1
|
Microtubules as a potential platform for energy transfer in biological systems: a target for implementing individualized, dynamic variability patterns to improve organ function. Mol Cell Biochem 2023; 478:375-392. [PMID: 35829870 DOI: 10.1007/s11010-022-04513-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
Variability characterizes the complexity of biological systems and is essential for their function. Microtubules (MTs) play a role in structural integrity, cell motility, material transport, and force generation during mitosis, and dynamic instability exemplifies the variability in the proper function of MTs. MTs are a platform for energy transfer in cells. The dynamic instability of MTs manifests itself by the coexistence of growth and shortening, or polymerization and depolymerization. It results from a balance between attractive and repulsive forces between tubulin dimers. The paper reviews the current data on MTs and their potential roles as energy-transfer cellular structures and presents how variability can improve the function of biological systems in an individualized manner. The paper presents the option for targeting MTs to trigger dynamic improvement in cell plasticity, regulate energy transfer, and possibly control quantum effects in biological systems. The described system quantifies MT-dependent variability patterns combined with additional personalized signatures to improve organ function in a subject-tailored manner. The platform can regulate the use of MT-targeting drugs to improve the response to chronic therapies. Ongoing trials test the effects of this platform on various disorders.
Collapse
|
2
|
Farmani AR, Mahdavinezhad F, Scagnolari C, Kouhestani M, Mohammadi S, Ai J, Shoormeij MH, Rezaei N. An overview on tumor treating fields (TTFields) technology as a new potential subsidiary biophysical treatment for COVID-19. Drug Deliv Transl Res 2021; 12:1605-1615. [PMID: 34542840 PMCID: PMC8451390 DOI: 10.1007/s13346-021-01067-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 11/25/2022]
Abstract
COVID-19 pandemic situation has affected millions of people with tens of thousands of deaths worldwide. Despite all efforts for finding drugs or vaccines, the key role for the survival of patients is still related to the immune system. Therefore, improving the efficacy and the functionality of the immune system of COVID-19 patients is very crucial. The potential new, non-invasive, FDA-approved biophysical technology that could be considered in this regard is tumor treating fields (TTFields) based on an alternating electric field has great biological effects. TTFields have significant effects in improving the functionality of dendritic cell, and cytotoxic T-cells, and these cells have a major role in defense against viral infection. Hence, applying TTFields could help COVID-19 patients against infection. Additionally, TTFields can reduce viral genomic replication, by reducing the expressions of some of the vital members of DNA replication complex genes from the minichromosome maintenance family (MCMs). These genes not only are involved in DNA replication but it has also been proven that they have a crucial role in viral replication. Also, TTFields suppress the formation of the network of tunneling nanotubes (TNTs) which is knows as filamentous (F)-actin-rich tubular structures. TNTs have a critical role in promoting the spread of viruses through improving viral entry and acting as a protective agent for viral components from immune cells and even pharmaceuticals. Moreover, TTFields enhance autophagy which leads to apoptosis of virally infected cells. Thus, it can be speculated that using TTFields may prove to be a promising approach as a subsidiary treatment of COVID-19.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Tissue Engineering Department-School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Mahdavinezhad
- Anatomy Department-School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University, Affiliated to Istituto Pasteur Italia, Viale Di Porta Tiburtina, 28, 00185 Rome, Italy
| | - Mahsa Kouhestani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Mohammadi
- Department of Plastic Engineering, Faculty of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Shoormeij
- Emergency Medicine Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
3
|
Yang P, Jiang Y, Rhea PR, Coway T, Chen D, Gagea M, Harribance SL, Cohen L. Human Biofield Therapy and the Growth of Mouse Lung Carcinoma. Integr Cancer Ther 2019; 18:1534735419840797. [PMID: 30947564 PMCID: PMC6475842 DOI: 10.1177/1534735419840797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biofield therapies have gained popularity and are being explored as possible
treatments for cancer. In some cases, devices have been developed that mimic the
electromagnetic fields that are emitted from people delivering biofield
therapies. However, there is limited research examining if humans could
potentially inhibit the proliferation of cancer cells and suppress tumor growth
through modification of inflammation and the immune system. We found that human
NSCLC A549 lung cancer cells exposed to Sean L. Harribance, a purported healer,
showed reduced viability and downregulation of pAkt. We further observed that
the experimental exposure slowed growth of mouse Lewis lung carcinoma evidenced
by significantly smaller tumor volume in the experimental mice (274.3 ± 188.9
mm3) than that of control mice (740.5 ± 460.2 mm3;
P < .05). Exposure to the experimental condition
markedly reduced tumoral expression of pS6, a cytosolic marker of cell
proliferation, by 45% compared with that of the control group. Results of
reversed phase proteomic array suggested that the experimental exposure
downregulated the PD-L1 expression in the tumor tissues. Similarly, the serum
levels of cytokines, especially MCP-1, were significantly reduced in the
experimental group (P < .05). Furthermore, TILs profiling
showed that CD8+/CD4− immune cell population was increased
by almost 2-fold in the experimental condition whereas the number of
intratumoral CD25+/CD4+ (T-reg cells) and CD68+
macrophages were 84% and 33%, respectively, lower than that of the control
group. Together, these findings suggest that exposure to purported biofields
from a human is capable of suppressing tumor growth, which might be in part
mediated through modification of the tumor microenvironment, immune function,
and anti-inflammatory activity in our mouse lung tumor model.
