1
|
Lee G, Kim YH, Kim D, Lee DH, Bhang SH, Lee K. PCL-fibrin-alginate hydrogel based cell co-culture system for improving angiogenesis and immune modulation in limb ischemia. Colloids Surf B Biointerfaces 2025; 250:114553. [PMID: 39921993 DOI: 10.1016/j.colsurfb.2025.114553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/10/2024] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Stem cell therapy has demonstrated promise in regenerative medicine due to their ability to differentiate into various cell types and secrete growth factors. However, challenges such as poor survival rate of transplanted cells under ischemic and immune conditions limit its effectiveness. To address these issues, we developed a polycaprolactone (PCL)-fibrin-alginate matrix hydrogel, which combines adipose-derived stem cells and human umbilical vein endothelial cells with a PCL fiber, encapsulated within fibrin and alginate hydrogel to enhance cell survival, proliferation, and immune modulation. This structure offers protection to the encapsulated cells, supports angiogenesis, and modulates the immune response, significantly improving therapeutic outcomes in a mouse model of hindlimb ischemia. Our in vitro and in vivo results demonstrate the scaffold's ability to support cell viability, promote angiogenesis, and modulate inflammatory responses, indicating its potential as a promising platform for ischemic tissue repair and regenerative medicine. This innovative approach to cell-based therapy highlights the importance of scaffold design in enhancing the therapeutic efficacy of stem cell treatments for ischemic diseases.
Collapse
Affiliation(s)
- Gyubok Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeong Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dongwoo Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Hyun Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Trotzier C, Bellanger C, Abdessadeq H, Delannoy P, Mojallal A, Auxenfans C. Deciphering influence of donor age on adipose-derived stem cells: in vitro paracrine function and angiogenic potential. Sci Rep 2024; 14:27589. [PMID: 39528480 PMCID: PMC11555058 DOI: 10.1038/s41598-024-73875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND As fat grafting is commonly used as a filler, Adipose-derived stem/stromal cells (ASC) have been reported to be key player in retention rate. Paracrine and differentiation potential of those cells confer them strong pro-angiogenic capacities. However, a full characterization of the influence of aging on ASC has not been reported yet. Here we've investigated the effect of age on paracrine function, stemness and angiogenic potential of ASC. METHODS ASC were extracted from young and old adult donors. We assessed stromal vascular fraction cell populations repartition, ASC stemness potential, capability to differentiate into mesenchymal lineages as well as their secretome. Angiogenic potential was assessed using a sprouting assay, an indirect co-culture of ASC and dermal microvascular endothelial cells (EC). Total vascular sprout length was measured, and co-culture soluble factors were quantified. Pro-angiogenic factors alone or in combination as well as ASC-conditioned medium (CM) were added to EC to assess sprouting induction. RESULTS Decrease of endothelial cells yield and percentage is observed in cells extracted from adipose tissue of older patients, whereas ASC percentage increased with age. Clonogenic potential of ASC is stable with age. ASC can differentiate into adipocytes, chondrocytes and osteoblasts, and aging does not alter this potential. Among the 25 analytes quantified, high levels of pro-angiogenic factors were found, but none is significantly modulated with age. ASC induce a significantly longer vascular sprouts compared to fibroblasts, and no difference was found between young and old ASC donors on that parameter. Higher concentrations of FGF-2, G-CSF, HGF and IL-8, and lower concentrations of VEGF-C were quantified in EC/ASC co-cultures compared to EC/fibroblasts co-cultures. EC/ASC from young donors secrete higher levels of VEGF-A compared to old ones. Neither soluble factor nor CM without cells are able to induce organized sprouts, highlighting the requirement of cell communication for sprouting. CM produced by ASC supporting development of long vascular sprouts promote sprouting in co-cultures that establish shorter sprouts. CONCLUSION Our results show cells from young and old donors exhibit no difference in all assessed parameters, suggesting all patients could be included in clinical applications. We emphasized the leading role of ASC in angiogenesis, without impairment with age, where secretome is a key but not sufficient actor.
Collapse
Affiliation(s)
- Chloe Trotzier
- Advanced Research, L'Oréal Research and Innovation, 1, Av. Eugene Schueller, 93600, Aulnay sous Bois, France.
| | - Clement Bellanger
- Advanced Research, L'Oréal Research and Innovation, 1, Av. Eugene Schueller, 93600, Aulnay sous Bois, France
| | - Hakima Abdessadeq
- Advanced Research, L'Oréal Research and Innovation, 1, Av. Eugene Schueller, 93600, Aulnay sous Bois, France
| | - Philippe Delannoy
- Advanced Research, L'Oréal Research and Innovation, 1, Av. Eugene Schueller, 93600, Aulnay sous Bois, France
| | - Ali Mojallal
- Department of Plastic, Reconstructive and Aesthetic Surgery, La Croix Rousse Hospital, Bernard Lyon 1 University, Lyon, France
| | - Celine Auxenfans
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
3
|
Chen WT, Luo Y, Chen XM, Xiao JH. Role of exosome-derived miRNAs in diabetic wound angiogenesis. Mol Cell Biochem 2024; 479:2565-2580. [PMID: 37891446 DOI: 10.1007/s11010-023-04874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023]
Abstract
Chronic wounds with high disability are among the most common and serious complications of diabetes. Angiogenesis dysfunction impair wound healing in patients with diabetes. Compared with traditional therapies that can only provide symptomatic treatment, stem cells-owing to their powerful paracrine properties, can alleviate the pathogenesis of chronic diabetic wounds and even cure them. Exosome-derived microRNAs (miRNAs), important components of stem cell paracrine signaling, have been reported for therapeutic use in various disease models, including diabetic wounds. Exosome-derived miRNAs have been widely reported to be involved in regulating vascular function and have promising applications in the repair and regeneration of skin wounds. Therefore, this article aims to review the current status of the pathophysiology of exosome-derived miRNAs in the diabetes-induced impairment of wound healing, along with current knowledge of the underlying mechanisms, emphasizing the regulatory mechanism of angiogenesis, we hope to document the emerging theoretical basis for improving wound repair by restoring angiogenesis in diabetes.
Collapse
Affiliation(s)
- Wen-Ting Chen
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Yi Luo
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
- Guizhou Provincial Universities Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Xue-Mei Chen
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Jian-Hui Xiao
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
- Guizhou Provincial Universities Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
| |
Collapse
|
4
|
Das M, Mondal S, Ghosh R, Darbar S, Roy L, Das AK, Pal D, Bhattacharya SS, Mallick AK, Kundu JK, Pal SK. A study of scarless wound healing through programmed inflammation, proliferation and maturation using a redox balancing nanogel. J Biomed Mater Res A 2024; 112:1594-1611. [PMID: 38545912 DOI: 10.1002/jbm.a.37712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 07/12/2024]
Abstract
In the study, we have shown the efficacy of an indigenously developed redox balancing chitosan gel with impregnated citrate capped Mn3O4 nanoparticles (nanogel). Application of the nanogel on a wound of preclinical mice model shows role of various signaling molecules and growth factors, and involvement of reactive oxygen species (ROS) at every stage, namely hemostasis, inflammation, and proliferation leading to complete maturation for the scarless wound healing. While in vitro characterization of nanogel using SEM, EDAX, and optical spectroscopy reveals pH regulated redox buffering capacity, in vivo preclinical studies on Swiss albino involving IL-12, IFN-γ, and α-SMA signaling molecules and detailed histopathological investigation and angiogenesis on every stage elucidate role of redox buffering for the complete wound healing process.
Collapse
Affiliation(s)
- Monojit Das
- Department of Zoology, Vidyasagar University, Midnapore, India
- Department of Zoology, Uluberia College, University of Calcutta, Howrah, India
| | - Susmita Mondal
- Department of Chemical, and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Ria Ghosh
- Department of Chemical, and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Soumendra Darbar
- Research and Development Division, Dey's Medical Stores (Mfg.) Ltd, Kolkata, India
| | - Lopamudra Roy
- Department of Applied Optics and Photonics, University of Calcutta, Kolkata, West Bengal, India
| | - Anjan Kumar Das
- Department of Pathology, Coochbehar Government Medical College and Hospital, India
| | - Debasish Pal
- Department of Zoology, Uluberia College, University of Calcutta, Howrah, India
| | | | - Asim Kumar Mallick
- Department of Pediatrics, Nil RatanSircar Medical College and Hospital, Kolkata, India
| | | | - Samir Kumar Pal
- Department of Zoology, Uluberia College, University of Calcutta, Howrah, India
- Department of Chemical, and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| |
Collapse
|
5
|
Doherty EL, Krohn G, Warren EC, Patton A, Whitworth CP, Rathod M, Biehl A, Aw WY, Freytes DO, Polacheck WJ. Human Cell-Derived Matrix Composite Hydrogels with Diverse Composition for Use in Vasculature-on-chip Models. Adv Healthc Mater 2024; 13:e2400192. [PMID: 38518808 PMCID: PMC11281875 DOI: 10.1002/adhm.202400192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Microphysiological and organ-on-chip platforms seek to address critical gaps in human disease models and drug development that underlie poor rates of clinical success for novel interventions. While the fabrication technology and model cells used to synthesize organs-on-chip have advanced considerably, most platforms rely on animal-derived or synthetic extracellular matrix as a cell substrate, limiting mimicry of human physiology and precluding use in modeling diseases in which matrix dynamics play a role in pathogenesis. Here, the development of human cell-derived matrix (hCDM) composite hydrogels for use in 3D microphysiologic models of the vasculature is reported. hCDM composite hydrogels are derived from human donor fibroblasts and maintain a complex milieu of basement membrane, proteoglycans, and nonfibrillar matrix components. The use of hCDM composite hydrogels as 2D and 3D cell culture substrates is demonstrated, and hCDM composite hydrogels are patterned to form engineered human microvessels. Interestingly, hCDM composite hydrogels are enriched in proteins associated with vascular morphogenesis as determined by mass spectrometry, and functional analysis demonstrates proangiogenic signatures in human endothelial cells cultured in these hydrogels. In conclusion, this study suggests that human donor-derived hCDM composite hydrogels could address technical gaps in human organs-on-chip development and serve as substrates to promote vascularization.
