1
|
Wong GY, Millar AA. Target Landscape of Conserved Plant MicroRNAs and the Complexities of Their Ancient MicroRNA-Binding Sites. PLANT & CELL PHYSIOLOGY 2023; 64:604-621. [PMID: 36943747 DOI: 10.1093/pcp/pcad019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Accepted: 03/19/2023] [Indexed: 06/16/2023]
Abstract
In plants, microRNA (miRNA)-target interactions (MTIs) require high complementarity, a feature from which bioinformatic programs have predicted numerous and diverse targets for any given miRNA, promoting the idea of complex miRNA networks. Opposing this is a hypothesis of constrained miRNA specificity, in which functional MTIs are restricted to the few targets whose required expression output is compatible with the expression of the miRNA. To explore these opposing views, the bioinformatic pipeline Targets Ranked Using Experimental Evidence was applied to strongly conserved miRNAs to identity their high-evidence (HE) targets across species. For each miRNA family, HE targets predominantly consisted of homologs from one conserved target gene family (primary family). These primary families corresponded to the known canonical miRNA-target families, validating the approach. Very few additional HE target families were identified (secondary family), and if so, they were likely functionally related to the primary family. Many primary target families contained highly conserved nucleotide sequences flanking their miRNA-binding sites that were enriched in HE homologs across species. A number of these flanking sequences are predicted to form conserved RNA secondary structures that preferentially base pair with the miRNA-binding site, implying that these sites are highly structured. Our findings support a target landscape view that is dominated by the conserved primary target families, with a minority of either secondary target families or non-conserved targets. This is consistent with the constrained hypothesis of functional miRNA specificity, which potentially in part is being facilitated by features beyond complementarity.
Collapse
Affiliation(s)
- Gigi Y Wong
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Anthony A Millar
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Identification of C-T novel polymorphism in 3rd exon of OsSPL14 gene governing seed sequence in rice. PLoS One 2022; 17:e0264478. [PMID: 35286332 PMCID: PMC8920263 DOI: 10.1371/journal.pone.0264478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Recently food shortage has become the major flagging scenario around the globe. To resolve this challenge, there is dire need to significantly increase crop productivity per unit area. In the present study, 24 genotypes of rice were grown in pots to assess their tillering number, number of primary and secondary branches per panicle, number of grains per panicle, number of grains per plant, and grain yield, respectively. In addition, the potential function of miR156 was analyzed, regulating seed sequence in rice. Furthermore, OsSPL14 gene for miR156 was sequenced to identify additional mutations within studied region. The results demonstrated Bas-370 and L-77 showed highest and lowest tillers, respectively. Bas-370, Rachna basmati, Bas-2000, and Kashmir Basmati showed high panicle branches whereas, L-77, L-46, Dilrosh, L-48, and L-20 displayed lowest panicle branches. Bas-370 and four other studied accessions contained C allele whereas, L-77 and 18 other investigated accessions had heterozygous (C and T) alleles in their promoter region. C-T allelic mutation was found in 3rd exon of the OsSPL14 gene. The sequence analysis of 12 accessions revealed a novel mutation (C-T) present ~2bp upstream and substitution of C-A allele. However, no significant correlation for novel mutation was found for tillering and panicle branches in studied rice accessions. Taken together present results suggested novel insight into the binding of miR156 to detected mutation found in 3rd exon of the OsSPL14 gene. Nevertheless, L-77, L-46, Dilrosh, L-48, and L-20 could be used as potential breeding resource for improving panicle architecture contributing yield improvement of rice crop.
