.G.), Department of Ophthalmology, University of California, San Francisco; Multiple Sclerosis Center (L.B., A.P.), Departments of Neurology and Ophthalmology, Neuro-ophthalmology Expertise Centre, VUmc, Amsterdam and Moorfields Eye Hospital (A.P.), The National Hospital for Neurology and Neurosurgery and UCL, United Kingdom; Clinical and Experimental Multiple Sclerosis Research Center (F.P.), Department of Neurology, Charité-Universitätsmedizin Berlin; Experimental and Clinical Research Center (F.P., A.U.B.), Charité-Universitätsmedizin Berlin and Max-Delbrück Center for Molecular Medicine, Germany; Department of Methods and Experimental Psychology (I.G.), Faculty of Psychology and Education, Universidad de Deusto, Bilbao, Spain
| | - Sebastian Lukas
- NeuroCure Clinical Research Center (T.O., F.P., A.U.B.), Charité-Universitätsmedizin Berlin, Germany; Department of Ophthalmology (G.L.T.), University Hospital Zurich, University of Zurich; Neuroimmunology and Multiple Sclerosis Research Section (S.L., S.S.), Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland; Center of Neuroimmunology (I.G., P.V.), Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; Division of Neuroinflammation and Glial Biology (R.N., C.S., A.J.G.), Department of Neurology, University of California San Francisco; Neuro-ophthalmology Division (A.J.G.), Department of Ophthalmology, University of California, San Francisco; Multiple Sclerosis Center (L.B., A.P.), Departments of Neurology and Ophthalmology, Neuro-ophthalmology Expertise Centre, VUmc, Amsterdam and Moorfields Eye Hospital (A.P.), The National Hospital for Neurology and Neurosurgery and UCL, United Kingdom; Clinical and Experimental Multiple Sclerosis Research Center (F.P.), Department of Neurology, Charité-Universitätsmedizin Berlin; Experimental and Clinical Research Center (F.P., A.U.B.), Charité-Universitätsmedizin Berlin and Max-Delbrück Center for Molecular Medicine, Germany; Department of Methods and Experimental Psychology (I.G.), Faculty of Psychology and Education, Universidad de Deusto, Bilbao, Spain
| | - Iñigo Gabilondo
- NeuroCure Clinical Research Center (T.O., F.P., A.U.B.), Charité-Universitätsmedizin Berlin, Germany; Department of Ophthalmology (G.L.T.), University Hospital Zurich, University of Zurich; Neuroimmunology and Multiple Sclerosis Research Section (S.L., S.S.), Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland; Center of Neuroimmunology (I.G., P.V.), Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; Division of Neuroinflammation and Glial Biology (R.N., C.S., A.J.G.), Department of Neurology, University of California San Francisco; Neuro-ophthalmology Division (A.J.G.), Department of Ophthalmology, University of California, San Francisco; Multiple Sclerosis Center (L.B., A.P.), Departments of Neurology and Ophthalmology, Neuro-ophthalmology Expertise Centre, VUmc, Amsterdam and Moorfields Eye Hospital (A.P.), The National Hospital for Neurology and Neurosurgery and UCL, United Kingdom; Clinical and Experimental Multiple Sclerosis Research Center (F.P.), Department of Neurology, Charité-Universitätsmedizin Berlin; Experimental and Clinical Research Center (F.P., A.U.B.), Charité-Universitätsmedizin Berlin and Max-Delbrück Center for Molecular Medicine, Germany; Department of Methods and Experimental Psychology (I.G.), Faculty of Psychology and Education, Universidad de Deusto, Bilbao, Spain
| | - Rachel Nolan
- NeuroCure Clinical Research Center (T.O., F.P., A.U.B.), Charité-Universitätsmedizin Berlin, Germany; Department of Ophthalmology (G.L.T.), University Hospital Zurich, University of Zurich; Neuroimmunology and Multiple Sclerosis Research Section (S.L., S.S.), Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland; Center of Neuroimmunology (I.G., P.V.), Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; Division of Neuroinflammation and Glial Biology (R.N., C.S., A.J.G.), Department of Neurology, University of California San Francisco; Neuro-ophthalmology Division (A.J.G.), Department of Ophthalmology, University of California, San Francisco; Multiple Sclerosis Center (L.B., A.P.), Departments of Neurology and Ophthalmology, Neuro-ophthalmology Expertise Centre, VUmc, Amsterdam and Moorfields Eye Hospital (A.P.), The National Hospital for Neurology and Neurosurgery and UCL, United Kingdom; Clinical and Experimental Multiple Sclerosis Research Center (F.P.), Department of Neurology, Charité-Universitätsmedizin Berlin; Experimental and Clinical Research Center (F.P., A.U.B.), Charité-Universitätsmedizin Berlin and Max-Delbrück Center for Molecular Medicine, Germany; Department of Methods and Experimental Psychology (I.G.), Faculty of Psychology and Education, Universidad de Deusto, Bilbao, Spain
