1
|
Bauer JR, Robinson TL, Strich R, Cooper KF. Quitting Your Day Job in Response to Stress: Cell Survival and Cell Death Require Secondary Cytoplasmic Roles of Cyclin C and Med13. Cells 2025; 14:636. [PMID: 40358161 PMCID: PMC12071894 DOI: 10.3390/cells14090636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Following unfavorable environmental cues, cells reprogram pathways that govern transcription, translation, and protein degradation systems. This reprogramming is essential to restore homeostasis or commit to cell death. This review focuses on the secondary roles of two nuclear transcriptional regulators, cyclin C and Med13, which play key roles in this decision process. Both proteins are members of the Mediator kinase module (MKM) of the Mediator complex, which, under normal physiological conditions, positively and negatively regulates a subset of stress response genes. However, cyclin C and Med13 translocate to the cytoplasm following cell death or cell survival cues, interacting with a host of cell death and cell survival proteins, respectively. In the cytoplasm, cyclin C is required for stress-induced mitochondrial hyperfission and promotes regulated cell death pathways. Cytoplasmic Med13 stimulates the stress-induced assembly of processing bodies (P-bodies) and is required for the autophagic degradation of a subset of P-body assembly factors by cargo hitchhiking autophagy. This review focuses on these secondary, a.k.a. "night jobs" of cyclin C and Med13, outlining the importance of these secondary functions in maintaining cellular homeostasis following stress.
Collapse
Affiliation(s)
| | | | | | - Katrina F. Cooper
- Department of Cell and Molecular Biology, School of Osteopathic Medicine, Rowan-Virtua College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084, USA; (J.R.B.); (T.L.R.); (R.S.)
| |
Collapse
|
2
|
Ribeiro RA, Bourbon-Melo N, Sá-Correia I. The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts. Front Microbiol 2022; 13:953479. [PMID: 35966694 PMCID: PMC9366716 DOI: 10.3389/fmicb.2022.953479] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
In industrial settings and processes, yeasts may face multiple adverse environmental conditions. These include exposure to non-optimal temperatures or pH, osmotic stress, and deleterious concentrations of diverse inhibitory compounds. These toxic chemicals may result from the desired accumulation of added-value bio-products, yeast metabolism, or be present or derive from the pre-treatment of feedstocks, as in lignocellulosic biomass hydrolysates. Adaptation and tolerance to industrially relevant stress factors involve highly complex and coordinated molecular mechanisms occurring in the yeast cell with repercussions on the performance and economy of bioprocesses, or on the microbiological stability and conservation of foods, beverages, and other goods. To sense, survive, and adapt to different stresses, yeasts rely on a network of signaling pathways to modulate the global transcriptional response and elicit coordinated changes in the cell. These pathways cooperate and tightly regulate the composition, organization and biophysical properties of the cell wall. The intricacy of the underlying regulatory networks reflects the major role of the cell wall as the first line of defense against a wide range of environmental stresses. However, the involvement of cell wall in the adaptation and tolerance of yeasts to multiple stresses of biotechnological relevance has not received the deserved attention. This article provides an overview of the molecular mechanisms involved in fine-tuning cell wall physicochemical properties during the stress response of Saccharomyces cerevisiae and their implication in stress tolerance. The available information for non-conventional yeast species is also included. These non-Saccharomyces species have recently been on the focus of very active research to better explore or control their biotechnological potential envisaging the transition to a sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Ricardo A. Ribeiro
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Bourbon-Melo
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Montella-Manuel S, Pujol-Carrion N, de la Torre-Ruiz MA. The Cell Wall Integrity Receptor Mtl1 Contributes to Articulate Autophagic Responses When Glucose Availability Is Compromised. J Fungi (Basel) 2021; 7:903. [PMID: 34829194 PMCID: PMC8623553 DOI: 10.3390/jof7110903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023] Open
Abstract
Mtl1protein is a cell wall receptor belonging to the CWI pathway. Mtl1 function is related to glucose and oxidative stress signaling. In this report, we show data demonstrating that Mtl1 plays a critical role in the detection of a descent in glucose concentration, in order to activate bulk autophagy machinery as a response to nutrient deprivation and to maintain cell survival in starvation conditions. Autophagy is a tightly regulated mechanism involving several signaling pathways. The data here show that in Saccharomyces cerevisiae, Mtl1 signals glucose availability to either Ras2 or Sch9 proteins converging in Atg1 phosphorylation and autophagy induction. TORC1 complex function is not involved in autophagy induction during the diauxic shift when glucose is limited. In this context, the GCN2 gene is required to regulate autophagy activation upon amino acid starvation independent of the TORC1 complex. Mtl1 function is also involved in signaling the autophagic degradation of mitochondria during the stationary phase through both Ras2 and Sch9, in a manner dependent on either Atg33 and Atg11 proteins and independent of the Atg32 protein, the mitophagy receptor. All of the above suggest a pivotal signaling role for Mtl1 in maintaining correct cell homeostasis function in periods of glucose scarcity in budding yeast.