Collapse
Affiliation(s)
- Peiying Yang
- 1 The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Jiang
- 1 The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrea R Rhea
- 1 The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tara Coway
- 1 The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dongmei Chen
- 1 The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mihai Gagea
- 1 The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sean L Harribance
- 2 Sean Harribance Institute for Parapsychology, Inc., Sugarland, TX, USA
| | - Lorenzo Cohen
- 1 The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Barvitenko N, Lawen A, Aslam M, Pantaleo A, Saldanha C, Skverchinskaya E, Regolini M, Tuszynski JA. Integration of intracellular signaling: Biological analogues of wires, processors and memories organized by a centrosome 3D reference system. Biosystems 2018; 173:191-206. [PMID: 30142359 DOI: 10.1016/j.biosystems.2018.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Myriads of signaling pathways in a single cell function to achieve the highest spatio-temporal integration. Data are accumulating on the role of electromechanical soliton-like waves in signal transduction processes. Theoretical studies strongly suggest feasibility of both classical and quantum computing involving microtubules. AIM A theoretical study of the role of the complex composed of the plasma membrane and the microtubule-based cytoskeleton as a system that transmits, stores and processes information. METHODS Theoretical analysis presented here refers to (i) the Penrose-Hameroff theory of consciousness (Orchestrated Objective Reduction; Orch OR), (ii) the description of the centrosome as a reference system for construction of the 3D map of the cell proposed by Regolini, (iii) the Heimburg-Jackson model of the nerve pulse propagation along axons' lipid bilayer as soliton-like electro-mechanical waves. RESULTS AND CONCLUSION The ideas presented in this paper provide a qualitative model for the decision-making processes in a living cell undergoing a differentiation process. OUTLOOK This paper paves the way for the real-time live-cell observation of information processing by microtubule-based cytoskeleton and cell fate decision making.
Collapse
Affiliation(s)
| | - Alfons Lawen
- Monash University, School of Biomedical Sciences, Department of Biochemistry and Molecular Biology, VIC, 3800, Australia
| | - Muhammad Aslam
- Medical Clininc I, Cardiology/Angiology, University Hospital, Justus-Liebig-University, Giessen, Germany
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Carlota Saldanha
- Instituto de Medicina Molecular, Instituto de Bioquimica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Marco Regolini
- Department of Bioengineering and Mathematical Modeling, AudioLogic, Milan, Italy
| | - Jack A Tuszynski
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada; Department of Physics, University of Alberta, Edmonton, Alberta, Canada; Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128, Torino, Italy.
| |
Collapse
|
5
|
Pokorný J, Pokorný J, Borodavka F. Warburg effect-damping of electromagnetic oscillations. Electromagn Biol Med 2017; 36:270-278. [PMID: 28574758 DOI: 10.1080/15368378.2017.1326933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mitochondrial dysfunction is a central defect in cells creating the Warburg and reverse Warburg effect cancers. However, the link between mitochondrial dysfunction and cancer has not yet been clearly explained. Decrease of mitochondrial oxidative energy production to about 50 % in comparison with healthy cells may be caused by inhibition of pyruvate transfer into mitochondrial matrix and/or disturbed H+ ion transfer across inner mitochondrial membrane into cytosol. Lowering of the inner membrane potential and shifting of the working point of mitochondria to high values of pH above an intermediate point causes reorganization of the ordered water layer at the mitochondrial membrane. The reorganized ordered water layers at high pH values release electrons which are transferred to the cytosol rim of the layer. The electrons damp electromagnetic activity of Warburg effect cancer cells or fibroblasts associated with reverse Warburg effect cancer cells leading to lowered electromagnetic activity, disturbed coherence, increased frequency of oscillations and decreased level of biological functions. In reverse Warburg effect cancers, associated fibroblasts supply energy-rich metabolites to the cancer cell resulting in increased power of electromagnetic field, fluctuations due to shift of oscillations to an unstable nonlinear region, decreased frequency and loss of coherence.