| | - Christopher Songster
- NeuroCure Clinical Research Center (T.O., F.P., A.U.B.), Charité-Universitätsmedizin Berlin, Germany; Department of Ophthalmology (G.L.T.), University Hospital Zurich, University of Zurich; Neuroimmunology and Multiple Sclerosis Research Section (S.L., S.S.), Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland; Center of Neuroimmunology (I.G., P.V.), Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; Division of Neuroinflammation and Glial Biology (R.N., C.S., A.J.G.), Department of Neurology, University of California San Francisco; Neuro-ophthalmology Division (A.J.G.), Department of Ophthalmology, University of California, San Francisco; Multiple Sclerosis Center (L.B., A.P.), Departments of Neurology and Ophthalmology, Neuro-ophthalmology Expertise Centre, VUmc, Amsterdam and Moorfields Eye Hospital (A.P.), The National Hospital for Neurology and Neurosurgery and UCL, United Kingdom; Clinical and Experimental Multiple Sclerosis Research Center (F.P.), Department of Neurology, Charité-Universitätsmedizin Berlin; Experimental and Clinical Research Center (F.P., A.U.B.), Charité-Universitätsmedizin Berlin and Max-Delbrück Center for Molecular Medicine, Germany; Department of Methods and Experimental Psychology (I.G.), Faculty of Psychology and Education, Universidad de Deusto, Bilbao, Spain
| | - Lisanne Balk
- NeuroCure Clinical Research Center (T.O., F.P., A.U.B.), Charité-Universitätsmedizin Berlin, Germany; Department of Ophthalmology (G.L.T.), University Hospital Zurich, University of Zurich; Neuroimmunology and Multiple Sclerosis Research Section (S.L., S.S.), Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland; Center of Neuroimmunology (I.G., P.V.), Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; Division of Neuroinflammation and Glial Biology (R.N., C.S., A.J.G.), Department of Neurology, University of California San Francisco; Neuro-ophthalmology Division (A.J.G.), Department of Ophthalmology, University of California, San Francisco; Multiple Sclerosis Center (L.B., A.P.), Departments of Neurology and Ophthalmology, Neuro-ophthalmology Expertise Centre, VUmc, Amsterdam and Moorfields Eye Hospital (A.P.), The National Hospital for Neurology and Neurosurgery and UCL, United Kingdom; Clinical and Experimental Multiple Sclerosis Research Center (F.P.), Department of Neurology, Charité-Universitätsmedizin Berlin; Experimental and Clinical Research Center (F.P., A.U.B.), Charité-Universitätsmedizin Berlin and Max-Delbrück Center for Molecular Medicine, Germany; Department of Methods and Experimental Psychology (I.G.), Faculty of Psychology and Education, Universidad de Deusto, Bilbao, Spain
| | - Axel Petzold
- NeuroCure Clinical Research Center (T.O., F.P., A.U.B.), Charité-Universitätsmedizin Berlin, Germany; Department of Ophthalmology (G.L.T.), University Hospital Zurich, University of Zurich; Neuroimmunology and Multiple Sclerosis Research Section (S.L., S.S.), Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland; Center of Neuroimmunology (I.G., P.V.), Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; Division of Neuroinflammation and Glial Biology (R.N., C.S., A.J.G.), Department of Neurology, University of California San Francisco; Neuro-ophthalmology Division (A.J.G.), Department of Ophthalmology, University of California, San Francisco; Multiple Sclerosis Center (L.B., A.P.), Departments of Neurology and Ophthalmology, Neuro-ophthalmology Expertise Centre, VUmc, Amsterdam and Moorfields Eye Hospital (A.P.), The National Hospital for Neurology and Neurosurgery and UCL, United Kingdom; Clinical and Experimental Multiple Sclerosis Research Center (F.P.), Department of Neurology, Charité-Universitätsmedizin Berlin; Experimental and Clinical Research Center (F.P., A.U.B.), Charité-Universitätsmedizin Berlin and Max-Delbrück Center for Molecular Medicine, Germany; Department of Methods and Experimental Psychology (I.G.), Faculty of Psychology and Education, Universidad de Deusto, Bilbao, Spain
| | - Friedemann Paul