Collapse
Affiliation(s)
- Elizabeth L Doherty
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Grace Krohn
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Emily C Warren
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Alexandra Patton
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Chloe P Whitworth
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill School of Medicine, 130 Mason Farm Road, Chapel Hill, Carolina, NC 27599, USA
| | - Mitesh Rathod
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Andreea Biehl
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Wen Yih Aw
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - Donald O Freytes
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
| | - William J Polacheck
- The Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 10010 Mary Ellen Jones Building, 116 Manning Drive, Chapel Hill, NC 27514, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Chapel Hill, Carolina, NC 27599, USA
| |
Collapse
|
6
|
Bersini S, Arrigoni C, Talò G, Candrian C, Moretti M. Complex or not too complex? One size does not fit all in next generation microphysiological systems. iScience 2024; 27:109199. [PMID: 38433912 PMCID: PMC10904982 DOI: 10.1016/j.isci.2024.109199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
In the attempt to overcome the increasingly recognized shortcomings of existing in vitro and in vivo models, researchers have started to implement alternative models, including microphysiological systems. First examples were represented by 2.5D systems, such as microfluidic channels covered by cell monolayers as blood vessel replicates. In recent years, increasingly complex microphysiological systems have been developed, up to multi-organ on chip systems, connecting different 3D tissues in the same device. However, such an increase in model complexity raises several questions about their exploitation and implementation into industrial and clinical applications, ranging from how to improve their reproducibility, robustness, and reliability to how to meaningfully and efficiently analyze the huge amount of heterogeneous datasets emerging from these devices. Considering the multitude of envisaged applications for microphysiological systems, it appears now necessary to tailor their complexity on the intended purpose, being academic or industrial, and possibly combine results deriving from differently complex stages to increase their predictive power.
Collapse
Affiliation(s)
- Simone Bersini
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, via Chiesa 5, 6500 Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, via Tesserete 46, 6900 Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via Buffi 13, 6900 Lugano, Switzerland
| | - Chiara Arrigoni
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, via Chiesa 5, 6500 Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, via Tesserete 46, 6900 Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via Buffi 13, 6900 Lugano, Switzerland
| | - Giuseppe Talò
- Cell and Tissue Engineering Laboratory, IRCCS Ospedale Galeazzi – Sant’Ambrogio, via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Christian Candrian
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, via Tesserete 46, 6900 Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via Buffi 13, 6900 Lugano, Switzerland
| | - Matteo Moretti
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, via Chiesa 5, 6500 Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, via Tesserete 46, 6900 Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via Buffi 13, 6900 Lugano, Switzerland
- Cell and Tissue Engineering Laboratory, IRCCS Ospedale Galeazzi – Sant’Ambrogio, via Cristina Belgioioso 173, 20157 Milano, Italy
| |
Collapse
|
7
|
Kang TY, Bocci F, Nie Q, Onuchic JN, Levchenko A. Spatial-temporal order-disorder transition in angiogenic NOTCH signaling controls cell fate specification. eLife 2024; 12:RP89262. [PMID: 38376371 PMCID: PMC10942579 DOI: 10.7554/elife.89262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Angiogenesis is a morphogenic process resulting in the formation of new blood vessels from pre-existing ones, usually in hypoxic micro-environments. The initial steps of angiogenesis depend on robust differentiation of oligopotent endothelial cells into the Tip and Stalk phenotypic cell fates, controlled by NOTCH-dependent cell-cell communication. The dynamics of spatial patterning of this cell fate specification are only partially understood. Here, by combining a controlled experimental angiogenesis model with mathematical and computational analyses, we find that the regular spatial Tip-Stalk cell patterning can undergo an order-disorder transition at a relatively high input level of a pro-angiogenic factor VEGF. The resulting differentiation is robust but temporally unstable for most cells, with only a subset of presumptive Tip cells leading sprout extensions. We further find that sprouts form in a manner maximizing their mutual distance, consistent with a Turing-like model that may depend on local enrichment and depletion of fibronectin. Together, our data suggest that NOTCH signaling mediates a robust way of cell differentiation enabling but not instructing subsequent steps in angiogenic morphogenesis, which may require additional cues and self-organization mechanisms. This analysis can assist in further understanding of cell plasticity underlying angiogenesis and other complex morphogenic processes.
Collapse
Affiliation(s)
- Tae-Yun Kang
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
- Yale UniversityNew HavenUnited States
| | - Federico Bocci
- NSF-Simons Center for Multiscale Cell Fate Research, University of California IrvineIrvineUnited States
- Department of Mathematics, University of California IrvineIrvineUnited States
| | - Qing Nie
- NSF-Simons Center for Multiscale Cell Fate Research, University of California IrvineIrvineUnited States
- Department of Mathematics, University of California IrvineIrvineUnited States
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice UniversityHoustonUnited States
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
- Yale UniversityNew HavenUnited States
| |
Collapse
|
8
|
Tripathi AS, Zaki MEA, Al-Hussain SA, Dubey BK, Singh P, Rind L, Yadav RK. Material matters: exploring the interplay between natural biomaterials and host immune system. Front Immunol 2023; 14:1269960. [PMID: 37936689 PMCID: PMC10627157 DOI: 10.3389/fimmu.2023.1269960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Biomaterials are widely used for various medical purposes, for instance, implants, tissue engineering, medical devices, and drug delivery systems. Natural biomaterials can be obtained from proteins, carbohydrates, and cell-specific sources. However, when these biomaterials are introduced into the body, they trigger an immune response which may lead to rejection and failure of the implanted device or tissue. The immune system recognizes natural biomaterials as foreign substances and triggers the activation of several immune cells, for instance, macrophages, dendritic cells, and T cells. These cells release pro-inflammatory cytokines and chemokines, which recruit other immune cells to the implantation site. The activation of the immune system can lead to an inflammatory response, which can be beneficial or detrimental, depending on the type of natural biomaterial and the extent of the immune response. These biomaterials can also influence the immune response by modulating the behavior of immune cells. For example, biomaterials with specific surface properties, such as charge and hydrophobicity, can affect the activation and differentiation of immune cells. Additionally, biomaterials can be engineered to release immunomodulatory factors, such as anti-inflammatory cytokines, to promote a tolerogenic immune response. In conclusion, the interaction between biomaterials and the body's immune system is an intricate procedure with potential consequences for the effectiveness of therapeutics and medical devices. A better understanding of this interplay can help to design biomaterials that promote favorable immune responses and minimize adverse reactions.
Collapse
Affiliation(s)
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Bidhyut Kumar Dubey
- Department of Pharmaceutical Chemistry, Era College of Pharmacy, Era University, Lucknow, India
| | - Prabhjot Singh
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Laiba Rind
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Rajnish Kumar Yadav
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| |
Collapse
|
9
|
Cadena IA, Buchanan MR, Harris CG, Jenne MA, Rochefort WE, Nelson D, Fogg KC. Engineering high throughput screening platforms of cervical cancer. J Biomed Mater Res A 2023; 111:747-764. [PMID: 36861788 DOI: 10.1002/jbm.a.37522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
Cervical cancer is the second leading cause of cancer-related death in women under 40 and is one of the few cancers to have an increased incidence rate and decreased survival rate over the last 10 years. One in five patients will have recurrent and/or distant metastatic disease and these patients face a 5-year survival rate of less than 17%. Thus, there is a pressing need to develop new anticancer therapeutics for this underserved patient population. However, the development of new anticancer drugs remains a challenge, as only 7% of novel anticancer drugs are approved for clinical use. To facilitate identification of novel and effective anticancer drugs for cervical cancer, we developed a multilayer multicellular platform of human cervical cancer cell lines and primary human microvascular endothelial cells that interfaces with high throughput drug screening methods to evaluate the anti-metastatic and anti-angiogenic drug efficacy simultaneously. Through the use of design of experiments statistical optimization, we identified the specific concentrations of collagen I, fibrinogen, fibronectin, GelMA, and PEGDA in each hydrogel layer that maximized both cervical cancer invasion and endothelial microvessel length. We then validated the optimized platform and assessed its viscoelastic properties. Finally, using this optimized platform, we conducted a targeted drug screen of four clinically relevant drugs on two cervical cancer cell lines. Overall, this work provides a valuable platform that can be used to screen large compound libraries for mechanistic studies, drug discovery, and precision oncology for cervical cancer patients.
Collapse
Affiliation(s)
- Ines A Cadena
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Mina R Buchanan
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Conor G Harris
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Molly A Jenne
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Willie E Rochefort
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Dylan Nelson
- College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Kaitlin C Fogg
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
10
|
Gnanaguru G, Tabor SJ, Bonilla GM, Sadreyev R, Yuda K, Köhl J, Connor KM. Microglia refine developing retinal astrocytic and vascular networks through the complement C3/C3aR axis. Development 2023; 150:dev201047. [PMID: 36762625 PMCID: PMC10110418 DOI: 10.1242/dev.201047] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Microglia, a resident immune cell of the central nervous system (CNS), play a pivotal role in facilitating neurovascular development through mechanisms that are not fully understood. Previous reports indicate a role for microglia in regulating astrocyte density. This current work resolves the mechanism through which microglia facilitate astrocyte spatial patterning and superficial vascular bed formation in the neuroretina during development. Ablation of microglia increased astrocyte density and altered spatial patterning. Mechanistically, we show that microglia regulate the formation of the spatially organized astrocyte template required for subsequent vascular growth, through the complement C3/C3aR axis during neuroretinal development. Lack of C3 or C3aR hindered the developmental phagocytic removal of astrocyte bodies and resulted in increased astrocyte density. In addition, increased astrocyte density was associated with elevated proangiogenic extracellular matrix gene expression in C3- and C3aR-deficient retinas, resulting in increased vascular density. These data demonstrate that microglia regulate developmental astrocyte and vascular network spatial patterning in the neuroretina via the complement axis.
Collapse
Affiliation(s)
- Gopalan Gnanaguru
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Steven J. Tabor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Gracia M. Bonilla
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kentaro Yuda
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kip M. Connor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
11
|
Wang X, Ma Y, Lu F, Chang Q. The diversified hydrogels for biomedical applications and their imperative roles in tissue regeneration. Biomater Sci 2023; 11:2639-2660. [PMID: 36790251 DOI: 10.1039/d2bm01486f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Repair and regeneration of tissues after injury are complex pathophysiological processes. Microbial infection, malnutrition, and an ischemic and hypoxic microenvironment in the injured area can impede the typical healing cascade. Distinguished by biomimicry of the extracellular matrix, high aqueous content, and diverse functions, hydrogels have revolutionized clinical practices in tissue regeneration owing to their outstanding hydrophilicity, biocompatibility, and biodegradability. Various hydrogels such as smart hydrogels, nanocomposite hydrogels, and acellular matrix hydrogels are widely used for applications ranging from bench-scale to an industrial scale. In this review, some emerging hydrogels in the biomedical field are briefly discussed. The protective roles of hydrogels in wound dressings and their diverse biological effects on multiple tissues such as bone, cartilage, nerve, muscle, and adipose tissue are also discussed. The vehicle functions of hydrogels for chemicals and cell payloads are detailed. Additionally, this review emphasizes the particular characteristics of hydrogel products that promote tissue repair and reconstruction such as anti-infection, inflammation regulation, and angiogenesis.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Yuan Ma
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| |
Collapse
|
12
|
Pereira RVS, EzEldeen M, Ugarte-Berzal E, Martens E, Malengier-Devlies B, Vandooren J, Vranckx J, Matthys P, Opdenakker G. Physiological fibrin hydrogel modulates immune cells and molecules and accelerates mouse skin wound healing. Front Immunol 2023; 14:1170153. [PMID: 37168862 PMCID: PMC10165074 DOI: 10.3389/fimmu.2023.1170153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Wound healing is a complex process to restore homeostasis after injury and insufficient skin wound healing is a considerable problem in medicine. Whereas many attempts of regenerative medicine have been made for wound healing with growth factors and cell therapies, simple pharmacological and immunological studies are lagging behind. We investigated how fibrin hydrogels modulate immune cells and molecules in skin wound healing in mice. Methods Physiological fibrin hydrogels (3.5 mg/mL fibrinogen) were generated, biophysically analyzed for stiffness and protein contents and were structurally studied by scanning electron microscopy. Physiological fibrin hydrogels were applied to full thickness skin wounds and, after 3 days, cells and molecules in wound tissues were analyzed. Leukocytes, endothelial cells, fibroblasts and keratinocytes were explored with the use of Flow Cytometry, whereas cytokines and matrix metalloproteinases were analyzed with the use of qPCR, ELISAs and zymography. Skin wound healing was analyzed microscopically at day 3, macroscopically followed daily during repair in mice and compared with commercially available fibrin sealant Tisseel. Results Exogenous fibrin at physiological concentrations decreased neutrophil and increased non-classical Ly6Clow monocyte and resolutive macrophage (CD206+ and CX3CR1+) populations, at day 3 after injury. Fibrin hydrogel reduced the expression of pro-inflammatory cytokines and increased IL-10 levels. In line with these findings, gelatinase B/MMP-9 was decreased, whereas gelatinase A/MMP-2 levels remained unaltered. Frequencies of dermal endothelial cells, fibroblasts and keratinocytes were increased and keratinocyte migration was enhanced by fibrin hydrogel. Importantly, physiological fibrin accelerated the healing of skin wounds in contrast to the highly concentrated fibrin sealant Tisseel, which delayed wound repair and possessed a higher fiber density. Conclusion Collectively, we show that adding a tailored fibrin hydrogel scaffold to a wound bed positively influences the healing process, modulating leukocyte populations and inflammatory responses towards a faster wound repair.