Collapse
|
3
|
Myrzabekova M, Labeit S, Niyazova R, Akimniyazova A, Ivashchenko A. Identification of Bovine miRNAs with the Potential to Affect Human Gene Expression. Front Genet 2022; 12:705350. [PMID: 35087564 PMCID: PMC8787201 DOI: 10.3389/fgene.2021.705350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Milk and other products from large mammals have emerged during human evolution as an important source of nutrition. Recently, it has been recognized that exogenous miRNAs (mRNA inhibited RNA) contained in milk and other tissues of the mammalian body can enter the human body, which in turn have the ability to potentially regulate human metabolism by affecting gene expression. We studied for exogenous miRNAs from Bos taurus that are potentially contain miRNAs from milk and that could act postprandially as regulators of human gene expression. The interaction of 17,508 human genes with 1025 bta-miRNAs, including 245 raw milk miRNAs was studied. The milk bta-miR-151-5p, bta-miR-151-3p, bta-miRNA-320 each have 11 BSs (binding sites), and bta-miRNA-345-5p, bta-miRNA-614, bta-miRNA-1296b and bta-miRNA-149 has 12, 14, 15 and 26 BSs, respectively. The bta-miR-574-5p from cow’s milk had 209 human genes in mRNAs from one to 25 repeating BSs. We found 15 bta-miRNAs that have 100% complementarity to the mRNA of 13 human target genes. Another 12 miRNAs have BSs in the mRNA of 19 human genes with 98% complementarity. The bta-miR-11975, bta-miR-11976, and bta-miR-2885 BSs are located with the overlap of nucleotide sequences in the mRNA of human genes. Nucleotide sequences of BSs of these miRNAs in 5′UTR mRNA of human genes consisted of GCC repeats with a total length of 18 nucleotides (nt) in 18 genes, 21 nt in 11 genes, 24 nt in 14 genes, and 27–48 nt in nine genes. Nucleotide sequences of BSs of bta-miR-11975, bta-miR-11976, and bta-miR-2885 in CDS mRNA of human genes consisted of GCC repeats with a total length of 18 nt in 33 genes, 21 nt in 13 genes, 24 nt in nine genes, and 27–36 nt in 11 genes. These BSs encoded polyA or polyP peptides. In only one case, the polyR (SLC24A3 gene) was encoded. The possibility of regulating the expression of human genes by exogenous bovine miRNAs is discussed.
Collapse
Affiliation(s)
- Moldir Myrzabekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.,Myomedix GmbH, Neckargemuend, Germany
| | - Raigul Niyazova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Aigul Akimniyazova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anatoliy Ivashchenko
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
4
|
Xu P, Zhu Y, Zhang Y, Jiang J, Yang L, Mu J, Yu X, He Y. Global Analysis of the Genetic Variations in miRNA-Targeted Sites and Their Correlations With Agronomic Traits in Rapeseed. Front Genet 2021; 12:741858. [PMID: 34594365 PMCID: PMC8476912 DOI: 10.3389/fgene.2021.741858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) and their target genes play vital roles in crops. However, the genetic variations in miRNA-targeted sites that affect miRNA cleavage efficiency and their correlations with agronomic traits in crops remain unexplored. On the basis of a genome-wide DNA re-sequencing of 210 elite rapeseed (Brassica napus) accessions, we identified the single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs) in miRNA-targeted sites complementary to miRNAs. Variant calling revealed 7.14 million SNPs and 2.89 million INDELs throughout the genomes of 210 rapeseed accessions. Furthermore, we detected 330 SNPs and 79 INDELs in 357 miRNA target sites, of which 33.50% were rare variants. We also analyzed the correlation between the genetic variations in miRNA target sites and 12 rapeseed agronomic traits. Eleven SNPs in miRNA target sites were significantly correlated with phenotypes in three consecutive years. More specifically, three correlated SNPs within the miRNA-binding regions of BnSPL9-3, BnSPL13-2, and BnCUC1-2 were in the loci associated with the branch angle, seed weight, and silique number, respectively; expression profiling suggested that the variation at these 3 miRNA target sites significantly affected the expression level of the corresponding target genes. Taken together, the results of this study provide researchers and breeders with a global view of the genetic variations in miRNA-targeted sites in rapeseed and reveal the potential effects of these genetic variations on elite agronomic traits.