- NeuroCure Clinical Research Center (T.O., F.P., A.U.B.), Charité-Universitätsmedizin Berlin, Germany; Department of Ophthalmology (G.L.T.), University Hospital Zurich, University of Zurich; Neuroimmunology and Multiple Sclerosis Research Section (S.L., S.S.), Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland; Center of Neuroimmunology (I.G., P.V.), Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; Division of Neuroinflammation and Glial Biology (R.N., C.S., A.J.G.), Department of Neurology, University of California San Francisco; Neuro-ophthalmology Division (A.J.G.), Department of Ophthalmology, University of California, San Francisco; Multiple Sclerosis Center (L.B., A.P.), Departments of Neurology and Ophthalmology, Neuro-ophthalmology Expertise Centre, VUmc, Amsterdam and Moorfields Eye Hospital (A.P.), The National Hospital for Neurology and Neurosurgery and UCL, United Kingdom; Clinical and Experimental Multiple Sclerosis Research Center (F.P.), Department of Neurology, Charité-Universitätsmedizin Berlin; Experimental and Clinical Research Center (F.P., A.U.B.), Charité-Universitätsmedizin Berlin and Max-Delbrück Center for Molecular Medicine, Germany; Department of Methods and Experimental Psychology (I.G.), Faculty of Psychology and Education, Universidad de Deusto, Bilbao, Spain
| | - Pablo Villoslada
- NeuroCure Clinical Research Center (T.O., F.P., A.U.B.), Charité-Universitätsmedizin Berlin, Germany; Department of Ophthalmology (G.L.T.), University Hospital Zurich, University of Zurich; Neuroimmunology and Multiple Sclerosis Research Section (S.L., S.S.), Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland; Center of Neuroimmunology (I.G., P.V.), Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; Division of Neuroinflammation and Glial Biology (R.N., C.S., A.J.G.), Department of Neurology, University of California San Francisco; Neuro-ophthalmology Division (A.J.G.), Department of Ophthalmology, University of California, San Francisco; Multiple Sclerosis Center (L.B., A.P.), Departments of Neurology and Ophthalmology, Neuro-ophthalmology Expertise Centre, VUmc, Amsterdam and Moorfields Eye Hospital (A.P.), The National Hospital for Neurology and Neurosurgery and UCL, United Kingdom; Clinical and Experimental Multiple Sclerosis Research Center (F.P.), Department of Neurology, Charité-Universitätsmedizin Berlin; Experimental and Clinical Research Center (F.P., A.U.B.), Charité-Universitätsmedizin Berlin and Max-Delbrück Center for Molecular Medicine, Germany; Department of Methods and Experimental Psychology (I.G.), Faculty of Psychology and Education, Universidad de Deusto, Bilbao, Spain
| | - Alexander U Brandt
- NeuroCure Clinical Research Center (T.O., F.P., A.U.B.), Charité-Universitätsmedizin Berlin, Germany; Department of Ophthalmology (G.L.T.), University Hospital Zurich, University of Zurich; Neuroimmunology and Multiple Sclerosis Research Section (S.L., S.S.), Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland; Center of Neuroimmunology (I.G., P.V.), Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; Division of Neuroinflammation and Glial Biology (R.N., C.S., A.J.G.), Department of Neurology, University of California San Francisco; Neuro-ophthalmology Division (A.J.G.), Department of Ophthalmology, University of California, San Francisco; Multiple Sclerosis Center (L.B., A.P.), Departments of Neurology and Ophthalmology, Neuro-ophthalmology Expertise Centre, VUmc, Amsterdam and Moorfields Eye Hospital (A.P.), The National Hospital for Neurology and Neurosurgery and UCL, United Kingdom; Clinical and Experimental Multiple Sclerosis Research Center (F.P.), Department of Neurology, Charité-Universitätsmedizin Berlin; Experimental and Clinical Research Center (F.P., A.U.B.), Charité-Universitätsmedizin Berlin and Max-Delbrück Center for Molecular Medicine, Germany; Department of Methods and Experimental Psychology (I.G.), Faculty of Psychology and Education, Universidad de Deusto, Bilbao, Spain
| | - Ari J Green
- NeuroCure Clinical Research Center (T.O., F.P., A.U.B.), Charité-Universitätsmedizin Berlin, Germany; Department of Ophthalmology (G.L.T.), University Hospital Zurich, University of Zurich; Neuroimmunology and Multiple Sclerosis Research Section (S.L., S.S.), Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland; Center of Neuroimmunology (I.G., P.V.), Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; Division of Neuroinflammation and Glial Biology (R.N., C.S., A.J.G.), Department of Neurology, University of California San Francisco; Neuro-ophthalmology Division (A.J.G.), Department of Ophthalmology, University of California, San Francisco; Multiple Sclerosis Center (L.B., A.P.), Departments of Neurology and Ophthalmology, Neuro-ophthalmology Expertise Centre, VUmc, Amsterdam and Moorfields Eye Hospital (A.P.), The National Hospital for Neurology and Neurosurgery and UCL, United Kingdom; Clinical and Experimental Multiple Sclerosis Research Center (F.P.), Department of Neurology, Charité-Universitätsmedizin Berlin; Experimental and Clinical Research Center (F.P., A.U.B.), Charité-Universitätsmedizin Berlin and Max-Delbrück Center for Molecular Medicine, Germany; Department of Methods and Experimental Psychology (I.G.), Faculty of Psychology and Education, Universidad de Deusto, Bilbao, Spain