Collapse
Affiliation(s)
| | | | - Maria Angeles de la Torre-Ruiz
- Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain; (S.M.-M.); (N.P.-C.)
| |
Collapse
|
4
|
Cdk8 Kinase Module: A Mediator of Life and Death Decisions in Times of Stress. Microorganisms 2021; 9:microorganisms9102152. [PMID: 34683473 PMCID: PMC8540245 DOI: 10.3390/microorganisms9102152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/18/2023] Open
Abstract
The Cdk8 kinase module (CKM) of the multi-subunit mediator complex plays an essential role in cell fate decisions in response to different environmental cues. In the budding yeast S. cerevisiae, the CKM consists of four conserved subunits (cyclin C and its cognate cyclin-dependent kinase Cdk8, Med13, and Med12) and predominantly negatively regulates a subset of stress responsive genes (SRG’s). Derepression of these SRG’s is accomplished by disassociating the CKM from the mediator, thus allowing RNA polymerase II-directed transcription. In response to cell death stimuli, cyclin C translocates to the mitochondria where it induces mitochondrial hyper-fission and promotes regulated cell death (RCD). The nuclear release of cyclin C requires Med13 destruction by the ubiquitin-proteasome system (UPS). In contrast, to protect the cell from RCD following SRG induction induced by nutrient deprivation, cyclin C is rapidly destroyed by the UPS before it reaches the cytoplasm. This enables a survival response by two mechanisms: increased ATP production by retaining reticular mitochondrial morphology and relieving CKM-mediated repression on autophagy genes. Intriguingly, nitrogen starvation also stimulates Med13 destruction but through a different mechanism. Rather than destruction via the UPS, Med13 proteolysis occurs in the vacuole (yeast lysosome) via a newly identified Snx4-assisted autophagy pathway. Taken together, these findings reveal that the CKM regulates cell fate decisions by both transcriptional and non-transcriptional mechanisms, placing it at a convergence point between cell death and cell survival pathways.
Collapse
|
5
|
Zhang X, Wang Z, Jiang C, Xu JR. Regulation of biotic interactions and responses to abiotic stresses by MAP kinase pathways in plant pathogenic fungi. STRESS BIOLOGY 2021; 1:5. [PMID: 37676417 PMCID: PMC10429497 DOI: 10.1007/s44154-021-00004-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 09/08/2023]
Abstract
Like other eukaryotes, fungi use MAP kinase (MAPK) pathways to mediate cellular changes responding to external stimuli. In the past two decades, three well-conserved MAP kinase pathways have been characterized in various plant pathogenic fungi for regulating responses and adaptations to a variety of biotic and abiotic stresses encountered during plant infection or survival in nature. The invasive growth (IG) pathway is homologous to the yeast pheromone response and filamentation pathways. In plant pathogens, the IG pathway often is essential for pathogenesis by regulating infection-related morphogenesis, such as appressorium formation, penetration, and invasive growth. The cell wall integrity (CWI) pathway also is important for plant infection although the infection processes it regulates vary among fungal pathogens. Besides its universal function in cell wall integrity, it often plays a minor role in responses to oxidative and cell wall stresses. Both the IG and CWI pathways are involved in regulating known virulence factors as well as effector genes during plant infection and mediating defenses against mycoviruses, bacteria, and other fungi. In contrast, the high osmolarity growth (HOG) pathway is dispensable for virulence in some fungi although it is essential for plant infection in others. It regulates osmoregulation in hyphae and is dispensable for appressorium turgor generation. The HOG pathway also plays a major role for responding to oxidative, heat, and other environmental stresses and is overstimulated by phenylpyrrole fungicides. Moreover, these three MAPK pathways crosstalk and coordinately regulate responses to various biotic and abiotic stresses. The IG and CWI pathways, particularly the latter, also are involved in responding to abiotic stresses to various degrees in different fungal pathogens, and the HOG pathway also plays a role in interactions with other microbes or fungi. Furthermore, some infection processes or stress responses are co-regulated by MAPK pathways with cAMP or Ca2+/CaM signaling. Overall, functions of individual MAP kinase pathways in pathogenesis and stress responses have been well characterized in a number of fungal pathogens, showing the conserved genetic elements with diverged functions, likely by rewiring transcriptional regulatory networks. In the near future, applications of genomics and proteomics approaches will likely lead to better understanding of crosstalk among the MAPKs and with other signaling pathways as well as roles of MAPKs in defense against other microbes (biotic interactions).