Collapse
Affiliation(s)
- Rafaela Vaz Sousa Pereira
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Mostafa EzEldeen
- OMFS IMPATH Research Group, University Hospitals Leuven/KU Leuven, Department of Imaging and Pathology, Leuven, Belgium
- Pediatric Dentistry and Special Dental Care, University Hospitals Leuven/KU Leuven, Department of Oral Health Sciences, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Jan Jeroen Vranckx
- Department of Development and Regeneration, University Hospitals Leuven/KU Leuven, Leuven, Belgium
- Department of Plastic and Reconstructive Surgery, University Hospitals Leuven/KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
- *Correspondence: Ghislain Opdenakker,
| |
Collapse
|
13
|
Singh D, Rai V, Agrawal DK. Regulation of Collagen I and Collagen III in Tissue Injury and Regeneration. CARDIOLOGY AND CARDIOVASCULAR MEDICINE 2023; 7:5-16. [PMID: 36776717 PMCID: PMC9912297 DOI: 10.26502/fccm.92920302] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The structure of connective tissues including cartilage, tendons, and ligaments as well as many organs, like the skin, heart, liver, kidney, lungs, blood vessels, and bones, depend on collagen. The bulk of the network of structural proteins that make up the extracellular matrix of the heart is composed of collagen type I and type III, which provide structural support for the muscle cells and are crucial for cardiac function. The prognosis and progression of a disease or diseased state may be significantly impacted by the upregulation or downregulation of the collagen types, particularly Col I and Col III. For example, increasing Col I protein levels may impose increasing myocardial stiffness, impairing the diastolic and systolic function of the myocardium. Collagen I is a stiff fibrillar protein that gives tensile strength, whereas Col III produces an elastic network that stores kinetic energy as an elastic rebound. These two collagen proteins have distinct physical properties in nature. Therefore, the control of Col I and Col III as well as the potential relevance of the Col I/Col III ratio in many biological processes serve as the foundation for this comprehensive review article.
Collapse
Affiliation(s)
- Drishtant Singh
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California 91766 USA
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California 91766 USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California 91766 USA
| |
Collapse
|
14
|
Cook CJ, Miller AE, Barker TH, Di Y, Fogg KC. Characterizing the extracellular matrix transcriptome of cervical, endometrial, and uterine cancers. Matrix Biol Plus 2022; 15:100117. [PMID: 35898192 PMCID: PMC9309672 DOI: 10.1016/j.mbplus.2022.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
The matrisome plays a critical role in the progression of cancer, but the matrisomes of gynecological cancers have not been well characterized. We built an in silico analysis pipeline to analyze publicly available bulk RNA-seq datasets of cervical, endometrial, and uterine cancers. Using a machine learning approach, we identified genes and gene networks that held inferential significance for cancer stage and patient survival. Cervical, endometrial, and uterine cancers are highly distinct from one another and should be analyzed separately.
Increasingly, the matrisome, a set of proteins that form the core of the extracellular matrix (ECM) or are closely associated with it, has been demonstrated to play a key role in tumor progression. However, in the context of gynecological cancers, the matrisome has not been well characterized. A holistic, yet targeted, exploration of the tumor microenvironment is critical for better understanding the progression of gynecological cancers, identifying key biomarkers for cancer progression, establishing the role of gene expression in patient survival, and for assisting in the development of new targeted therapies. In this work, we explored the matrisome gene expression profiles of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), uterine corpus endometrial carcinoma (UCEC), and uterine carcinosarcoma (UCS) using publicly available RNA-seq data from The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) portal. We hypothesized that the matrisomal expression patterns of CESC, UCEC, and UCS would be highly distinct with respect to genes which are differentially expressed and hold inferential significance with respect to tumor progression, patient survival, or both. Through a combination of statistical and machine learning analysis techniques, we identified sets of genes and gene networks which characterized each of the gynecological cancer cohorts. Our findings demonstrate that the matrisome is critical for characterizing gynecological cancers and transcriptomic mechanisms of cancer progression and outcome. Furthermore, while the goal of pan-cancer transcriptional analyses is often to highlight the shared attributes of these cancer types, we demonstrate that they are highly distinct diseases which require separate analysis, modeling, and treatment approaches. In future studies, matrisome genes and gene ontology terms that were identified as holding inferential significance for cancer stage and patient survival can be evaluated as potential drug targets and incorporated into in vitro models of disease.
Collapse
Affiliation(s)
- Carson J Cook
- Department of Bioengineering, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew E Miller
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Yanming Di
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
| | - Kaitlin C Fogg
- Department of Bioengineering, Oregon State University, Corvallis, OR 97331, USA.,Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
15
|
Kannan P, Schain M, Lane DP. An Automated Quantification Tool for Angiogenic Sprouting From Endothelial Spheroids. Front Pharmacol 2022; 13:883083. [PMID: 35571133 PMCID: PMC9093605 DOI: 10.3389/fphar.2022.883083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
The process of sprouting angiogenesis can be measured in vitro using endothelial cells in sprouting assays such as the fibrin bead assay and the spheroid-based assay. While the technical aspects of these sprouting assays have been well-optimized, the analysis aspects have been limited to manual methods, which can be time-consuming and difficult to reproduce. Here, we developed an automated analysis tool called AQuTAS to quantify sprouting parameters from the spheroid-based sprouting assay. We trained and validated the algorithm on two subsets of data, and tested its sensitivity by measuring changes in sprouting parameters over a range of concentrations of pro- and antiangiogenic compounds. Our results demonstrate that the algorithm detects known differences in sprouting parameters in endothelial spheroids treated with pro- and antiangiogenic compounds. Moreover, it is sensitive to biological changes that are ≥40%. Among the five quantified parameters, cumulative sprout length is likely the most discriminative parameter for measuring differences in sprouting behavior because it had the highest effect size (>1.5 Cohen’s d). In summary, we have generated an automated tool that quantifies sprouting parameters from the spheroid-based assay in a reproducible and sensitive manner.
Collapse
Affiliation(s)
- Pavitra Kannan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - David P Lane
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Senchukova MA. Issues of origin, morphology and clinical significance of tumor microvessels in gastric cancer. World J Gastroenterol 2021; 27:8262-8282. [PMID: 35068869 PMCID: PMC8717017 DOI: 10.3748/wjg.v27.i48.8262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains a serious oncological problem, ranking third in the structure of mortality from malignant neoplasms. Improving treatment outcomes for this pathology largely depends on understanding the pathogenesis and biological characteristics of GC, including the identification and characterization of diagnostic, prognostic, predictive, and therapeutic biomarkers. It is known that the main cause of death from malignant neoplasms and GC, in particular, is tumor metastasis. Given that angiogenesis is a critical process for tumor growth and metastasis, it is now considered an important marker of disease prognosis and sensitivity to anticancer therapy. In the presented review, modern concepts of the mechanisms of tumor vessel formation and the peculiarities of their morphology are considered; data on numerous factors influencing the formation of tumor microvessels and their role in GC progression are summarized; and various approaches to the classification of tumor vessels, as well as the methods for assessing angiogenesis activity in a tumor, are highlighted. Here, results from studies on the prognostic and predictive significance of tumor microvessels in GC are also discussed, and a new classification of tumor microvessels in GC, based on their morphology and clinical significance, is proposed for consideration.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460021, Russia
| |
Collapse
|
17
|
Vakhrushev IV, Nezhurina EK, Karalkin PA, Tsvetkova AV, Sergeeva NS, Majouga AG, Yarygin KN. Heterotypic Multicellular Spheroids as Experimental and Preclinical Models of Sprouting Angiogenesis. BIOLOGY 2021; 11:18. [PMID: 35053016 PMCID: PMC8772844 DOI: 10.3390/biology11010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Sprouting angiogenesis is the common response of live tissues to physiological and pathological angiogenic stimuli. Its accurate evaluation is of utmost importance for basic research and practical medicine and pharmacology and requires adequate experimental models. A variety of assays for angiogenesis were developed, none of them perfect. In vitro approaches are generally less physiologically relevant due to the omission of essential components regulating the process. However, only in vitro models can be entirely non-xenogeneic. The limitations of the in vitro angiogenesis assays can be partially overcome using 3D models mimicking tissue O2 and nutrient gradients, the influence of the extracellular matrix (ECM), and enabling cell-cell interactions. Here we present a review of the existing models of sprouting angiogenesis that are based on the use of endothelial cells (ECs) co-cultured with perivascular or other stromal cells. This approach provides an excellent in vitro platform for further decoding of the cellular and molecular mechanisms of sprouting angiogenesis under conditions close to the in vivo conditions, as well as for preclinical drug testing and preclinical research in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Igor V. Vakhrushev
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | - Elizaveta K. Nezhurina
- P.A. Hertsen Moscow Oncology Research Center, National Medical Research Radiological Center, 125284 Moscow, Russia;
| | - Pavel A. Karalkin
- Institute for Cluster Oncology, Sechenov University, 119435 Moscow, Russia;
| | | | - Nataliya S. Sergeeva
- Department of Biology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Alexander G. Majouga
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| |
Collapse
|
18
|
A vascularized tumoroid model for human glioblastoma angiogenesis. Sci Rep 2021; 11:19550. [PMID: 34599235 PMCID: PMC8486855 DOI: 10.1038/s41598-021-98911-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) angiogenesis is critical for tumor growth and recurrence, making it a compelling therapeutic target. Here, a disease-relevant, vascularized tumoroid in vitro model with stem-like features and stromal surrounds is reported. The model is used to recapitulate how individual components of the GBM’s complex brain microenvironment such as hypoxia, vasculature-related stromal cells and growth factors support GBM angiogenesis. It is scalable, tractable, cost-effective and can be used with biologically-derived or biomimetic matrices. Patient-derived primary GBM cells are found to closely participate in blood vessel formation in contrast to a GBM cell line containing differentiated cells. Exogenous growth factors amplify this effect under normoxia but not at hypoxia suggesting that a significant amount of growth factors is already being produced under hypoxic conditions. Under hypoxia, primary GBM cells strongly co-localize with umbilical vein endothelial cells to form sprouting vascular networks, which has been reported to occur in vivo. These findings demonstrate that our 3D tumoroid in vitro model exhibits biomimetic attributes that may permit its use as a preclinical model in studying microenvironment cues of tumor angiogenesis.