| | - Sven Schippling
- NeuroCure Clinical Research Center (T.O., F.P., A.U.B.), Charité-Universitätsmedizin Berlin, Germany; Department of Ophthalmology (G.L.T.), University Hospital Zurich, University of Zurich; Neuroimmunology and Multiple Sclerosis Research Section (S.L., S.S.), Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland; Center of Neuroimmunology (I.G., P.V.), Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; Division of Neuroinflammation and Glial Biology (R.N., C.S., A.J.G.), Department of Neurology, University of California San Francisco; Neuro-ophthalmology Division (A.J.G.), Department of Ophthalmology, University of California, San Francisco; Multiple Sclerosis Center (L.B., A.P.), Departments of Neurology and Ophthalmology, Neuro-ophthalmology Expertise Centre, VUmc, Amsterdam and Moorfields Eye Hospital (A.P.), The National Hospital for Neurology and Neurosurgery and UCL, United Kingdom; Clinical and Experimental Multiple Sclerosis Research Center (F.P.), Department of Neurology, Charité-Universitätsmedizin Berlin; Experimental and Clinical Research Center (F.P., A.U.B.), Charité-Universitätsmedizin Berlin and Max-Delbrück Center for Molecular Medicine, Germany; Department of Methods and Experimental Psychology (I.G.), Faculty of Psychology and Education, Universidad de Deusto, Bilbao, Spain
| |
Collapse
|
40
|
|
41
|
Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez-Lapiscina EH, Green AJ, Kardon R, Outteryck O, Paul F, Schippling S, Vermersch P, Villoslada P, Balk LJ. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 2017; 16:797-812. [PMID: 28920886 DOI: 10.1016/s1474-4422(17)30278-8] [Citation(s) in RCA: 397] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 03/13/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Structural retinal imaging biomarkers are important for early recognition and monitoring of inflammation and neurodegeneration in multiple sclerosis. With the introduction of spectral domain optical coherence tomography (SD-OCT), supervised automated segmentation of individual retinal layers is possible. We aimed to investigate which retinal layers show atrophy associated with neurodegeneration in multiple sclerosis when measured with SD-OCT. METHODS In this systematic review and meta-analysis, we searched for studies in which SD-OCT was used to look at the retina in people with multiple sclerosis with or without optic neuritis in PubMed, Web of Science, and Google Scholar between Nov 22, 1991, and April 19, 2016. Data were taken from cross-sectional cohorts and from one timepoint from longitudinal studies (at least 3 months after onset in studies of optic neuritis). We classified data on eyes into healthy controls, multiple-sclerosis-associated optic neuritis (MSON), and multiple sclerosis without optic neuritis (MSNON). We assessed thickness of the retinal layers and we rated individual layer segmentation performance by random effects meta-analysis for MSON eyes versus control eyes, MSNON eyes versus control eyes, and MSNON eyes versus MSON eyes. We excluded relevant sources of bias by funnel plots. FINDINGS Of 25 497 records identified, 110 articles were eligible and 40 reported data (in total 5776 eyes from patients with multiple sclerosis [1667 MSON eyes and 4109 MSNON eyes] and 1697 eyes from healthy controls) that met published OCT quality control criteria and were suitable for meta-analysis. Compared with control eyes, the peripapillary retinal nerve fibre layer (RNFL) showed thinning in MSON eyes (mean difference -20·10 μm, 95% CI -22·76 to -17·44; p<0·0001) and in MSNON eyes (-7·41 μm, -8·98 to -5·83; p<0·0001). The macula showed RNFL thinning of -6·18 μm (-8·07 to -4·28; p<0·0001) in MSON eyes and -2·15 μm (-3·15 to -1·15; p<0·0001) in MSNON eyes compared with control eyes. Atrophy of the macular ganglion cell layer and inner plexiform layer (GCIPL) was -16·42 μm (-19·23 to -13·60; p<0·0001) for MSON eyes and -6·31 μm (-7·75 to -4·87; p<0·0001) for MSNON eyes compared with control eyes. A small degree of inner nuclear layer (INL) thickening occurred in