Collapse
Affiliation(s)
- Pengfei Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yantao Zhu
- Hybrid Rape Research Center of Shaanxi Province, Yangling, China
| | - Yanfeng Zhang
- Hybrid Rape Research Center of Shaanxi Province, Yangling, China
| | - Jianxia Jiang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Liyong Yang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jianxin Mu
- Hybrid Rape Research Center of Shaanxi Province, Yangling, China
| | - Xiang Yu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Mukushkina D, Aisina D, Pyrkova A, Ryskulova A, Labeit S, Ivashchenko A. In silico Prediction of miRNA Interactions With Candidate Atherosclerosis Gene mRNAs. Front Genet 2020; 11:605054. [PMID: 33329752 PMCID: PMC7672156 DOI: 10.3389/fgene.2020.605054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
The involvement of genes and miRNAs in the development of atherosclerosis is a challenging problem discussed in recent publications. It is necessary to establish which miRNAs affect the expression of candidate genes. We used known candidate atherosclerosis genes to predict associations. The quantitative characteristics of interactions of miRNAs with mRNA candidate genes were determined using the program, which identifies the localization of miRNA binding sites in mRNA, the free energy interaction of miRNA with mRNA. In mRNAs of GAS6 and NFE2L2 candidate genes, binding sites of 21 miRNAs and of 15 miRNAs, respectively, were identified. In IRS2 mRNA binding sites of 25 miRNAs were located in a cluster of 41 nt. In ADRB3, CD36, FASLG, FLT1, PLA2G7, and PPARGC1A mRNAs, clusters of miR-466, ID00436.3p-miR, and ID01030.3p-miR BS were identified. The organization of overlapping miRNA binding sites in clusters led to their compaction and caused competition among the miRNAs. The binding of 53 miRNAs to the mRNAs of 14 candidate genes with free energy interactions greater than -130 kJ/mole was determined. The miR-619-5p was fully complementary to ADAM17 and CD36 mRNAs, ID01593.5p-miR to ANGPTL4 mRNA, ID01935.5p-miR to NFE2L2, and miR-5096 to IL18 mRNA. Associations of miRNAs and candidate atherosclerosis genes are proposed for the early diagnosis of this disease.
Collapse
Affiliation(s)
- Dina Mukushkina
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Dana Aisina
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anna Pyrkova
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Alma Ryskulova
- Department of microbiology, Kazakh Medical University of Continuing Education, Almaty, Kazakhstan
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Anatoliy Ivashchenko
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
6
|
Killiny N, Nehela Y, Hijaz F, Gonzalez-Blanco P, Hajeri S, Gowda S. Knock-down of δ-aminolevulinic acid dehydratase via virus-induced gene silencing alters the microRNA biogenesis and causes stress-related reactions in citrus plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110622. [PMID: 32900450 DOI: 10.1016/j.plantsci.2020.110622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
The δ-aminolevulinic acid (δ-ALA) is an intermediate in the biosynthetic pathway of tetrapyrroles. Tetrapyrroles play vital roles in many biological processes such as photosynthesis, respiration, and light-sensing. ALA-dehydratase (ALAD) combines two molecules of δ-ALA to form porphobilinogen. In citrus, the silencing of ALAD caused discrete yellow spots and necrosis in leaves and stems. Additionally, it caused rapid death in developing new shoots. Herein, we hypothesize that the accumulation of δ-ALA results in severe stress and reduced meristem development. For that reason, we investigated the dynamic changes in the expression profiles of 23 microRNA (miRNA) identified through small RNA sequencing, from CTV-tALAD plants in comparison with healthy C. macrophylla and C. macrophylla infiltrated with CTV-wt. Furthermore, we reported the effect of ALAD silencing on the total phenolics, H2O2, and reactive oxygen species (ROS) levels, to examine the possibilities of miRNAs involving the regulation of these pathways. Our results showed that the total phenolics content, H2O2, and O2- levels were increased in CTV-tALAD plants. Moreover, 63 conserved miRNA members belonging to 23 different miRNA families were differentially expressed in CTV-tALAD plants compared to controls. The identified miRNAs are implicated in auxin biosynthesis and signaling, axillary shoot meristem formation and leaf morphology, starch metabolism, and oxidative stress. Collectively, our findings suggested that ALAD silencing initiates stress on citrus plants. As a result, CTV-tALAD plants exhibit reduced metabolic rate, growth, and development in order to cope with the stress that resulted from the accumulation of δ-ALA. This cascade of events led to leaf, stem, and meristem necrosis and failure of new shoot development.