Collapse
|
19
|
Liang X, Wu T, Chen Q, Jiang J, Jiang Y, Ruan Y, Zhang H, Zhang S, Zhang C, Chen P, Lv Y, Xin J, Shi D, Chen X, Li J, Xu Y. Serum proteomics reveals disorder of lipoprotein metabolism in sepsis. Life Sci Alliance 2021; 4:4/10/e202101091. [PMID: 34429344 PMCID: PMC8385306 DOI: 10.26508/lsa.202101091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
This study illustrated that lipoprotein and lipid metabolism might play a significant role in patients with sepsis and that complement activation was significantly enriched in patients with sepsis-associated encephalopathy. Sepsis is defined as an organ dysfunction syndrome and it has high mortality worldwide. This study analysed the proteome of serum from patients with sepsis to characterize the pathological mechanism and pathways involved in sepsis. A total of 59 patients with sepsis were enrolled for quantitative proteomic analysis. Weighted gene co-expression network analysis (WGCNA) was performed to construct a co-expression network specific to sepsis. Key regulatory modules that were detected were highly correlated with sepsis patients and related to multiple functional groups, including plasma lipoprotein particle remodeling, inflammatory response, and wound healing. Complement activation was significantly associated with sepsis-associated encephalopathy. Triglyceride/cholesterol homeostasis was found to be related to sepsis-associated acute kidney injury. Twelve hub proteins were identified, which might be predictive biomarkers of sepsis. External validation of the hub proteins showed their significantly differential expression in sepsis patients. This study identified that plasma lipoprotein processes played a crucial role in sepsis patients, that complement activation contributed to sepsis-associated encephalopathy, and that triglyceride/cholesterol homeostasis was associated with sepsis-associated acute kidney injury.
Collapse
Affiliation(s)
- Xi Liang
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Tianzhou Wu
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jing Jiang
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongpo Jiang
- Department of Intensive Care Unit, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Yanyun Ruan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Huaping Zhang
- Department of Intensive Care Unit, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Sheng Zhang
- Department of Intensive Care Unit, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Chao Zhang
- Department of Intensive Care Unit, Taizhou Enze Medical Center (Group) Enze Hospital, Taizhou, China
| | - Peng Chen
- Department of Intensive Care Unit, Taizhou Enze Medical Center (Group) Enze Hospital, Taizhou, China
| | - Yuhang Lv
- Department of Intensive Care Unit, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jiaojiao Xin
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongyan Shi
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China .,Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Li
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China .,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinghe Xu
- Department of Intensive Care Unit, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
20
|
Kearney KJ, Ariëns RAS, Macrae FL. The Role of Fibrin(ogen) in Wound Healing and Infection Control. Semin Thromb Hemost 2021; 48:174-187. [PMID: 34428799 DOI: 10.1055/s-0041-1732467] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fibrinogen, one of the most abundant plasma proteins playing a key role in hemostasis, is an important modulator of wound healing and host defense against microbes. In the current review, we address the role of fibrin(ogen) throughout the process of wound healing and subsequent tissue repair. Initially fibrin(ogen) acts as a provisional matrix supporting incoming leukocytes and acting as reservoir for growth factors. It later goes on to support re-epithelialization, angiogenesis, and fibroplasia. Importantly, removal of fibrin(ogen) from the wound is essential for wound healing to progress. We also discuss how fibrin(ogen) functions through several mechanisms to protect the host against bacterial infection by providing a physical barrier, entrapment of bacteria in fibrin(ogen) networks, and by directing immune cell function. The central role of fibrin(ogen) in defense against bacterial infection has made it a target of bacterial proteins, evolved to interact with fibrin(ogen) to manipulate clot formation and degradation for the purpose of promoting microbial virulence and survival. Further understanding of the dual roles of fibrin(ogen) in wound healing and infection could provide novel means of therapy to improve recovery from surgical or chronic wounds and help to prevent infection from highly virulent bacterial strains, including those resistant to antibiotics.
Collapse
Affiliation(s)
- Katherine J Kearney
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Fraser L Macrae
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
21
|
Atashgah RB, Ghasemi A, Raoufi M, Abdollahifar MA, Zanganeh S, Nejadnik H, Abdollahi A, Sharifi S, Lea B, Cuerva M, Akbarzadeh M, Alvarez-Lorenzo C, Ostad SN, Theus AS, LaRock DL, LaRock CN, Serpooshan V, Sarrafi R, Lee KB, Vali H, Schönherr H, Gould L, Taboada P, Mahmoudi M. Restoring Endogenous Repair Mechanisms to Heal Chronic Wounds with a Multifunctional Wound Dressing. Mol Pharm 2021; 18:3171-3180. [PMID: 34279974 DOI: 10.1021/acs.molpharmaceut.1c00400] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Current treatment of chronic wounds has been critically limited by various factors, including bacterial infection, biofilm formation, impaired angiogenesis, and prolonged inflammation. Addressing these challenges, we developed a multifunctional wound dressing-based three-pronged approach for accelerating wound healing. The multifunctional wound dressing, composed of nanofibers, functional nanoparticles, natural biopolymers, and selected protein and peptide, can target multiple endogenous repair mechanisms and represents a promising alternative to current wound healing products.
Collapse
Affiliation(s)
- Rahimeh B Atashgah
- Colloids and Polymers Physics Group, Particle Physics Department, Faculty of Physics and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14167-53955, Iran
| | - Amir Ghasemi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 13169-43551, Iran
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 13169-43551, Iran.,Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, Siegen 57076, Germany
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19395-4719, Iran
| | - Steven Zanganeh
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, United States
| | - Hossein Nejadnik
- Department of Radiology, University of Pennsylvania, Philladelphia, Pennsylvania 19104, United States
| | - Alieh Abdollahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14167-53955, Iran
| | - Shahriar Sharifi
- Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Baltazar Lea
- Colloids and Polymers Physics Group, Particle Physics Department, Faculty of Physics and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Miguel Cuerva
- NANOMAG Group, Technological Research Institute (IIT), Physical Chemistry Department, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - Mehdi Akbarzadeh
- Sadra Wound, Ostomy and Osteomyelitis Specialist Center, Tehran, Iran
| | - Carmen Alvarez-Lorenzo
- R+D Pharma Group, Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Seyed Nasser Ostad
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14167-53955, Iran
| | - Andrea S Theus
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
| | - Doris L LaRock
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Christopher N LaRock
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30309, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | | | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Holger Schönherr
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, Siegen 57076, Germany
| | - Lisa Gould
- Brown University School of Medicine, Providence, Rhode Island 02903, United States.,South Shore Health System Center for Wound Healing, Weymouth, Massachusetts 02189, United States
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Particle Physics Department, Faculty of Physics and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Morteza Mahmoudi
- Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Anesthesiology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States.,Mary Horrigan Connors Center for Women's Health & Gender Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
22
|
Wan R, Weissman JP, Grundman K, Lang L, Grybowski DJ, Galiano RD. Diabetic wound healing: The impact of diabetes on myofibroblast activity and its potential therapeutic treatments. Wound Repair Regen 2021; 29:573-581. [PMID: 34157786 DOI: 10.1111/wrr.12954] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
Diabetes is a systemic disease in which the body cannot regulate the amount of sugar, namely glucose, in the blood. High glucose toxicity has been implicated in the dysfunction of diabetic wound healing, following insufficient production (Type 1) or inadequate usage (Type 2) of insulin. Chronic non-healing diabetic wounds are one of the major complications of both types of diabetes, which are serious concerns for public health and can impact the life quality of patients significantly. In general, diabetic wounds are characterized by deficient chemokine production, an unusual inflammatory response, lack of angiogenesis and epithelialization, and dysfunction of fibroblasts. Increasing scientific evidence from available experimental studies on animal and cell models strongly associates impaired wound healing in diabetes with dysregulated fibroblast differentiation to myofibroblasts, interrupted myofibroblast activity, and inadequate extracellular matrix production. Myofibroblasts play an important role in tissue repair by producing and organizing extracellular matrix and subsequently promoting wound contraction. Based on these studies, hyperglycaemic conditions can interfere with cytokine signalling pathways (such as growth factor-β pathway) affecting fibroblast differentiation, alter fibroblast apoptosis, dysregulate dermal lipolysis, and enhance hypoxia damage, thus leading to damaged microenvironment for myofibroblast formation, inappropriate extracellular matrix modulation, and weakened wound contraction. In this review, we will focus on the current available studies on the impact of diabetes on fibroblast differentiation and myofibroblast function, as well as potential treatments related to the affected pathways.