MSON eyes compared with control eyes (0·77 μm, 0·25 to 1·28; p=0·003). We found no statistical difference in the thickness of the combined outer nuclear layer and outer plexiform layer when we compared MSNON or MSON eyes with control eyes, but we found a small degree of thickening of the combined layer when we compared MSON eyes with MSNON eyes (1·21 μm, 0·24 to 2·19; p=0·01). INTERPRETATION The largest and most robust differences between the eyes of people with multiple sclerosis and control eyes were found in the peripapillary RNFL and macular GCIPL. Inflammatory disease activity might be captured by the INL. Because of the consistency, robustness, and large effect size, we recommend inclusion of the peripapillary RNFL and macular GCIPL for diagnosis, monitoring, and research. FUNDING None.
Collapse
Affiliation(s)
- Axel Petzold
- Moorfields Eye Hospital, London, UK; Department of Neurology, Amsterdam Neuroscience, VUmc MS Center Amsterdam and Dutch Expertise Centre for Neuro-ophthalmology, VU University Medical Center, Amsterdam, Netherlands; Institute of Neurology, University College London, London, UK.
| | - Laura J Balcer
- Department of Neurology, Department of Ophthalmology, and Department of Population Health, New York University School of Medicine, New York, NY, USA
| | | | - Fiona Costello
- Department of Clinical Neurosciences and Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Teresa C Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elliot M Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elena H Martinez-Lapiscina
- Center of Neuroimmunology, Institute of Biomedical Research August Pi Sunyer, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Ari J Green
- Multiple Sclerosis Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Randy Kardon
- Iowa City VA Center for Prevention and Treatment of Visual Loss, Department of Veterans Affairs Hospital Iowa City, and Department of Ophthalmology and Visual Sciences, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Olivier Outteryck
- Department of Neurology, University of Lille Nord de France, Lille, France
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité, Department of Neurology, Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Schippling
- Neuroimmunology and Multiple Sclerosis Research Section, University Hospital Zurich, Zurich, Switzerland
| | - Patrik Vermersch
- Université Lille, CHRU Lille, LYRIC-INSERM U995, FHU Imminent, Lille, France
| | - Pablo Villoslada
- Center of Neuroimmunology, Institute of Biomedical Research August Pi Sunyer, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Lisanne J Balk
- Department of Neurology, Amsterdam Neuroscience, VUmc MS Center Amsterdam and Dutch Expertise Centre for Neuro-ophthalmology, VU University Medical Center, Amsterdam, Netherlands
| | | |
Collapse
|
42
|
Tewarie P, Balk LJ, Hillebrand A, Steenwijk MD, Uitdehaag BMJ, Stam CJ, Petzold A. Structure-function relationships in the visual system in multiple sclerosis: an MEG and OCT study. Ann Clin Transl Neurol 2017; 4:614-621. [PMID: 28904983 PMCID: PMC5590521 DOI: 10.1002/acn3.415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/05/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We conducted a multi-modal optical coherence tomography (OCT) and magnetoencephalography (MEG) study to test whether there is a relationship between retinal layer integrity and electrophysiological activity and connectivity (FC) in the visual network influenced by optic neuritis (ON) in patients with multiple sclerosis (MS). METHODS One hundred and two MS patients were included in this MEG/OCT study. Retinal OCT data were collected from the optic discs, macular region, and segmented. Neuronal activity and FC in the visual cortex was estimated from source-reconstructed resting-state MEG data by computing relative power and the phase lag index (PLI). Generalized estimating equations (GEE) were used to account for intereye within-patient dependencies. RESULTS There was a significant relationship for both relative power and FC in the visual cortex with retinal layer thicknesses. The findings were influenced by the presence of MSON, particularly for connectivity in the alpha bands and the outer macular layers. In the absence of MSON, this relationship was dominated by the lower frequency bands (theta, delta) and inner and outer retinal layers. CONCLUSION These results suggest that visual cortex FC more than activity alters in the presence of MSON, which may guide the understanding of FC plasticity effects following MSON.