Collapse
Affiliation(s)
- Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA.
| | - Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Faraj Hijaz
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Pedro Gonzalez-Blanco
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Subhas Hajeri
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Siddarame Gowda
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| |
Collapse
|
7
|
Comparative analysis and functional identification of temperature-sensitive miRNA in Arabidopsis anthers. Biochem Biophys Res Commun 2020; 532:1-10. [PMID: 32826059 DOI: 10.1016/j.bbrc.2020.05.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/28/2022]
Abstract
The anther is one of the most vulnerable organs to temperature stress. Many previous works focused on the genes regulating anthers development, but few results of miRNA in anther development were reported. In order to investigate the transcriptional regulation of temperature-sensitive anther development, RNA-Sequencing was used to study micRNA in anthers of Arabidopsis thaliana under 16 °C and 27 °C. A total of 46.26 million clean reads were generated and mapped to 715,748 small RNA sequences containing 281 miRNAs. Then 13 differentially expressed (DE) miRNAs, containing 3 novel miRNAs were found. Comprehensive analysis of miRNA expression showed 7 miRNAs were down-regulated and 6 miRNAs were up-regulated. Furthermore, 13 DE miRNAs putatively regulated 614 DE mRNAs. Among them, 20 important anther genes were predicted as target genes of MIR319A, MIR447A, MIR447B and MIR398B, respectively. Over-expression MIR319A and MIR447A could effectively inhibit the transcription of target genes and lead to male sterile. It suggested that DE miRNAs might mediate temperature signals and regulate anther and pollen development. Our work will provide a broader idea and valuable data information for further understanding the mechanism of thermo-sensitive male fertility in plants.
Collapse
|
8
|
Rakhmetullina A, Pyrkova A, Aisina D, Ivashchenko A. In silico prediction of human genes as potential targets for rice miRNAs. Comput Biol Chem 2020; 87:107305. [PMID: 32570176 DOI: 10.1016/j.compbiolchem.2020.107305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Exogenous microRNAs (miRNAs) enter the human body through food, and their effects on metabolic processes can be considerable. It is important to determine which miRNAs from plants affect the expression of human genes and the extent of their influence. METHOD The binding sites of 738Oryza sativa miRNAs (osa-miRNAs) that interact with 17 508 mRNAs of human genes were determined using the MirTarget program. RESULT The characteristics of the binding of 46 single osa-miRNAs to 86 mRNAs of human genes with a value of free energy (ΔG) interaction equal 94%-100% from maximum ΔG were established. The findings showed that osa-miR2102-5p, osa-miR5075-3p, osa-miR2097-5p, osa-miR2919 targeted the largest number of genes at 38, 36, 23, 19 sites, respectively. mRNAs of 86 human genes were identified as targets for 93 osa-miRNAs of all family osa-miRNAs with ΔG values equal 94%-98% from maximum ΔG. Each miRNA of the osa-miR156-5p, osa-miR164-5p, osa-miR168-5p, osa-miR395-3p, osa-miR396-3p, osa-miR396-5p, osa-miR444-3p, osa-miR529-3p, osa-miR1846-3p, osa-miR2907-3p families had binding sites in mRNAs of several human target genes. The binding sites of osa-miRNAs in mRNAs of the target genes for each family of osa-miRNAs were conserved when compared to flanking nucleotide sequences. CONCLUSION Target mRNA human genes of osa-miRNAs are also candidate genes of cancer, cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Aizhan Rakhmetullina
- Department of Biotechnology, SRI of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Al-Farabi 71, Almaty, 050040, Kazakhstan
| | - Anna Pyrkova
- Department of Biotechnology, SRI of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Al-Farabi 71, Almaty, 050040, Kazakhstan
| | - Dana Aisina
- Department of Biotechnology, SRI of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Al-Farabi 71, Almaty, 050040, Kazakhstan
| | - Anatoliy Ivashchenko
- Department of Biotechnology, SRI of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Al-Farabi 71, Almaty, 050040, Kazakhstan.