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Zeyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
Víglaš J, Olejníková P. Signalling mechanisms involved in stress response to antifungal drugs. Res Microbiol 2020; 172:103786. [PMID: 33038529 DOI: 10.1016/j.resmic.2020.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 01/28/2023]
Abstract
The emergence of antifungal resistance is a serious threat in the treatment of mycoses. The primary susceptible fungal cells may evolve a resistance after longer exposure to antifungal agents. The exposure itself causes stress condition, to which the fungus needs to adapt. This review provides detailed description of evolutionary conserved molecular mechanisms contributing to the adaptation response to stress caused by antifungal agents as well as their interconnection. The knowledge may help us to find new ways to delay the emergence of drug resistance as the same mechanisms are used regardless of what antifungal compound causes stress.
Collapse
Affiliation(s)
- Ján Víglaš
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia.
| | - Petra Olejníková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia.
| |
Collapse
|
7
|
|
8
|
Xin C, Xing X, Wang F, Liu J, Ran Z, Chen W, Wang G, Song Z. MrMid2, encoding a cell wall stress sensor protein, is required for conidium production, stress tolerance, microsclerotium formation and virulence in the entomopathogenic fungus Metarhizium rileyi. Fungal Genet Biol 2019; 134:103278. [PMID: 31610212 DOI: 10.1016/j.fgb.2019.103278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/24/2019] [Accepted: 10/09/2019] [Indexed: 01/02/2023]
Abstract
Transmembrane proteins as sensors encoded by fungal genes activate specific intracellular signal pathways in response to stress cues to help the fungus survive in a changing environment. To better understand the role of the cell wall integrity (CWI) pathway in the entomopathogenic fungus Metarhizium rileyi, an ortholog encoding the transmembrane protein Mid2, MrMid2, was identified and characterized functionally. Transcriptional analysis indicated that MrMid2 was involved in dimorphic transition, conidiation, and microsclerotium formation. After a targeted deletion of MrMid2, all three traits were impaired. Compared with the wild-type strain, the △MrMid2 mutants were hypersensitive to thermal stress, and cell wall and oxidative stress. Insect bioassays revealed that △MrMid2 mutants had decreased virulence levels following topical (22.5%) and injection bioassays (38.7%). Furthermore, transcription analysis showed that other genes of the CWI pathway, with the exception of another major sensor protein encoding gene, MrWsc1, were down-regulated in △MrMid2 mutants. These results suggest that MrMid2 plays important roles in dimorphic transition, conidiation, the stress response, virulence, and microsclerotium development in M. rileyi.
Collapse
Affiliation(s)
- Caiyan Xin
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Xiaorui Xing
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Fen Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Jiexing Liu
- Department of Geriatrics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Zhuonan Ran
- Department of Geriatrics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Wenbi Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Guangxi Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, People's Republic of China.
| |
Collapse
|
9
|
Jiménez-Gutiérrez E, Alegría-Carrasco E, Sellers-Moya Á, Molina M, Martín H. Not just the wall: the other ways to turn the yeast CWI pathway on. Int Microbiol 2019; 23:107-119. [PMID: 31342212 DOI: 10.1007/s10123-019-00092-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/29/2022]
Abstract
The Saccharomyces cerevisiae cell wall integrity (CWI) pathway took this name when its role in the cell response to cell wall aggressions was clearly established. The receptors involved in sensing the damage, the relevant components operating in signaling to the MAPK Slt2, the transcription factors activated by this MAPK, as well as some key regulatory mechanisms have been identified and characterized along almost 30 years. However, other stimuli that do not alter specifically the yeast cell wall, including protein unfolding, low or high pH, or plasma membrane, oxidative and genotoxic stresses, have been also found to trigger the activation of this pathway. In this review, we compile almost forty non-cell wall-specific compounds or conditions, such as tunicamycin, hypo-osmotic shock, diamide, hydroxyurea, arsenate, and rapamycin, which induce these stresses. Relevant aspects of the CWI-mediated signaling in the response to these non-conventional pathway activators are discussed. The data presented here highlight the central and key position of the CWI pathway in the safeguard of yeast cells to a wide variety of external aggressions.