Collapse
Affiliation(s)
- Jiří Pokorný
- a Institute of Physics, Czech Academy of Sciences , Prague , Czech Republic
| | - Jan Pokorný
- a Institute of Physics, Czech Academy of Sciences , Prague , Czech Republic
| | - Fedir Borodavka
- a Institute of Physics, Czech Academy of Sciences , Prague , Czech Republic
| |
Collapse
|
6
|
Pokorný J, Pokorný J, Jandová A, Kobilková J, Vrba J, Vrba J. Energy parasites trigger oncogene mutation. Int J Radiat Biol 2016; 92:577-82. [PMID: 27548028 DOI: 10.1080/09553002.2016.1222095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE Cancer initialization can be explained as a result of parasitic virus energy consumption leading to randomized genome chemical bonding. MATERIALS AND METHODS Analysis of experimental data on cell-mediated immunity (CMI) containing about 12,000 cases of healthy humans, cancer patients and patients with precancerous cervical lesions disclosed that the specific cancer and the non-specific lactate dehydrogenase-elevating (LDH) virus antigen elicit similar responses. The specific antigen is effective only in cancer type of its origin but the non-specific antigen in all examined cancers. CMI results of CIN patients display both healthy and cancer state. The ribonucleic acid (RNA) of the LDH virus parasitizing on energy reduces the ratio of coherent/random oscillations. Decreased effect of coherent cellular electromagnetic field on bonding electrons in biological macromolecules leads to elevating probability of random genome reactions. RESULTS Overlapping of wave functions in biological macromolecules depends on energy of the cellular electromagnetic field which supplies energy to bonding electrons for selective chemical bonds. CMI responses of cancer and LDH virus antigens in all examined healthy, precancerous and cancer cases point to energy mechanism in cancer initiation. CONCLUSIONS Dependence of the rate of biochemical reactions on biological electromagnetic field explains yet unknown mechanism of genome mutation.
Collapse
Affiliation(s)
- Jiří Pokorný
- a Institute of Physics, Czech Academy of Sciences , Prague , Czech Republic
| | - Jan Pokorný
- a Institute of Physics, Czech Academy of Sciences , Prague , Czech Republic
| | - Anna Jandová
- b Institute of Photonics and Electronics, Czech Academy of Sciences , Prague , Czech Republic
| | - Jitka Kobilková
- c 1st Faculty of Medicine, Department of Obstetrics and Gynaecology , Charles University , Prague , Czech Republic
| | - Jan Vrba
- d Faculty of Electrical Engineering , Czech Technical University in Prague , Prague , Czech Republic
| | - Jan Vrba
- e Faculty of Biomedical Engineering , Czech Technical University in Kladno , Kladno , Czech Republic
| |
Collapse
|
7
|
Pokorný J, Pokorný J, Foletti A, Kobilková J, Vrba J, Vrba J. Mitochondrial Dysfunction and Disturbed Coherence: Gate to Cancer. Pharmaceuticals (Basel) 2015; 8:675-95. [PMID: 26437417 PMCID: PMC4695805 DOI: 10.3390/ph8040675] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/06/2015] [Accepted: 09/11/2015] [Indexed: 12/21/2022] Open
Abstract
Continuous energy supply, a necessary condition for life, excites a state far from thermodynamic equilibrium, in particular coherent electric polar vibrations depending on water ordering in the cell. Disturbances in oxidative metabolism and coherence are a central issue in cancer development. Oxidative metabolism may be impaired by decreased pyruvate transfer to the mitochondrial matrix, either by parasitic consumption and/or mitochondrial dysfunction. This can in turn lead to disturbance in water molecules’ ordering, diminished power, and coherence of the electromagnetic field. In tumors with the Warburg (reverse Warburg) effect, mitochondrial dysfunction affects cancer cells (fibroblasts associated with cancer cells), and the electromagnetic field generated by microtubules in cancer cells has low power (high power due to transport of energy-rich metabolites from fibroblasts), disturbed coherence, and a shifted frequency spectrum according to changed power. Therapeutic strategies restoring mitochondrial function may trigger apoptosis in treated cells; yet, before this step is performed, induction (inhibition) of pyruvate dehydrogenase kinases (phosphatases) may restore the cancer state. In tumor tissues with the reverse Warburg effect, Caveolin-1 levels should be restored and the transport of energy-rich metabolites interrupted to cancer cells. In both cancer phenotypes, achieving permanently reversed mitochondrial dysfunction with metabolic-modulating drugs may be an effective, specific anti-cancer strategy.