Collapse
Affiliation(s)
- Rou Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joshua P Weissman
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kendra Grundman
- Department of Surgery, Franciscan Health, Chicago, Illinois, USA
| | - Lin Lang
- Department of Surgery, Shanghai New Hongqiao Medical Center, Shanghai, China
| | - Damian J Grybowski
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert D Galiano
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
23
|
Franchi-Mendes T, Lopes N, Brito C. Heterotypic Tumor Spheroids in Agitation-Based Cultures: A Scaffold-Free Cell Model That Sustains Long-Term Survival of Endothelial Cells. Front Bioeng Biotechnol 2021; 9:649949. [PMID: 34178955 PMCID: PMC8219978 DOI: 10.3389/fbioe.2021.649949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/06/2021] [Indexed: 12/25/2022] Open
Abstract
Endothelial cells (ECs) are an important component of the tumor microenvironment, playing key roles in tumor development and progression that span from angiogenesis to immune regulation and drug resistance. Heterotypic tumor spheroids are one of the most widely used in vitro tumor microenvironment models, presenting improved recapitulation of tumor microenvironments compared to 2D cultures, in a simple and low-cost setup. Heterotypic tumor spheroid models incorporating endothelial cells have been proposed but present multiple limitations, such as the short culture duration typically obtained, the use of animal-derived matrices, and poor reproducibility; the diversity of culture conditions employed hinders comparison between studies and standardization of relevant culture parameters. Herein, we developed long-term cultures of triple heterotypic spheroids composed of the HCC1954 tumor cell line, human fibroblasts, and ECs. We explored culture parameters potentially relevant for EC maintenance, such as tumor cell line, seeding cell number, cell ratio, and agitation vs. static culture. In HCC1954-based spheroids, we observed maintenance of viable EC for up to 1 month of culture in agitation, with retention of the identity markers CD31 and von Willebrand factor. At the optimized tumor cell:fibroblast:EC ratio of 1:3:10, HCC1954-based spheroids had a higher EC area/total spheroid area at 1 month of culture than the other cell ratios tested. EC maintenance was tumor cell line-dependent, and in HCC1954-based spheroids it was also dependent on the presence of fibroblasts and agitation. Moreover, vascular endothelial growth factor (VEGF) supplementation was not required for maintenance of EC, as the factor was endogenously produced. ECs co-localized with fibroblasts, which accumulated preferentially in the core of the spheroids and secreted EC-relevant extracellular matrix proteins, such as collagen I and IV. This simple model setup does not rely on artificial or animal-derived scaffolds and can serve as a useful tool to explore the culture parameters influencing heterotypic spheroids, contributing to model standardization, as well as to explore molecular cross talk of ECs within the tumor microenvironment, and potentially its effects on drug response.
Collapse
Affiliation(s)
- Teresa Franchi-Mendes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Nuno Lopes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Oeiras, Portugal
| |
Collapse
|
24
|
Mathew-Steiner SS, Roy S, Sen CK. Collagen in Wound Healing. Bioengineering (Basel) 2021; 8:63. [PMID: 34064689 PMCID: PMC8151502 DOI: 10.3390/bioengineering8050063] [Citation(s) in RCA: 383] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Normal wound healing progresses through inflammatory, proliferative and remodeling phases in response to tissue injury. Collagen, a key component of the extracellular matrix, plays critical roles in the regulation of the phases of wound healing either in its native, fibrillar conformation or as soluble components in the wound milieu. Impairments in any of these phases stall the wound in a chronic, non-healing state that typically requires some form of intervention to guide the process back to completion. Key factors in the hostile environment of a chronic wound are persistent inflammation, increased destruction of ECM components caused by elevated metalloproteinases and other enzymes and improper activation of soluble mediators of the wound healing process. Collagen, being central in the regulation of several of these processes, has been utilized as an adjunct wound therapy to promote healing. In this work the significance of collagen in different biological processes relevant to wound healing are reviewed and a summary of the current literature on the use of collagen-based products in wound care is provided.
Collapse
Affiliation(s)
| | | | - Chandan K. Sen
- Indiana Center for Regenerative Medicine and Engineering, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (S.S.M.-S.); (S.R.)
| |
Collapse
|
25
|
Lopes SV, Collins MN, Reis RL, Oliveira JM, Silva-Correia J. Vascularization Approaches in Tissue Engineering: Recent Developments on Evaluation Tests and Modulation. ACS APPLIED BIO MATERIALS 2021; 4:2941-2956. [DOI: 10.1021/acsabm.1c00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Soraia V. Lopes
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maurice N. Collins
- Bernal Institute, School of Engineering, University of Limerick, Limerick V94 T9PX, Ireland
| | - Rui L. Reis
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
26
|
Lee S, Kang H, Park D, Yu J, Koh SK, Cho D, Kim D, Kang K, Jeon NL. Modeling 3D Human Tumor Lymphatic Vessel Network Using High‐Throughput Platform. Adv Biol (Weinh) 2021. [DOI: 10.1002/adbi.202000195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Somin Lee
- Interdisciplinary Program for Bioengineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Habin Kang
- Interdisciplinary Program for Bioengineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Dohyun Park
- Department of Mechanical Engineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - James Yu
- Interdisciplinary Program for Bioengineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Seung Kwon Koh
- Department of Health Sciences and Technology SAIHST Sungkyunkwan University 115, Irwon‐ro, Gangnam‐gu Seoul 06355 Republic of Korea
| | - Duck Cho
- Department of Health Sciences and Technology SAIHST Sungkyunkwan University 115, Irwon‐ro, Gangnam‐gu Seoul 06355 Republic of Korea
- Department of Laboratory Medicine and Genetics Samsung Medical Center Sungkyunkwan University School of Medicine 115, Irwon‐ro, Gangnam‐gu Seoul 06355 Republic of Korea
| | - Da‐Hyun Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science College of Veterinary Medicine Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Kyung‐Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science College of Veterinary Medicine Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Noo Li Jeon
- Interdisciplinary Program for Bioengineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
- Department of Mechanical Engineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
- Institute of Advanced Machinery and Design Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
- Institute of BioEngineering Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| |
Collapse
|
27
|
Fitzsimmons REB, Ireland RG, Zhong A, Soos A, Simmons CA. Assessment of fibrin-collagen co-gels for generating microvessels ex vivousing endothelial cell-lined microfluidics and multipotent stromal cell (MSC)-induced capillary morphogenesis. Biomed Mater 2020; 16. [PMID: 33086195 DOI: 10.1088/1748-605x/abc38f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/21/2020] [Indexed: 01/28/2023]
Abstract
One aspect of the challenge of engineering viable tissues ex vivo is the generation of perfusable microvessels of varying diameters. In this work, we take the approach of using hydrogel-based microfluidics seeded with endothelial cells (ECs) to form small artery/vein-like vessels, in conjunction with using the self-assembly behavior of ECs to form capillary-like vessels when co-cultured with multipotent stromal cells (MSCs). In exploring this approach, we focused on investigating collagen, fibrin, and various collagen-fibrin co-gel formulations for their potential suitability as serving as scaffold materials by surveying their angiogencity and mechanical properties. Fibrin and co-gels successfully facilitated multicellular EC sprouting, whereas collagen elicited a migration response of individual ECs, unless supplemented with the PKC (protein kinase C)-activator, phorbol 12-myristate 13-acetate. Collagen scaffolds were also found to severely contract when embedded with mesenchymal cells, but this contraction could be abrogated with the addition of fibrin. Increasing collagen content within co-gel formulations, however, imparted a higher compressive modulus and allowed for the reliable formation of intact hydrogel-based microchannels which could then be perfused. Given the bioactivity and mechanical benefits of fibrin and collagen, respectively, collagen-fibrin co-gels are a promising scaffold option for generating vascularized tissue constructs.
Collapse
Affiliation(s)
- Ross E B Fitzsimmons
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, CANADA
| | - Ronald G Ireland
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, CANADA
| | - Aileen Zhong
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, CANADA
| | - Agnes Soos
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, CANADA
| | - Craig A Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, CANADA
| |
Collapse
|
28
|
Minor AJ, Coulombe KLK. Engineering a collagen matrix for cell-instructive regenerative angiogenesis. J Biomed Mater Res B Appl Biomater 2020; 108:2407-2416. [PMID: 31984665 PMCID: PMC7334070 DOI: 10.1002/jbm.b.34573] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/01/2019] [Accepted: 11/21/2019] [Indexed: 01/09/2023]
Abstract
Engineering an angiogenic material for regenerative medicine requires knowledge of native extracellular matrix remodeling by cellular processes in angiogenesis. Vascularization remains a key challenge in the field of tissue engineering, one that can be mitigated by developing platforms conducive to guiding dynamic cell-matrix interactions required for new vessel formation. In this review, we highlight nuanced processes of angiogenesis and demonstrate how materials engineering is being used to interface with dynamic type I collagen remodeling, Notch and VEGF signaling, cell migration, and tissue morphogenesis. Because α1(I)-collagen is secreted by endothelial tip cells during sprouting angiogenesis and required for migration, collagen is a very useful natural biomaterial and its angiogenic modifications are described. The balance between collagen types I and IV via secretion and degradation is tightly controlled by proteinases and other cell types that are capable of internalizing collagen to maintain tissue integrity. Thus, we provide examples in skin and cardiac tissue engineering of collagen tailoring in diverse cellular microenvironments for tissue regeneration. As our understanding of how to drive collagen remodeling and cellular phenotype through angiogenic pathways grows, our capabilities to model and manipulate material systems must continue to expand to develop novel applications for wound healing, angiogenic therapy, and regenerative medicine.
Collapse
Affiliation(s)
- Alicia J Minor
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| |
Collapse
|
29
|
Linville RM, Arevalo D, Maressa JC, Zhao N, Searson PC. Three-dimensional induced pluripotent stem-cell models of human brain angiogenesis. Microvasc Res 2020; 132:104042. [PMID: 32673611 DOI: 10.1016/j.mvr.2020.104042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
During brain development, chemical cues released by developing neurons, cellular signaling with pericytes, and mechanical cues within the brain extracellular matrix (ECM) promote angiogenesis of brain microvascular endothelial cells (BMECs). Angiogenesis is also associated with diseases of the brain due to pathological chemical, cellular, and mechanical signaling. Existing in vitro and in vivo models of brain angiogenesis have key limitations. Here, we develop a high-throughput in vitro blood-brain barrier (BBB) bead assay of brain angiogenesis utilizing 150 μm diameter beads coated with induced pluripotent stem-cell (iPSC)-derived human BMECs (dhBMECs). After embedding the beads within a 3D matrix, we introduce various chemical cues and extracellular matrix components to explore their effects on angiogenic behavior. Based on the results from the bead assay, we generate a multi-scale model of the human cerebrovasculature within perfusable three-dimensional tissue-engineered blood-brain barrier microvessels. A sprouting phenotype is optimized in confluent monolayers of dhBMECs using chemical treatment with vascular endothelial growth factor (VEGF) and wnt ligands, and the inclusion of pro-angiogenic ECM components. As a proof-of-principle that the bead angiogenesis assay can be applied to study pathological angiogenesis, we show that oxidative stress can exert concentration-dependent effects on angiogenesis. Finally, we demonstrate the formation of a hierarchical microvascular model of the human blood-brain barrier displaying key structural hallmarks. We develop two in vitro models of brain angiogenesis: the BBB bead assay and the tissue-engineered BBB microvessel model. These platforms provide a tool kit for studies of physiological and pathological brain angiogenesis, with key advantages over existing two-dimensional models.