Collapse
Affiliation(s)
- Prejaas Tewarie
- Department of Neurology Neuroscience Campus Amsterdam VU University Medical Center Amsterdam Netherlands.,Sir Peter Mansfield Imaging Centre School of Physics and Astronomy University of Nottingham Nottingham United Kingdom
| | - Lisanne J Balk
- Department of Neurology Neuroscience Campus Amsterdam VU University Medical Center Amsterdam Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center Neuroscience Campus Amsterdam VU University Medical Center Amsterdam Netherlands
| | - Martijn D Steenwijk
- Department of Neurology Neuroscience Campus Amsterdam VU University Medical Center Amsterdam Netherlands.,Department of Anatomy and Neurosciences Neuroscience Campus Amsterdam VU University Medical Center Amsterdam Netherlands
| | - Bernard M J Uitdehaag
- Department of Neurology Neuroscience Campus Amsterdam VU University Medical Center Amsterdam Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center Neuroscience Campus Amsterdam VU University Medical Center Amsterdam Netherlands
| | - Axel Petzold
- Department of Neurology Neuroscience Campus Amsterdam VU University Medical Center Amsterdam Netherlands.,Department of Ophthalmology VU University Medical Center Amsterdam Netherlands.,Moorfields Eye Hospital City Road London United Kingdom
| |
Collapse
|
43
|
Abstract
The afferent visual pathway is a functionally eloquent region of the central nervous system (CNS). Key clinical features of inflammatory, ischemic, and compressive CNS lesions can be appreciated through detailed ophthalmic examination. Optical coherence tomography (OCT) provides a noninvasive means of capturing manifestations of axonal and neuronal loss in the CNS. OCT represents a surrogate marker of structural integrity in the CNS, through which mechanisms of neurodegeneration and repair may be better understood. In this article, the role of OCT in facilitating the diagnosis and management of several CNS disorders is discussed.
Collapse
Affiliation(s)
- Fiona Costello
- Department of Clinical Neurosciences, University of Calgary, 1403 - 29th Street NW, Calgary, Alberta T2N 2T9, Canada; Department of Surgery, University of Calgary, 1403 - 29th Street NW, Calgary, Alberta T2N 2T9, Canada.
| |
Collapse
|
44
|
DeWalt GJ, Eldred WD. Visual system pathology in humans and animal models of blast injury. J Comp Neurol 2017; 525:2955-2967. [PMID: 28560719 DOI: 10.1002/cne.24252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/12/2017] [Accepted: 05/14/2017] [Indexed: 12/20/2022]
Abstract
Injury from blast exposure is becoming a more prevalent cause of death and disability worldwide. The devastating neurological impairments that result from blasts are significant and lifelong. Progress in the development of effective therapies to treat injury has been slowed by its heterogeneous pathology and the dearth of information regarding the cellular mechanisms involved. Within the last decade, a number of studies have documented visual dysfunction following injury. This brief review examines damage to the visual system in both humans and animal models of blast injury. The in vivo use of the retina as a surrogate to evaluate brain injury following exposure to blast is also highlighted.
Collapse
Affiliation(s)
- Gloria J DeWalt
- Department of Biology, Boston University, Boston, Massachusetts
| | | |
Collapse
|
45
|
Balk LJ, Coric D, Nij Bijvank JA, Killestein J, Uitdehaag BM, Petzold A. Retinal atrophy in relation to visual functioning and vision-related quality of life in patients with multiple sclerosis. Mult Scler 2017; 24:767-776. [PMID: 28511578 PMCID: PMC5971367 DOI: 10.1177/1352458517708463] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Inner retinal layer atrophy in patients with multiple sclerosis (MS) has been validated as a structural imaging biomarker for neurodegeneration. Objective: To determine how retinal layer thickness relates to high-contrast visual acuity (HCVA), low-contrast visual acuity (LCVA) and vision-related quality of life (QoL) and to investigate the effect of previous episodes on MS-associated optic neuritis (MSON). Methods: Spectral-domain optical coherence tomography (SD-OCT) was performed in 267 patients with MS. Images were segmented for the peripapillary retinal nerve fiber layer (pRNFL) and the macular ganglion cell inner plexiform layer (GCIPL). Ophthalmological evaluations included history of MSON, HCVA, LCVA, and vision-related QoL. Results: Independent of MSON, HCVA and LCVA were significantly associated with pRNFL and GCIPL thicknesses. Vision-related QoL was positively associated with pRNFL (β = 0.92, p = 0.06) and GCIPL (β = 0.93, p = 0.02) thicknesses. These associations were independent of MSON. Not only binocular but also monocular atrophy of the inner retinal layers was associated with lower vision-related QoL. Conclusion: This study showed that retinal atrophy has a significant impact on visual functioning in patients with MS. OCT may therefore provide useful insight to patients with visual dysfunction, and our findings support including OCT and vision-related QoL measures into optic neuritis treatment trials.