Collapse
Affiliation(s)
- Jiří Pokorný
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 57, 182 51 Prague 8, Czech Republic.
| | - Jan Pokorný
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic.
| | - Alberto Foletti
- Institute of Translational Pharmacology, National Research Council-CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy.
- Clinical Biophysics International Research Group, via Maggio 21, Lugano 6900, Switzerland.
| | - Jitka Kobilková
- Department of Obstetrics and Gynaecology, 1st Faculty of Medicine, Charles University in Prague, Apolinářská 18, 128 00 Prague 2, Czech Republic.
| | - Jan Vrba
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Prague 6, Czech Republic.
| | - Jan Vrba
- Faculty of Biomedical Engineering, Czech Technical University in Kladno, Sitná Square 3105, 272 01 Kladno, Czech Republic.
| |
Collapse
|
8
|
Pokorný J, Pokorný J, Kobilková J, Jandová A, Vrba J, Vrba J. Targeting mitochondria for cancer treatment - two types of mitochondrial dysfunction. Prague Med Rep 2015; 115:104-19. [PMID: 25626329 DOI: 10.14712/23362936.2014.41] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Two basic types of cancers were identified – those with the mitochondrial dysfunction in cancer cells (the Warburg effect) or in fibroblasts supplying energy rich metabolites to a cancer cell with functional mitochondria (the reverse Warburg effect). Inner membrane potential of the functional and dysfunctional mitochondria measured by fluorescent dyes (e.g. by Rhodamine 123) displays low and high values (apparent potential), respectively, which is in contrast to the level of oxidative metabolism. Mitochondrial dysfunction (full function) results in reduced (high) oxidative metabolism, low (high) real membrane potential, a simple layer (two layers) of transported protons around mitochondria, and high (low) damping of microtubule electric polar vibrations. Crucial modifications are caused by ordered water layer (exclusion zone). For the high oxidative metabolism one proton layer is at the mitochondrial membrane and the other at the outer rim of the ordered water layer. High and low damping of electric polar vibrations results in decreased and increased electromagnetic activity in cancer cells with the normal and the reverse Warburg effect, respectively. Due to nonlinear properties the electromagnetic frequency spectra of cancer cells and transformed fibroblasts are shifted in directions corresponding to their power deviations resulting in disturbances of interactions and escape from tissue control. The cancer cells and fibroblasts of the reverse Warburg effect tumors display frequency shifts in mutually opposite directions resulting in early generalization. High oxidative metabolism conditions high aggressiveness. Mitochondrial dysfunction, a gate to malignancy along the cancer transformation pathway, forms a narrow neck which could be convenient for cancer treatment.
Collapse
Affiliation(s)
- Jiří Pokorný
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Pokorný
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jitka Kobilková
- Department of Obstetrics and Gynaecology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Anna Jandová
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Vrba
- Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jan Vrba
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| |
Collapse
|
9
|
Strunová M, Pavlišta D, Kobilková J, Pokorný J, Janoušek M, Bauerová L, Jandová A. Is the small size of a breast cancer tumor the crucial point for successful medical treatment? Prague Med Rep 2015; 115:134-40. [PMID: 25626332 DOI: 10.14712/23362936.2014.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The presented case displays a clinical study of a cancer phenotype with a poor clinical outcome. Prediction of cancer development and effects of treatment at the beginning of the clinical stage is difficult as the knowledge of cancer process and all necessary parameters of the host body are limited. Cancer is mainly studied on the basis of biochemical-genetic processes and their morphological manifestation. However, the malignant process is assumed to be of essential biophysical nature and develops after mitochondrial dysfunction, which is a direct result of oncogene mutation. Cancers based on the normal and the reverse Warburg effect should be distinguished. The cancer tumors with the reverse Warburg effect display aggressiveness associated with a high rate of recurrence and metastatic implantation. Besides the nature of the two basic types of breast cancer tumors the outcome depends not only on their type, size, and site but also on reactions and interaction with the surrounding tissue and the body aptitude for metastatic activity connected with individual blood or lymphatic vessels for metastatic transport. It is necessary to assess all favourable and adverse factors for cancer development. General reliable method of their specification for all cancers is not available. Nevertheless, the main factor seems to be aggressiveness of cancer cells as follows from interpretation. To reveal the aggressive reverse Warburg effect tumors, metabolic biomarkers of the fibroblast stress should be examined.