Collapse
Affiliation(s)
- Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States of America; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Diego Arevalo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States of America; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Joanna C Maressa
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States of America; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States of America; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States of America.
| |
Collapse
|
30
|
Davidov T, Efraim Y, Dahan N, Baruch L, Machluf M. Porcine arterial ECM hydrogel: Designing an in vitro angiogenesis model for long-term high-throughput research. FASEB J 2020; 34:7745-7758. [PMID: 32337805 DOI: 10.1096/fj.202000264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
Abstract
The field of angiogenesis research provides deep understanding regarding this important process, which plays fundamental roles in tissue development and different abnormalities. In vitro models offer the advantages of low-cost high-throughput research of angiogenesis while sparing animal lives, and enabling the use of human cells. Nevertheless, prevailing in vitro models lack stability and are limited to a few days' assays. This study, therefore, examines the hypothesis that closely mimicking the vascular microenvironment can more reliably support longer angiogenesis processes in vitro. To this end, porcine arterial extracellular matrix (paECM)- a key component of blood vessels-was isolated and processed into a thermally induced hydrogel and characterized in terms of composition, structure, and mechanical properties, thus confirming the preservation of important characteristics of arterial extracellular matrix. This unique hydrogel was further tailored into a three-dimensional model of angiogenesis using endothelial cells and supporting cells, in a configuration that allows high-throughput quantitative analysis of cell viability and proliferation, cell migration, and apoptosis, thus revealing the advantages of paECM over frequently used biomaterials. Markedly, when applied with well-known effectors of angiogenesis, the model measures reflected the expected response, hence validating its efficacy and establishing its potential as a promising tool for the research of angiogenesis.
Collapse
Affiliation(s)
- Tzila Davidov
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yael Efraim
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nitsan Dahan
- Infrastructure Unit, Life Science and Engineering Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Limor Baruch
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Marcelle Machluf
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
31
|
Nilforoushzadeh MA, Sisakht MM, Amirkhani MA, Seifalian AM, Banafshe HR, Verdi J, Nouradini M. Engineered skin graft with stromal vascular fraction cells encapsulated in fibrin–collagen hydrogel: A clinical study for diabetic wound healing. J Tissue Eng Regen Med 2020; 14:424-440. [DOI: 10.1002/term.3003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Affiliation(s)
| | - Mahsa Mollapour Sisakht
- Skin and Stem Cell Research CenterTehran University of Medical Sciences Tehran Iran
- Applied Cell Sciences DepartmentKashan University of Medical Science Kashan Iran
| | - Mohammad Amir Amirkhani
- Stem Cell and Regenerative Medicine Center of ExcellenceTehran University of Medical Sciences Tehran Iran
| | - Alexander M. Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd)The London BioScience Innovation Centre London UK
| | - Hamid Reza Banafshe
- Applied Cell Sciences DepartmentKashan University of Medical Science Kashan Iran
- Physiology Research CenterKashan University of Medical Sciences Kashan Iran
| | - Javad Verdi
- Applied Cell Sciences DepartmentKashan University of Medical Science Kashan Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineTehran University of Medical Sciences Tehran Iran
| | - Mehdi Nouradini
- Applied Cell Sciences DepartmentKashan University of Medical Science Kashan Iran
| |
Collapse
|
32
|
Comparative Evaluation of the Angiogenic Potential of Hypoxia Preconditioned Blood-Derived Secretomes and Platelet-Rich Plasma: An In Vitro Analysis. Biomedicines 2020; 8:biomedicines8010016. [PMID: 31963131 PMCID: PMC7168246 DOI: 10.3390/biomedicines8010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Blood-derived factor preparations are being clinically employed as tools for promoting tissue repair and regeneration. Here we set out to characterize the in vitro angiogenic potential of two types of frequently used autologous blood-derived secretomes: platelet-rich plasma (PRP) and hypoxia preconditioned plasma (HPP)/serum (HPS). The concentration of key pro-angiogenic (VEGF) and anti-angiogenic (TSP-1, PF-4) protein factors in these secretomes was analyzed via ELISA, while their ability to induce microvessel formation and sprouting was examined in endothelial cell and aortic ring cultures, respectively. We found higher concentrations of VEGF in PRP and HPP/HPS compared to normal plasma and serum. This correlated with improved induction of microvessel formation by PRP and HPP/HPS. HPP had a significantly lower TSP-1 and PF-4 concentration than PRP and HPS. PRP and HPP/HPS appeared to induce similar levels of microvessel sprouting; however, the length of these sprouts was greater in HPP/HPS than in PRP cultures. A bell-shaped angiogenic response profile was observed with increasing HPP/HPS dilutions, with peak values significantly exceeding the PRP response. Our findings demonstrate that optimization of peripheral blood cell-derived angiogenic factor signalling through hypoxic preconditioning offers an improved alternative to simple platelet concentration and release of growth factors pre-stored in platelets.
Collapse
|
33
|
Schaschkow A, Sigrist S, Mura C, Barthes J, Vrana NE, Czuba E, Lemaire F, Neidl R, Dissaux C, Lejay A, Lavalle P, Bruant-Rodier C, Bouzakri K, Pinget M, Maillard E. Glycaemic control in diabetic rats treated with islet transplantation using plasma combined with hydroxypropylmethyl cellulose hydrogel. Acta Biomater 2020; 102:259-272. [PMID: 31811957 DOI: 10.1016/j.actbio.2019.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022]
Abstract
Islet transplantation is one of the most efficient cell therapies used in clinics and could treat a large proportion of patients with diabetes. However, it is limited by the high requirement of pancreas necessary to provide the sufficient surviving islet mass in the hepatic tissue and restore normoglycaemia. Reduction in organ procurement requirements could be achieved by extrahepatic transplantation using a biomaterial that enhances islet survival and function. We report a plasma-supplemented hydroxypropyl methylcellulose (HPMC) hydrogel, engineered specifically using a newly developed technique for intra-omental islet infusion, known as hOMING (h-Omental Matrix Islet filliNG). The HPMC hydrogel delivered islets with better performance than that of the classical intrahepatic infusion. After the validation of the HPMC suitability for islets in vivo and in vitro, plasma supplementation modified the rheological properties of HPMC without affecting its applicability with hOMING. The biomaterial association was proven to be more efficient both in vitro and in vivo, with better islet viability and function than that of the current clinical intrahepatic delivery technique. Indeed, when the islet mass was decreased by 25% or 35%, glycaemia control was observed in the group of plasma-supplemented hydrogels, whereas no regulation was observed in the hepatic group. Plasma gelation, observed immediately post infusion, decreased anoïkis and promoted vascularisation. To conclude, the threshold mass for islet transplantation could be decreased using HPMC-Plasma combined with the hOMING technique. The simplicity of the hOMING technique and the already validated use of its components could facilitate its transfer to clinics. STATEMENT OF SIGNIFICANCE: One of the major limitations for the broad deployment of current cell therapy for brittle type 1 diabetes is the islets' destruction during the transplantation process. Retrieved from their natural environment, the islets are grafted into a foreign tissue, which triggers massive cell loss. It is mandatory to provide the islets with an 3D environment specifically designed for promoting isletimplantation to improve cell therapy outcomes. For this aim, we combined HPMC and plasma. HPMC provides suitable rheological properties to the plasma to be injectable and be maintained in the omentum. Afterwards, the plasma polymerises around the graft in vivo, thereby allowing their optimal integration into their transplantation site. As a result, the islet mass required to obtain glycaemic control was reduced by 35%.
Collapse
|
34
|
Kohli N, Sawadkar P, Ho S, Sharma V, Snow M, Powell S, Woodruff MA, Hook L, García-Gareta E. Pre-screening the intrinsic angiogenic capacity of biomaterials in an optimised ex ovo chorioallantoic membrane model. J Tissue Eng 2020; 11:2041731420901621. [PMID: 32110373 PMCID: PMC7000866 DOI: 10.1177/2041731420901621] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Biomaterial development for clinical applications is currently on the rise. This necessitates adequate in vitro testing, where the structure and composition of biomaterials must be specifically tailored to withstand in situ repair and regeneration responses for a successful clinical outcome. The chorioallantoic membrane of chicken embryos has been previously used to study angiogenesis, a prerequisite for most tissue repair and regeneration. In this study, we report an optimised ex ovo method using a glass-cling film set-up that yields increased embryo survival rates and has an improved protocol for harvesting biomaterials. Furthermore, we used this method to examine the intrinsic angiogenic capacity of a variety of biomaterials categorised as natural, synthetic, natural/synthetic and natural/natural composites with varying porosities. We detected significant differences in biomaterials' angiogenesis with natural polymers and polymers with a high overall porosity showing a greater vascularisation compared to synthetic polymers. Therefore, our proposed ex ovo chorioallantoic membrane method can be effectively used to pre-screen biomaterials intended for clinical application.
Collapse
Affiliation(s)
- Nupur Kohli
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
- Department of Mechanical Engineering,
Imperial College London, London, UK
| | - Prasad Sawadkar
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
| | - Sonia Ho
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
| | - Vaibhav Sharma
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
| | - Martyn Snow
- Royal Orthopaedic Hospital NHS
Foundation Trust, Birmingham, UK
| | - Sean Powell
- Institute of Health and Biomedical
Innovation, Queensland University of Technology, Brisbane, Australia
| | - Maria A Woodruff
- Institute of Health and Biomedical
Innovation, Queensland University of Technology, Brisbane, Australia
| | - Lilian Hook
- Smart Matrix Limited, Leopold Muller
Building, Mount Vernon Hospital, Northwood, UK
| | - Elena García-Gareta
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
| |
Collapse
|
35
|
Nazzicari N, Vella D, Coronnello C, Di Silvestre D, Bellazzi R, Marini S. MTGO-SC, A Tool to Explore Gene Modules in Single-Cell RNA Sequencing Data. Front Genet 2019; 10:953. [PMID: 31649730 PMCID: PMC6794379 DOI: 10.3389/fgene.2019.00953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023] Open
Abstract
The identification of functional modules in gene interaction networks is a key step in understanding biological processes. Network interpretation is essential for unveiling biological mechanisms, candidate biomarkers, or potential targets for drug discovery/repositioning. Plenty of biological module identification algorithms are available, although none is explicitly designed to perform the task on single-cell RNA sequencing (scRNA-seq) data. Here, we introduce MTGO-SC, an adaptation for scRNA-seq of our biological network module detection algorithm MTGO. MTGO-SC isolates gene functional modules by leveraging on both the network topological structure and the annotations characterizing the nodes (genes). These annotations are provided by an external source, such as databases and literature repositories (e.g., the Gene Ontology, Reactome). Thanks to the depth of single-cell data, it is possible to define one network for each cell cluster (typically, cell type or state) composing each sample, as opposed to traditional bulk RNA-seq, where the emerging gene network is averaged over the whole sample. MTGO-SC provides two complexity levels for interpretation: the gene-gene interaction and the intermodule interaction networks. MTGO-SC is versatile in letting the users define the rules to extract the gene network and integrated with the Seurat scRNA-seq analysis pipeline. MTGO-SC is available at https://github.com/ne1s0n/MTGOsc.