| |
Collapse
|
9
|
Genome-Wide Analysis of the GRAS Gene Family in Barley ( Hordeum vulgare L.). Genes (Basel) 2020; 11:genes11050553. [PMID: 32423019 PMCID: PMC7290968 DOI: 10.3390/genes11050553] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022] Open
Abstract
The GRAS (named after first three identified proteins within this family, GAI, RGA, and SCR) family contains plant-specific genes encoding transcriptional regulators that play a key role in gibberellin (GA) signaling, which regulates plant growth and development. Even though GRAS genes have been characterized in some plant species, little research is known about the GRAS genes in barley (Hordeum vulgare L.). In this study, we observed 62 GRAS members from barley genome, which were grouped into 12 subgroups by using phylogenomic analysis together with the GRAS genes from Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). Chromosome localization and gene structure analysis suggested that duplication events and abundant presence of intronless genes might account for the massive expansion of GRAS gene family in barley. The analysis of RNA-seq data indicates the expression pattern of GRAS genes in various tissues at different stages in barley. Noteworthy, our qRT-PCR analysis showed the expression of 18 candidate GRAS genes abundantly in the developing inflorescence, indicating their potential roles in the barley inflorescence development and reproduction. Collectively, our evolutionary and expression analysis of GRAS family are useful for future functional characterization of GA signaling in barley and agricultural improvement.
Collapse
|
10
|
Aisina D, Niyazova R, Atambayeva S, Ivashchenko A. Prediction of clusters of miRNA binding sites in mRNA candidate genes of breast cancer subtypes. PeerJ 2019; 7:e8049. [PMID: 31741798 PMCID: PMC6858813 DOI: 10.7717/peerj.8049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
The development of breast cancer (BC) subtypes is controlled by distinct sets of candidate genes, and the expression of these genes is regulated by the binding of their mRNAs with miRNAs. Predicting miRNA associations and target genes is thus essential when studying breast cancer. The MirTarget program identifies the initiation of miRNA binding to mRNA, the localization of miRNA binding sites in mRNA regions, and the free energy from the binding of all miRNA nucleotides with mRNA. Candidate gene mRNAs have clusters (miRNA binding sites with overlapping nucleotide sequences). mRNAs of EPOR, MAZ and NISCH candidate genes of the HER2 subtype have clusters, and there are four clusters in mRNAs of MAZ, BRCA2 and CDK6 genes. Candidate genes of the triple-negative subtype are targets for multiple miRNAs. There are 11 sites in CBL mRNA, five sites in MMP2 mRNA, and RAB5A mRNA contains two clusters in each of the three sites. In SFN mRNA, there are two clusters in three sites, and one cluster in 21 sites. Candidate genes of luminal A and B subtypes are targets for miRNAs: there are 21 sites in FOXA1 mRNA and 15 sites in HMGA2 mRNA. There are clusters of five sites in mRNAs of ITGB1 and SOX4 genes. Clusters of eight sites and 10 sites are identified in mRNAs of SMAD3 and TGFB1 genes, respectively. Organizing miRNA binding sites into clusters reduces the proportion of nucleotide binding sites in mRNAs. This overlapping of miRNA binding sites creates a competition among miRNAs for a binding site. From 6,272 miRNAs studied, only 29 miRNAs from miRBase and 88 novel miRNAs had binding sites in clusters of target gene mRNA in breast cancer. We propose using associations of miRNAs and their target genes as markers in breast cancer subtype diagnosis.
Collapse
Affiliation(s)
- Dana Aisina
- Department of Biotechnology, SRI of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Raigul Niyazova
- Department of Biotechnology, SRI of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Shara Atambayeva
- Department of Biotechnology, SRI of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anatoliy Ivashchenko
- Department of Biotechnology, SRI of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
11
|
Gabriel AF, Costa MC, Enguita FJ, Leitão AL. Si vis pacem para bellum: A prospective in silico analysis of miRNA-based plant defenses against fungal infections. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110241. [PMID: 31521215 DOI: 10.1016/j.plantsci.2019.110241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/31/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Fungal pathogens are an important threat for plant crops, being responsible for important reductions of production yields and a consequent economic impact. Among the molecular mediators of fungal infections of plant crops, non-coding RNAs (ncRNAs) have been described as relevant players either in the plant immune responses and mechanism of defense or in the colonization of plant tissues by fungi. Acting as a mechanism of defense, some plant small ncRNAs such as miRNAs and tasiRNAs can be secreted by cells and directed to target the transcriptome of pathogenic fungi, triggering an RNAi-like interference mechanism able to silence the expression of specific fungal genes. The detailed knowledge of this mechanism of defense against fungal pathogens could open new possibilities for the protection of human important crops. To infer putative functional relationships mediated by ncRNA communication, we performed a prospective analysis to determine potential plant miRNAs able to target the genome of fungal pathogens, which resulted in the description of enriched specific plant miRNA families and their putative fungal targets that could be further studied in the context of plant-fungi interactions. The expression profile of specific members of the enriched miRNAs families showed an infection-dependent behavior in laboratory models of infection. Plant miRNAs showed sequence complementarity with coding genes of their cognate fungal pathogens. Plant miRNAs could potentially target fungal genes belonging to functional families related to stress response, membrane architecture, vacuolar transport, membrane traffic, and anabolic processes. Families of specific infection-responsive miRNAs are included in the putative plant defense mechanism.