Collapse
Affiliation(s)
- Elena Jiménez-Gutiérrez
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (IRICIS), Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Estíbaliz Alegría-Carrasco
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (IRICIS), Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Ángela Sellers-Moya
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (IRICIS), Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (IRICIS), Pza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Humberto Martín
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (IRICIS), Pza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| |
Collapse
|
10
|
Ježek J, Smethurst DGJ, Stieg DC, Kiss ZAC, Hanley SE, Ganesan V, Chang KT, Cooper KF, Strich R. Cyclin C: The Story of a Non-Cycling Cyclin. BIOLOGY 2019; 8:biology8010003. [PMID: 30621145 PMCID: PMC6466611 DOI: 10.3390/biology8010003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
The class I cyclin family is a well-studied group of structurally conserved proteins that interact with their associated cyclin-dependent kinases (Cdks) to regulate different stages of cell cycle progression depending on their oscillating expression levels. However, the role of class II cyclins, which primarily act as transcription factors and whose expression remains constant throughout the cell cycle, is less well understood. As a classic example of a transcriptional cyclin, cyclin C forms a regulatory sub-complex with its partner kinase Cdk8 and two accessory subunits Med12 and Med13 called the Cdk8-dependent kinase module (CKM). The CKM reversibly associates with the multi-subunit transcriptional coactivator complex, the Mediator, to modulate RNA polymerase II-dependent transcription. Apart from its transcriptional regulatory function, recent research has revealed a novel signaling role for cyclin C at the mitochondria. Upon oxidative stress, cyclin C leaves the nucleus and directly activates the guanosine 5’-triphosphatase (GTPase) Drp1, or Dnm1 in yeast, to induce mitochondrial fragmentation. Importantly, cyclin C-induced mitochondrial fission was found to increase sensitivity of both mammalian and yeast cells to apoptosis. Here, we review and discuss the biology of cyclin C, focusing mainly on its transcriptional and non-transcriptional roles in tumor promotion or suppression.
Collapse
Affiliation(s)
- Jan Ježek
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Daniel G J Smethurst
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - David C Stieg
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Z A C Kiss
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Sara E Hanley
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Vidyaramanan Ganesan
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Kai-Ti Chang
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Katrina F Cooper
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Randy Strich
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| |
Collapse
|
11
|
Willis SD, Stieg DC, Ong KL, Shah R, Strich AK, Grose JH, Cooper KF. Snf1 cooperates with the CWI MAPK pathway to mediate the degradation of Med13 following oxidative stress. MICROBIAL CELL 2018; 5:357-370. [PMID: 30175106 PMCID: PMC6116281 DOI: 10.15698/mic2018.08.641] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells, when faced with unfavorable environmental conditions, mount either pro-survival or pro-death programs. The conserved cyclin C-Cdk8 kinase plays a key role in this decision. Both are members of the Cdk8 kinase module that, along with Med12 and Med13, associate with the core Mediator complex of RNA polymerase II. In Saccharomyces cerevisiae, oxidative stress triggers Med13 destruction, which releases cyclin C into the cytoplasm to promote mitochondrial fission and programmed cell death. The SCFGrr1 ubiquitin ligase mediates Med13 degradation dependent on the cell wall integrity pathway, MAPK Slt2. Here we show that the AMP kinase Snf1 activates a second SCFGrr1 responsive degron in Med13. Deletion of Snf1 resulted in nuclear retention of cyclin C and failure to induce mitochondrial fragmentation. This degron was able to confer oxidative-stress-induced destruction when fused to a heterologous protein in a Snf1 dependent manner. Although snf1∆ mutants failed to destroy Med13, deleting the degron did not prevent destruction. These results indicate that the control of Med13 degradation following H2O2 stress is complex, being controlled simultaneously by CWI and MAPK pathways.