Collapse
Affiliation(s)
- Marie Strunová
- Department of Obstetrics and Gynaecology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - David Pavlišta
- Department of Obstetrics and Gynaecology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Jitka Kobilková
- Department of Obstetrics and Gynaecology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Pokorný
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miloslav Janoušek
- Department of Obstetrics and Gynaecology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Lenka Bauerová
- Institute of Pathology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Anna Jandová
- Department of Obstetrics and Gynaecology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
10
|
Friesen DE, Craddock TJA, Kalra AP, Tuszynski JA. Biological wires, communication systems, and implications for disease. Biosystems 2014; 127:14-27. [PMID: 25448891 DOI: 10.1016/j.biosystems.2014.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 12/14/2022]
Abstract
Microtubules, actin, and collagen are macromolecular structures that compose a large percentage of the proteins in the human body, helping form and maintain both intracellular and extracellular structure. They are biological wires and are structurally connected through various other proteins. Microtubules (MTs) have been theorized to be involved in classical and quantum information processing, and evidence continues to suggest possible semiconduction through MTs. The previous Dendritic Cytoskeleton Information Processing Model has hypothesized how MTs and actin form a communication network in neurons. Here, we review information transfer possibilities involving MTs, actin, and collagen, and the evidence of an organism-wide high-speed communication network that may regulate morphogenesis and cellular proliferation. The direct and indirect evidence in support of this hypothesis, and implications for chronic diseases such as cancer and neurodegenerative diseases are discussed.
Collapse
Affiliation(s)
- Douglas E Friesen
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Travis J A Craddock
- Center for Psychological Studies, Graduate School of Computer and Information Sciences, College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; Clinical Systems Biology Group, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Aarat P Kalra
- Department of Chemistry, Dayalbagh Educational Institute, Agra 282005, India
| | - Jack A Tuszynski
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada; Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
| |
Collapse
|
11
|
Pokorný J, Pokorný J, Kobilková J. Postulates on electromagnetic activity in biological systems and cancer. Integr Biol (Camb) 2014; 5:1439-46. [PMID: 24166132 DOI: 10.1039/c3ib40166a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A framework of postulates is formulated to define the existence, nature, and function of a coherent state far from thermodynamic equilibrium in biological systems as an essential condition for the existence of life. This state is excited and sustained by energy supply. Mitochondria producing small packets of energy in the form of adenosine and guanosine triphosphate and strong static electric field around them form boundary elements between biochemical-genetic and physical processes. The transformation mechanism of chemical energy into useful work for biological needs and the excitation of the coherent state far from thermodynamic equilibrium are fundamental problems. The exceptional electrical polarity of biological objects and long-range interactions suggest a basic role of the endogenous electromagnetic field generated by living cells. The formulated postulates encompass generation, properties and function of the electromagnetic field connected with biological activity and its pathological deviations. Excited longitudinal polar oscillations in microtubules in eukaryotic cells generate the endogenous electromagnetic field. The metabolic activity of mitochondria connected with water ordering forms conditions for excitation. The electrodynamic field plays an important role in the establishment of coherence, directional transport, organization of morphological structures, interactions, information transfer, and brain activity. An overview of experimental results and physical models supporting the postulates is included. The existence of the endogenous biological electromagnetic field, its generation by microtubules and supporting effects produced by mitochondria have a reasonable experimental foundation. Cancer transformation is a pathological reduction of the coherent energy state far from thermodynamic equilibrium. Malignancy, i.e. local invasion and metastasis, is a direct consequence of mitochondrial dysfunction, disturbed microtubule polar oscillations and the generated electromagnetic field.
Collapse
Affiliation(s)
- Jiří Pokorný
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | |
Collapse
|
12
|
Biological Water Dynamics and Entropy: A Biophysical Origin of Cancer and Other Diseases. ENTROPY 2013. [DOI: 10.3390/e15093822] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|