Collapse
Affiliation(s)
- André F Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Marina C Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| | - Ana Lúcia Leitão
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal; MEtRICs, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, Caparica, 2829-516, Portugal.
| |
Collapse
|
12
|
Yurikova OY, Aisina DE, Niyazova RE, Atambayeva SA, Labeit S, Ivashchenko AT. The Interaction of miRNA-5p and miRNA-3p with the mRNAs of Orthologous Genes. Mol Biol 2019. [DOI: 10.1134/s0026893319040174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Huang K, Doyle F, Wurz ZE, Tenenbaum SA, Hammond RK, Caplan JL, Meyers BC. FASTmiR: an RNA-based sensor for in vitro quantification and live-cell localization of small RNAs. Nucleic Acids Res 2017; 45:e130. [PMID: 28586459 PMCID: PMC5737440 DOI: 10.1093/nar/gkx504] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 05/27/2017] [Indexed: 01/19/2023] Open
Abstract
Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), play a variety of important regulatory roles in many eukaryotes. Their small size has made it challenging to study them directly in live cells. Here we describe an RNA-based fluorescent sensor for small RNA detection both in vitro and in vivo, adaptable for any small RNA. It utilizes an sxRNA switch for detection of miRNA–mRNA interactions combined with a fluorophore-binding sequence ‘Spinach’, a GFP-like RNA aptamer for which the RNA–fluorophore complex exhibits strong and consistent fluorescence under an excitation wavelength. Two example sensors, FASTmiR171 and FASTmiR122, can rapidly detect and quantify the levels of miR171 and miR122 in vitro. The sensors can determine relative levels of miRNAs in total RNA extracts with sensitivity similar to small RNA sequencing and northern blots. FASTmiR sensors were also used to estimate the copy number range of miRNAs in total RNA extracts. To localize and analyze the spatial distribution of small RNAs in live, single cells, tandem copies of FASTmiR122 were expressed in different cell lines. FASTmiR122 was able to quantitatively detect the differences in miR122 levels in Huh7 and HEK293T cells demonstrating its potential for tracking miRNA expression and localization in vivo.
Collapse
Affiliation(s)
- Kun Huang
- Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.,Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Francis Doyle
- Nanobioscience Constellation, State University of New York- Polytechnic Institute, College of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Zachary E Wurz
- Nanobioscience Constellation, State University of New York- Polytechnic Institute, College of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Scott A Tenenbaum
- Nanobioscience Constellation, State University of New York- Polytechnic Institute, College of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Reza K Hammond
- Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA
| | - Jeffrey L Caplan
- Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.,Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Blake C Meyers
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA.,Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO 63132, USA.,University of Missouri-Columbia, Division of Plant Sciences, 52 Agriculture Lab, Columbia, MO 65211, USA
| |
Collapse
|
14
|
Ražná K, Bežo M, Hlavačková L, Žiarovská J, Miko M, Gažo J, Habán M. MicroRNA (miRNA) in food resources and medicinal plant. POTRAVINARSTVO 2016. [DOI: 10.5219/583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Niu SH, Liu C, Yuan HW, Li P, Li Y, Li W. Identification and expression profiles of sRNAs and their biogenesis and action-related genes in male and female cones of Pinus tabuliformis. BMC Genomics 2015; 16:693. [PMID: 26369937 PMCID: PMC4570457 DOI: 10.1186/s12864-015-1885-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/27/2015] [Indexed: 01/08/2023] Open
Abstract
Background Small RNA (sRNA) play pivotal roles in reproductive development, and their biogenesis and action mechanisms are well characterised in angiosperm plants; however, corresponding studies in conifers are very limited. To improve our understanding of the roles of sRNA pathways in the reproductive development of conifers, the genes associated with sRNA biogenesis and action pathways were identified and analysed, and sRNA sequencing and parallel analysis of RNA ends (PARE) were performed in male and female cones of the Chinese pine (Pinus tabuliformis). Results Based on high-quality reference transcriptomic sequences, 21 high-confidence homologues involved in sRNA biogenesis and action in P. tabuliformis were