Collapse
Affiliation(s)
- Nelson Nazzicari
- Research Centre for Fodder Crops and Dairy Productions, Council for Agricultural Research and Economics (CREA), Lodi, Italy
| | - Danila Vella
- Bioengineering Unit, Ri. MED Foundation, Palermo, Italy.,Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | | | - Dario Di Silvestre
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Riccardo Bellazzi
- Istituti Clinici Scientifici Maugeri, Pavia, Italy.,Department of Electrical, Computer and Biomedical Engineering; Centre for Health, Technologies, University of Pavia, Pavia, Italy
| | - Simone Marini
- Department of Electrical, Computer and Biomedical Engineering; Centre for Health, Technologies, University of Pavia, Pavia, Italy.,Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
36
|
Zhang L, Yaron JR, Tafoya AM, Wallace SE, Kilbourne J, Haydel S, Rege K, McFadden G, Lucas AR. A Virus-Derived Immune Modulating Serpin Accelerates Wound Closure with Improved Collagen Remodeling. J Clin Med 2019; 8:jcm8101626. [PMID: 31590323 PMCID: PMC6832452 DOI: 10.3390/jcm8101626] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/20/2023] Open
Abstract
Numerous treatments have been developed to promote wound healing based on current understandings of the healing process. Hemorrhaging, clotting, and associated inflammation regulate early wound healing. We investigated treatment with a virus-derived immune modulating serine protease inhibitor (SERPIN), Serp-1, which inhibits thrombolytic proteases and inflammation, in a mouse excisional wound model. Saline or recombinant Serp-1 were applied directly to wounds as single doses of 1 μg or 2 µg or as two 1 µg boluses. A chitosan-collagen hydrogel was also tested for Serp-1 delivery. Wound size was measured daily for 15 days and scarring assessed by Masson’s trichrome, Herovici’s staining, and immune cell dynamics and angiogenesis by immunohistochemistry. Serp-1 treatment significantly accelerated wound healing, but was blocked by urokinase-type plasminogen activator (uPAR) antibody. Repeated dosing at a lower concentration was more effective than single high-dose serpin. A single application of Serp-1-loaded chitosan-collagen hydrogel was as effective as repeated aqueous Serp-1 dosing. Serp-1 treatment of wounds increased arginase-1-expressing M2-polarized macrophage counts and periwound angiogenesis in the wound bed. Collagen staining also demonstrated that Serp-1 improves collagen maturation and organization at the wound site. Serp-1 has potential as a safe and effective immune modulating treatment that targets thrombolytic proteases, accelerating healing and reducing scar in deep cutaneous wounds.
Collapse
Affiliation(s)
- Liqiang Zhang
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Jordan R Yaron
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Amanda M Tafoya
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Sarah E Wallace
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Jacquelyn Kilbourne
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Shelley Haydel
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe, AZ 85287, USA.
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Alexandra R Lucas
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
- Chemical Engineering, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
37
|
Tröndle K, Koch F, Finkenzeller G, Stark GB, Zengerle R, Koltay P, Zimmermann S. Bioprinting of high cell‐density constructs leads to controlled lumen formation with self‐assembly of endothelial cells. J Tissue Eng Regen Med 2019; 13:1883-1895. [DOI: 10.1002/term.2939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/03/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Kevin Tröndle
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems EngineeringUniversity of Freiburg Freiburg Germany
| | - Fritz Koch
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems EngineeringUniversity of Freiburg Freiburg Germany
| | - Günter Finkenzeller
- Department of Plastic and Hand Surgery, Faculty of MedicineMedical Center—University of Freiburg Freiburg Germany
| | - G. Björn Stark
- Department of Plastic and Hand Surgery, Faculty of MedicineMedical Center—University of Freiburg Freiburg Germany
| | - Roland Zengerle
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems EngineeringUniversity of Freiburg Freiburg Germany
- Hahn‐Schickard, Freiburg Freiburg Germany
| | - Peter Koltay
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems EngineeringUniversity of Freiburg Freiburg Germany
- Hahn‐Schickard, Freiburg Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) Freiburg Germany
| | - Stefan Zimmermann
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems EngineeringUniversity of Freiburg Freiburg Germany
| |
Collapse
|
38
|
Crampton AL, Cummins KA, Wood DK. A high-throughput microtissue platform to probe endothelial function in vitro. Integr Biol (Camb) 2019; 10:555-565. [PMID: 30140833 DOI: 10.1039/c8ib00111a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A critical role of vascular endothelium is as a semi-permeable barrier, dynamically regulating the flux of solutes between blood and the surrounding tissue. Existing platforms that quantify endothelial function in vitro are either significantly throughput limited or overlook physiologically relevant extracellular matrix (ECM) interactions and thus do not recapitulate in vivo function. Leveraging droplet microfluidics, we developed a scalable platform to measure endothelial function in nanoliter-volume, ECM-based microtissues. In this study, we describe our high-throughput method for fabricating endothelial-coated collagen microtissues that incorporate physiologically relevant cell-ECM interactions. We showed that the endothelial cells had characteristic morphology, expressed tight junction proteins, and remodeled the ECM via compaction and deposition of basement membrane. We also measured macromolecular permeability using two optical modalities, and found the cell layers: (1) had permeability values comparable to in vivo measurements and (2) were responsive to physiologically-relevant modulators of endothelial permeability (TNF-α and TGF-β). This is the first demonstration, to the authors' knowledge, of high-throughput assessment (n > 150) of endothelial permeability on natural ECM. Additionally, this technology is compatible with standard cell culture equipment (e.g. multi-well plates) and could be scaled up further to be integrated with automated liquid handling systems and automated imaging platforms. Overall, this platform recapitulates the functions of traditional transwell inserts, but extends application to high-throughput studies and introduces new possibilities for interrogating cell-cell and cell-matrix interactions.
Collapse
Affiliation(s)
- Alexandra L Crampton
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, USA.
| | | | | |
Collapse
|
39
|
Evaluation of Angiogenesis Assays. Biomedicines 2019; 7:biomedicines7020037. [PMID: 31100863 PMCID: PMC6631830 DOI: 10.3390/biomedicines7020037] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
Angiogenesis assays allow for the evaluation of pro- or anti-angiogenic activity of endogenous or exogenous factors (stimulus or inhibitors) through investigation of their pro-or anti- proliferative, migratory, and tube formation effects on endothelial cells. To model the process of angiogenesis and the effects of biomolecules on that process, both in vitro and in vivo methods are currently used. In general, in vitro methods monitor specific stages in the angiogenesis process and are used for early evaluations, while in vivo methods more accurately simulate the living microenvironment to provide more pertinent information. We review here the current state of angiogenesis assays as well as their mechanisms, advantages, and limitations.
Collapse
|
40
|
Gong T, Xu J, Heng B, Qiu S, Yi B, Han Y, Lo ECM, Zhang C. EphrinB2/EphB4 Signaling Regulates DPSCs to Induce Sprouting Angiogenesis of Endothelial Cells. J Dent Res 2019; 98:803-812. [PMID: 31017515 DOI: 10.1177/0022034519843886] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are capable of facilitating angiogenesis resembling pericytes when located adjacent to endothelial cells (ECs). Nevertheless, the precise mechanisms orchestrating their proangiogenic functions remain unclear. Using a 3-dimensional (3-D) fibrin gel model, we aimed to investigate whether EphrinB2/EphB4 signaling in DPSCs plays a role in supporting vascular morphogenesis mediated by ECs, together with the underlying mechanism involved. The EphrinB2/EphB4 signaling was inhibited either by a pharmacological inhibitor of EphB4 receptor or by knocking down the expressions of EphrinB2 and EphB4 using lentiviral small hairpin RNA (shRNA). DPSCs were either encapsulated in fibrin gel together with human umbilical vein endothelial cells (HUVECs) or cultured as a monolayer on top of HUVECs to investigate both paracrine and juxtacrine interactions simultaneously. Following 10 d of direct coculture, we found that pharmacological inhibition of EphrinB2/EphB4 signaling severely impaired vessel formation and laminin deposition. When directly cocultured with HUVECs, knockdown of EphrinB2 or EphB4 in DPSCs significantly inhibited endothelial sprouting, resulting in less capillary sprouts with reduced vessel length (P < 0.05). By contrast, when DPSCs were not in direct contact with HUVECs, attenuation of EphrinB2 or EphB4 expression levels in DPSCs did not exert any significant effects on capillary morphogenesis. Noticeably, exogenous stimulation with soluble EphrinB2-Fc or EphB4-Fc (1 µg/mL) enhanced vascular endothelial growth factor (VEGF) secretion from DPSCs, thereby moderately promoting angiogenic cascades in the fibrin matrix. This study, for the first time, reveals a crucial role of EphrinB2/EphB4 signaling in regulating the capacity of DPSCs to induce sprouting angiogenesis. These findings advance our understanding of postnatal angiogenesis and may have future regenerative medicine applications.
Collapse
Affiliation(s)
- T Gong
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,4 HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| | - J Xu
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - B Heng
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - S Qiu
- 2 Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - B Yi
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Y Han
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - E C M Lo
- 3 Dental Public Health, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - C Zhang
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,4 HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| |
Collapse
|
41
|
Senchukova MA, Makarova EV, Kalinin EA, Tkachev VV. Modern ideas about the origin, features of morphology, prognostic and predictive significance of tumor vessels. RUSSIAN JOURNAL OF BIOTHERAPY 2019; 18:6-15. [DOI: 10.17650/1726-9784-2019-18-1-6-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The review presents modern ideas about the origin of tumor vessels and the features of their morphology. The various approaches to the classification of tumor vessel types and to the assessment of their clinical and prognostic significance are described. Also, the main problems associated with the use of angiogenesis blockers in the treatment of malignancies and their possible solutions are reflected in the review.
Collapse
Affiliation(s)
- M. A. Senchukova
- Orenburg State Medical University of the Ministry of Health of the Russian Federation; Orenburg Regional Clinical Oncology Dispensary
| | - E. V. Makarova
- Orenburg State Medical University of the Ministry of Health of the Russian Federation; Orenburg Regional Clinical Oncology Dispensary
| | | | | |
Collapse
|
42
|
Schöneberg J, De Lorenzi F, Theek B, Blaeser A, Rommel D, Kuehne AJC, Kießling F, Fischer H. Engineering biofunctional in vitro vessel models using a multilayer bioprinting technique. Sci Rep 2018; 8:10430. [PMID: 29992981 PMCID: PMC6041340 DOI: 10.1038/s41598-018-28715-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
Recent advances in the field of bioprinting have led to the development of perfusable complex structures. However, most of the existing printed vascular channels lack the composition or key structural and physiological features of natural blood vessels or they make use of more easily printable but less biocompatible hydrogels. Here, we use a drop-on-demand bioprinting technique to generate in vitro blood vessel models, consisting of a continuous endothelium imitating the tunica intima, an elastic smooth muscle cell layer mimicking the tunica media, and a surrounding fibrous and collagenous matrix of fibroblasts mimicking the tunica adventitia. These vessel models with a wall thickness of up to 425 µm and a diameter of about 1 mm were dynamically cultivated in fluidic bioreactors for up to three weeks under physiological flow conditions. High cell viability (>83%) after printing and the expression of VE-Cadherin, smooth muscle actin, and collagen IV were observed throughout the cultivation period. It can be concluded that the proposed novel technique is suitable to achieve perfusable vessel models with a biofunctional multilayer wall composition. Such structures hold potential for the creation of more physiologically relevant in vitro disease models suitable especially as platforms for the pre-screening of drugs.