Collapse
Affiliation(s)
- Lisanne J Balk
- Department of Neurology, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Danko Coric
- Department of Neurology, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Jenny A Nij Bijvank
- Department of Neurology, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands/Department of Ophthalmology, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Joep Killestein
- Department of Neurology, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Bernard Mj Uitdehaag
- Department of Neurology, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Axel Petzold
- Department of Neurology, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands/Department of Ophthalmology, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands/UCL Institute of Neurology, University College London (UCL), London, UK/Moorfields Eye Hospital, London, UK
| |
Collapse
|
46
|
|
47
|
Balcer LJ, Raynowska J, Nolan R, Galetta SL, Kapoor R, Benedict R, Phillips G, LaRocca N, Hudson L, Rudick R. Validity of low-contrast letter acuity as a visual performance outcome measure for multiple sclerosis. Mult Scler 2017; 23:734-747. [PMID: 28206829 PMCID: PMC5407511 DOI: 10.1177/1352458517690822] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Low-contrast letter acuity (LCLA) has emerged as the leading outcome measure to assess visual disability in multiple sclerosis (MS) research. As visual dysfunction is one of the most common manifestations of MS, sensitive visual outcome measures are important in examining the effect of treatment. Low-contrast acuity captures visual loss not seen in high-contrast visual acuity (HCVA) measurements. These issues are addressed by the MS Outcome Assessments Consortium (MSOAC), including representatives from advocacy organizations, Food and Drug Administration (FDA), European Medicines Agency (EMA), National Institute of Neurological Disorders and Stroke (NINDS), academic institutions, and industry partners along with persons living with MS. MSOAC goals are acceptance and qualification by regulators of performance outcomes that are highly reliable and valid, practical, cost-effective, and meaningful to persons with MS. A critical step is elucidation of clinically relevant benchmarks, well-defined degrees of disability, and gradients of change that are clinically meaningful. This review shows that MS and disease-free controls have similar median HCVA, while MS patients have significantly lower LCLA. Deficits in LCLA and vision-specific quality of life are found many years after an episode of acute optic neuritis, even when HCVA has recovered. Studies reveal correlations between LCLA and the Expanded Disability Status Score (EDSS), Multiple Sclerosis Functional Composite (MSFC), retinal nerve fiber layer (RNFL) and ganglion cell layer plus inner plexiform layer (GCL + IPL) thickness on optical coherence tomography (OCT), brain magnetic resonance imaging (MRI), visual evoked potential (VEP), electroretinogram (ERG), pupillary function, and King-Devick testing. This review also concludes that a 7-point change in LCLA is clinically meaningful. The overall goal of this review is to describe and characterize the LCLA metric for research and clinical use among persons with MS.