identified, including two different DCL3 genes and one AGO4 gene. More than 75 % of genes involved in sRNA biogenesis and action have higher expression levels in female than in male cones. Twenty-six microRNA (miRNA) families and 74 targets, including 46 24-nt sRNAs with a 5’ A, which are specifically expressed in male cones or female cones and probably bind to AGO4, were identified. Conclusions The sRNA pathways have higher activity in female than in male cones, and the miRNA pathways are the main sRNA pathways in P. tabuliformis. The low level of 24-nt short-interfering RNAs in conifers is not caused by the absence of biogenesis-related genes or AGO-binding proteins, but most likely caused by the low accumulation of these key components. The identification of sRNAs and their targets, as well as genes associated with sRNA biogenesis and action, will provide a good starting point for investigations into the roles of sRNA pathways in cone development in conifers. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1885-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shi-Hui Niu
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Chang Liu
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Hu-Wei Yuan
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Pei Li
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Yue Li
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Wei Li
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
16
|
Li J, Ding Q, Wang F, Zhang Y, Li H, Gao J. Integrative Analysis of mRNA and miRNA Expression Profiles of the Tuberous Root Development at Seedling Stages in Turnips. PLoS One 2015; 10:e0137983. [PMID: 26367742 PMCID: PMC4569476 DOI: 10.1371/journal.pone.0137983] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022] Open
Abstract
The tuberous root of Brassica rapa L. (turnip) is an important modified organ for nutrition storage. A better understanding of the molecular mechanisms involved in the process of tuberous root development is of great value in both economic and biological context. In this study, we analyzed the expression profiles of both mRNAs and miRNAs in tuberous roots at an early stage before cortex splitting (ES), cortex splitting stage (CSS), and secondary root thickening stage (RTS) in turnip based on high-throughput sequencing technology. A large number of differentially expressed genes (DEGs) and several differentially expressed miRNAs (DEMs) were identified. Based on the DEG analysis, we propose that metabolism is the dominant pathway in both tuberous root initiation and secondary thickening process. The plant hormone signal transduction pathway may play a predominant role in regulating tuberous root initiation, while the starch and sucrose metabolism may be more important for the secondary thickening process. These hypotheses were partially supported by sequential DEM analyses. Of all DEMs, miR156a, miR157a, and miR172a exhibited relatively high expression levels, and were differentially expressed in both tuberous root initiation and the secondary thickening process with the expression profiles negatively correlated with those of their target genes. Our results suggest that these miRNAs play important roles in tuberous root development in turnips.
Collapse
Affiliation(s)
- Jingjuan Li
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Qian Ding
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Fengde Wang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yihui Zhang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Huayin Li
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Jianwei Gao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| |
Collapse
|
17
|
The properties of binding sites of miR-619-5p, miR-5095, miR-5096, and miR-5585-3p in the mRNAs of human genes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:720715. [PMID: 25162022 PMCID: PMC4137733 DOI: 10.1155/2014/720715] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 11/17/2022]
Abstract
The binding of 2,578 human miRNAs with the mRNAs of 12,175 human genes was studied. It was established that miR-619-5p, miR-5095, miR-5096, and miR-5585-3p bind with high affinity to the mRNAs of the 1215, 832, 725, and 655 genes, respectively. These unique miRNAs have binding sites in the coding sequences and untranslated regions of mRNAs. The mRNAs of many genes have multiple miR-619-5p, miR-5095, miR-5096, and miR-5585-3p binding sites. Groups of mRNAs in which the ordering of the miR-619-5p, miR-5095, miR-5096, and miR-5585-3p binding sites differ were established. The possible functional and evolutional properties of unique miRNAs are discussed.
Collapse
|