Collapse
Affiliation(s)
- Jan Schöneberg
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Federica De Lorenzi
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Benjamin Theek
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Andreas Blaeser
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Dirk Rommel
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen, Germany
| | - Alexander J C Kuehne
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen, Germany
| | - Fabian Kießling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
43
|
Cheng P, Li D, Gao Y, Cao T, Jiang H, Wang J, Li J, Zhang S, Song Y, Liu B, Wang C, Yang L, Pei G. Prevascularization promotes endogenous cell-mediated angiogenesis by upregulating the expression of fibrinogen and connective tissue growth factor in tissue-engineered bone grafts. Stem Cell Res Ther 2018; 9:176. [PMID: 29973254 PMCID: PMC6030739 DOI: 10.1186/s13287-018-0925-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Vascularization is one of the most important processes in tissue-engineered bone graft (TEBG)-mediated regeneration of large segmental bone defects. We previously showed that prevascularization of TEBGs promoted capillary vessel formation within the defected site and accelerated new bone formation. However, the precise mechanisms and contribution of endogenous cells were not explored. METHODS We established a large defect (5 mm) model in the femur of EGFP+ transgenic rats and implanted a β-tricalcium phosphate (β-TCP) scaffold seeded with exogenous EGFP- cells; the femoral vascular bundle was inserted into the scaffold before implantation in the prevascularized TEBG group. Histopathology and scanning electron microscopy were performed and connective tissue growth factor (CTGF) and fibrin expression, exogenous cell survival, endogenous cell migration and behavior, and collagen type I and III deposition were assessed at 1 and 4 weeks post implantation. RESULTS We found that the fibrinogen content can be increased at the early stage of vascular bundle transplantation, forming a fibrin reticulate structure and tubular connections between pores of β-TCP material, which provides a support for cell attachment and migration. Meanwhile, CTGF expression is increased, and more endogenous cells can be recruited and promote collagen synthesis and angiogenesis. By 4 weeks post implantation, the tubular connections transformed into von Willebrand factor-positive capillary-like structures with deposition of type III collagen, and accelerated angiogenesis of endogenous cells. CONCLUSIONS These findings demonstrate that prevascularization promotes the recruitment of endogenous cells and collagen deposition by upregulating fibrinogen and CTGF, directly resulting in new blood vessel formation. In addition, this molecular mechanism can be used to establish fast-acting angiogenesis materials in future clinical applications.
Collapse
Affiliation(s)
- Pengzhen Cheng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Donglin Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Hospital 463 of People's Liberation Army, Shenyang, 110042, People's Republic of China
| | - Yi Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Tianqing Cao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Huijie Jiang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jimeng Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Department of Orthopedics, The 251st Hospital of PLA, Zhangjiakou, 075000, China
| | - Junqin Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shuaishuai Zhang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yue Song
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Bin Liu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chunmei Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Guoxian Pei
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
44
|
Kowalczewski CJ, Saul JM. Biomaterials for the Delivery of Growth Factors and Other Therapeutic Agents in Tissue Engineering Approaches to Bone Regeneration. Front Pharmacol 2018; 9:513. [PMID: 29896102 PMCID: PMC5986909 DOI: 10.3389/fphar.2018.00513] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/27/2018] [Indexed: 12/14/2022] Open
Abstract
Bone fracture followed by delayed or non-union typically requires bone graft intervention. Autologous bone grafts remain the clinical "gold standard". Recently, synthetic bone grafts such as Medtronic's Infuse Bone Graft have opened the possibility to pharmacological and tissue engineering strategies to bone repair following fracture. This clinically-available strategy uses an absorbable collagen sponge as a carrier material for recombinant human bone morphogenetic protein 2 (rhBMP-2) and a similar strategy has been employed by Stryker with BMP-7, also known as osteogenic protein-1 (OP-1). A key advantage to this approach is its "off-the-shelf" nature, but there are clear drawbacks to these products such as edema, inflammation, and ectopic bone growth. While there are clinical challenges associated with a lack of controlled release of rhBMP-2 and OP-1, these are among the first clinical examples to wed understanding of biological principles with biochemical production of proteins and pharmacological principles to promote tissue regeneration (known as regenerative pharmacology). After considering the clinical challenges with such synthetic bone grafts, this review considers the various biomaterial carriers under investigation to promote bone regeneration. This is followed by a survey of the literature where various pharmacological approaches and molecular targets are considered as future strategies to promote more rapid and mature bone regeneration. From the review, it should be clear that pharmacological understanding is a key aspect to developing these strategies.
Collapse
Affiliation(s)
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, United States
| |
Collapse
|
45
|
Narayan R, Agarwal T, Mishra D, Maiti TK, Mohanty S. Goat tendon collagen-human fibrin hydrogel for comprehensive parametric evaluation of HUVEC microtissue-based angiogenesis. Colloids Surf B Biointerfaces 2018; 163:291-300. [DOI: 10.1016/j.colsurfb.2017.12.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/13/2017] [Accepted: 12/31/2017] [Indexed: 10/18/2022]
|
46
|
Qiao H, Tang T. Engineering 3D approaches to model the dynamic microenvironments of cancer bone metastasis. Bone Res 2018; 6:3. [PMID: 29507817 PMCID: PMC5826951 DOI: 10.1038/s41413-018-0008-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 12/01/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer metastasis to bone is a three-dimensional (3D), multistep, dynamic process that requires the sequential involvement of three microenvironments, namely, the primary tumour microenvironment, the circulation microenvironment and the bone microenvironment. Engineered 3D approaches allow for a vivid recapitulation of in vivo cancerous microenvironments in vitro, in which the biological behaviours of cancer cells can be assessed under different metastatic conditions. Therefore, modelling bone metastasis microenvironments with 3D cultures is imperative for advancing cancer research and anti-cancer treatment strategies. In this review, multicellular tumour spheroids and bioreactors, tissue engineering constructs and scaffolds, microfluidic systems and 3D bioprinting technology are discussed to explore the progression of the 3D engineering approaches used to model the three microenvironments of bone metastasis. We aim to provide new insights into cancer biology and advance the translation of new therapies for bone metastasis.
Collapse
Affiliation(s)
- Han Qiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| |
Collapse
|
47
|
Paraboschi EM, Duga S, Asselta R. Fibrinogen as a Pleiotropic Protein Causing Human Diseases: The Mutational Burden of Aα, Bβ, and γ Chains. Int J Mol Sci 2017; 18:E2711. [PMID: 29240685 PMCID: PMC5751312 DOI: 10.3390/ijms18122711] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/19/2022] Open
Abstract
Fibrinogen is a highly pleiotropic protein that is involved in the final step of the coagulation cascade, wound healing, inflammation, and angiogenesis. Heterozygous mutations in Aα, Bβ, or γ fibrinogen-chain genes (FGA, FGB, FGG) have been described as being responsible for fibrinogen deficiencies (hypofibrinogenemia, hypo-dysfibrinogenemia, dysfibrinogenemia) and for more rare conditions, such as fibrinogen storage disease and hereditary renal amyloidosis. Instead, biallelic mutations have been associated with afibrinogenemia/severe hypofibrinogenemia, i.e., the severest forms of fibrinogen deficiency, affecting approximately 1-2 cases per million people. However, the "true" prevalence for these conditions on a global scale is currently not available. Here, we defined the mutational burden of the FGA, FGB, and FGG genes, and estimated the prevalence of inherited fibrinogen disorders through a systematic analysis of exome/genome data from ~140,000 individuals belonging to the genome Aggregation Database. Our analysis showed that the world-wide prevalence for recessively-inherited fibrinogen deficiencies could be 10-fold higher than that reported so far (prevalence rates vary from 1 in 10⁶ in East Asians to 24.5 in 10⁶ in non-Finnish Europeans). The global prevalence for autosomal-dominant fibrinogen disorders was estimated to be ~11 in 1000 individuals, with heterozygous carriers present at a frequency varying from 3 every 1000 individuals in Finns, to 1-2 every 100 individuals among non-Finnish Europeans and Africans/African Americans. Our analysis also allowed for the identification of recurrent (i.e., FGG-p.Ala108Gly, FGG-Thr47Ile) or ethnic-specific mutations (e.g., FGB-p.Gly103Arg in Admixed Americans, FGG-p.Ser245Phe in Africans/African Americans).
Collapse
Affiliation(s)
- Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy.
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy.
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
48
|
Abd El-Latif N, Abdulrahman M, Helal M, Grawish ME. Regenerative capacity of allogenic gingival margin- derived stem cells with fibrin glue on albino rats' partially dissected submandibular salivary glands. Arch Oral Biol 2017; 82:302-309. [PMID: 28688332 DOI: 10.1016/j.archoralbio.2017.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To evaluate the possible regenerative effect of allogenic gingival margin-derived stem cells (GMSCs) with or without autologous fibrin glue on partially dissected submandibular salivary glands of albino rats. METHODS Forty rats were randomly divided into four equal groups. Group I, where no operation was performed, was considered the negative control. Group II rats were considered the positive control and were subjected to a rectangular cut on the outer surface of the center right of the submandibular salivary gland and received no other treatment. Groups III and IV rats were handled as those in group II, but the cut areas of group III were filled with fibrin glue and the cut borders of group IV were injected with 1×105cell/ml GMSCs and then glued with fibrin glue. Five animals from each group were euthanized at the end of the first postoperative week, while the remaining animals were euthanized at the end of the second postoperative week, i.e., end of the experiment. RESULTS Regeneration of ductal, acinar, and myoepithelial cells was better in group IV. A two-way ANOVA for proliferating cell nuclear antigen and α-smooth muscle actin revealed an overall significant difference between the different groups (P<0.05). In addition, an LSD post hoc test for multiple comparisons revealed a significant difference between each two groups. An independent sample t-test revealed significant differences between time periods for groups II, III, and IV, but there were no significant differences between the time periods for group I. CONCLUSION Injecting GMSCs at the cut borders and gluing the cut area with autologous fibrin glue ameliorates the regeneration of partially dissected submandibular salivary gland better than using fibrin glue alone.
Collapse
Affiliation(s)
- Noura Abd El-Latif
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Egypt
| | - Mohamed Abdulrahman
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Egypt
| | - Mohamad Helal
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Egypt
| | - Mohammed E Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Egypt; Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Gamasa, Mansoura, Egypt.
| |
Collapse
|
49
|
Akintewe OO, Roberts EG, Rim NG, Ferguson MA, Wong JY. Design Approaches to Myocardial and Vascular Tissue Engineering. Annu Rev Biomed Eng 2017; 19:389-414. [DOI: 10.1146/annurev-bioeng-071516-044641] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olukemi O. Akintewe
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215;, ,
| | - Erin G. Roberts
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215;,
| | - Nae-Gyune Rim
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215;, ,
| | - Michael A.H. Ferguson
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215;, ,
| | - Joyce Y. Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215;, ,
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215;,
| |
Collapse
|
50
|
|