Collapse
Affiliation(s)
- Laura J Balcer
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Jenelle Raynowska
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Rachel Nolan
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Steven L Galetta
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Raju Kapoor
- National Hospital for Neurology and Neurosurgery, London, UK
| | - Ralph Benedict
- Department of Neurology, University at Buffalo, Buffalo, NY, USA
| | | | | | | | | | -
- Multiple Sclerosis Outcome Assessments Consortium (MSOAC), Critical Path Institute, Tucson, AZ, USA
| |
Collapse
|
48
|
Coric D, Balk LJ, Verrijp M, Eijlers A, Schoonheim MM, Killestein J, Uitdehaag BM, Petzold A. Cognitive impairment in patients with multiple sclerosis is associated with atrophy of the inner retinal layers. Mult Scler 2017; 24:158-166. [PMID: 28273785 PMCID: PMC5987993 DOI: 10.1177/1352458517694090] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Inner retinal layer (IRL) atrophy is a potential biomarker for neurodegeneration in multiple sclerosis (MS). OBJECTIVE To investigate the relationship between cognitive impairment and IRL atrophy in MS. METHODS Cross-sectional study design, including 217 patients and 59 healthy controls. Subjects were investigated clinically, underwent retinal optical coherence tomography (OCT) and comprehensive cognitive assessments. The association between these modalities was evaluated by regression analyses. RESULTS Of the patients, 44.2% were cognitively impaired. In the absence of multiple sclerosis-associated optic neuritis (MSON), cognitively impaired patients had a significantly lower mean peripapillary retinal nerve fiber layer (pRNFL, Δ: 8.13 µm, p < 0.001) and mean macular ganglion cell-inner plexiform layer (mGCIPL, Δ: 11.50 µm, p < 0.001) thickness compared to cognitively preserved patients. There was a significant association between the presence of cognitive impairment and pRNFL (odds ratio (OR): 1.11, 95% confidence interval (CI): 1.04-1.18, p = 0.001) and mGCIPL (OR = 1.11, 95% CI = 1.05-1.18, p < 0.001) atrophy. This association was masked by the severe IRL atrophy seen following MSON. CONCLUSION The strong relationship between cognitive impairment across multiple cognitive domains and atrophy of the pRNFL and mGCIPL in patients who never suffered from MSON suggests that OCT is useful in assessing central nervous system neurodegeneration in MS.
Collapse
Affiliation(s)
- Danko Coric
- Department of Neurology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Lisanne J Balk
- Department of Neurology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Merike Verrijp
- Department of Neurology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Anand Eijlers
- Department of Anatomy and Neuroscience, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Menno M Schoonheim
- Department of Anatomy and Neuroscience, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Joep Killestein
- Department of Neurology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Bernard Mj Uitdehaag
- Department of Neurology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Axel Petzold
- Department of Ophthalmology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands; Department of Neurology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands; Moorfields Eye Hospital, London, UK
| |
Collapse
|
49
|
Higashiyama T, Ichiyama Y, Muraki S, Nishida Y, Ohji M. Optical Coherence Tomography Angiography of Retinal Perfusion in Chiasmal Compression. Ophthalmic Surg Lasers Imaging Retina 2016; 47:724-9. [DOI: 10.3928/23258160-20160808-05] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 06/07/2016] [Indexed: 11/20/2022]
|
50
|
Burton JM, Eliasziw M, Trufyn J, Tung C, Carter G, Costello F. A prospective cohort study of vitamin D in optic neuritis recovery. Mult Scler 2016; 23:82-93. [PMID: 27037181 DOI: 10.1177/1352458516642315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background: Vitamin D sufficiency is associated with better inflammatory outcomes in multiple sclerosis (MS). We hypothesize that it is also associated with better long-term neurodegenerative measures. Objectives: To show that vitamin D sufficient patients (25-hydroxy vitamin D (25(OH)D) > 80 nmol/L) have better optical coherence tomography (OCT) neuroaxonal measures of ganglion cell layer (GCL) and retinal nerve fiber layer (RNFL) thickness after optic neuritis. Methods: In this prospective cohort study, acute optic neuritis patients underwent OCT and serum 25(OH)D assessments at baseline and at month 6, with comparisons between vitamin D sufficient and insufficient patients, and men and women. Potential confounding variables were evaluated. Results: Of 49 enrolled, 36 had complete, analyzable data. At baseline, vitamin D insufficiency was associated with greater RNFL thickness (134.3 vs. 95.2 µm; p = 0.003) in affected eyes. At month 6, insufficient patients had greater GCL thinning (GCL inter-eye difference: 14.2 vs. 4.0 µm, p = 0.008). Men had greater RNFL and GCL thinning than women (GCL: 61.2 vs. 69.6 µm, p = 0.036). Conclusion: Acutely, in optic neuritis, RNFL thickness is increased with vitamin D insufficiency. Chronically, neuronal, and possibly axonal loss are associated with vitamin D insufficiency and male gender, suggesting vitamin D and female gender may confer neuroprotection in optic neuritis, and possibly, central nervous system (CNS) inflammatory disease.
Collapse
Affiliation(s)
- Jodie M Burton
- Department of Clinical Neurosciences and Department of Community Health Sciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Misha Eliasziw
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Jessie Trufyn
- Neurosciences Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Chelsia Tung
- Biological Sciences Undergraduate Sciences Program, University of Calgary, Calgary, AB, Canada
| | - Gorden Carter
- Eye Clinic, Rockyview General Hospital, Calgary, AB, Canada
| | - Fiona Costello
- Department of Clinical Neurosciences and Department of Surgery (Ophthalmology), Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|