Collapse
Affiliation(s)
- Stephen D Willis
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA
| | - David C Stieg
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA
| | - Kai Li Ong
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Ravina Shah
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA.,Current address: Department of Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028. USA
| | - Alexandra K Strich
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA.,Current address: Shawnee High School, Medford, New Jersey 08055, USA
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Katrina F Cooper
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA
| |
Collapse
|
12
|
Stieg DC, Willis SD, Ganesan V, Ong KL, Scuorzo J, Song M, Grose J, Strich R, Cooper KF. A complex molecular switch directs stress-induced cyclin C nuclear release through SCF Grr1-mediated degradation of Med13. Mol Biol Cell 2017; 29:363-375. [PMID: 29212878 PMCID: PMC5996960 DOI: 10.1091/mbc.e17-08-0493] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/22/2017] [Accepted: 12/01/2017] [Indexed: 02/03/2023] Open
Abstract
In response to oxidative stress, cells must choose either to live or to die. Here we show that the E3 ligase SCFGrr1 mediates the destruction of Med13, which releases cyclin C into the cytoplasm and results in cell death. The Med13 SCF degron is most likely primed by the Cdk8 kinase and marked for destruction by the MAPK Slt2. In response to oxidative stress, cells decide whether to mount a survival or cell death response. The conserved cyclin C and its kinase partner Cdk8 play a key role in this decision. Both are members of the Cdk8 kinase module, which, with Med12 and Med13, associate with the core mediator complex of RNA polymerase II. In Saccharomyces cerevisiae, oxidative stress triggers Med13 destruction, which thereafter releases cyclin C into the cytoplasm. Cytoplasmic cyclin C associates with mitochondria, where it induces hyperfragmentation and regulated cell death. In this report, we show that residues 742–844 of Med13’s 600–amino acid intrinsic disordered region (IDR) both directs cyclin C-Cdk8 association and serves as the degron that mediates ubiquitin ligase SCFGrr1-dependent destruction of Med13 following oxidative stress. Here, cyclin C-Cdk8 phosphorylation of Med13 most likely primes the phosphodegron for destruction. Next, pro-oxidant stimulation of the cell wall integrity pathway MAP kinase Slt2 initially phosphorylates cyclin C to trigger its release from Med13. Thereafter, Med13 itself is modified by Slt2 to stimulate SCFGrr1-mediated destruction. Taken together, these results support a model in which this IDR of Med13 plays a key role in controlling a molecular switch that dictates cell fate following exposure to adverse environments.
Collapse
Affiliation(s)
- David C Stieg
- Department of Molecular Biology, Graduate School of Biological Sciences, Rowan University, Stratford, NJ 08084
| | - Stephen D Willis
- Department of Molecular Biology, Graduate School of Biological Sciences, Rowan University, Stratford, NJ 08084
| | - Vidyaramanan Ganesan
- Department of Molecular Biology, Graduate School of Biological Sciences, Rowan University, Stratford, NJ 08084
| | - Kai Li Ong
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Joseph Scuorzo
- School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| | - Mia Song
- School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| | - Julianne Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Randy Strich
- Department of Molecular Biology, Graduate School of Biological Sciences, Rowan University, Stratford, NJ 08084
| | - Katrina F Cooper
- Department of Molecular Biology, Graduate School of Biological Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
13
|
Tanaka Y, Sasaki M, Ito F, Aoyama T, Sato-Okamoto M, Takahashi-Nakaguchi A, Chibana H, Shibata N. Cooperation between ER stress and calcineurin signaling contributes to the maintenance of cell wall integrity in Candida glabrata. Fungal Biol 2017; 122:19-33. [PMID: 29248112 DOI: 10.1016/j.funbio.2017.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/04/2017] [Accepted: 09/30/2017] [Indexed: 10/18/2022]
Abstract
Candida glabrata is the second most common source of Candida infections in humans. In this pathogen, the maintenance of cell wall integrity (CWI) frequently precludes effective pharmacological treatment by antifungal agents. In numerous fungi, cell wall modulation is reported to be controlled by endoplasmic reticulum (ER) stress, but how the latter affects CWI maintenance in C. glabrata is not clearly understood. Here, we characterized a C. glabrata strain harboring a mutation in the CNE1 gene, which encodes a molecular chaperone associated with nascent glycoprotein maturation in the ER. Disruption of cne1 induced ER stress and caused changes in the normal cell wall structure, specifically a reduction in the β-1,6-glucan content and accumulation of chitin. Conversely, a treatment with the typical ER stress inducer tunicamycin up-regulated the production of cell wall chitin but did not affect β-1,6-glucan content. Our results also indicated that C. glabrata features a uniquely evolved ER stress-mediated CWI pathway, which differs from that in the closely related species Saccharomyces cerevisiae. Furthermore, we demonstrated that ER stress-mediated CWI pathway in C. glabrata is also induced by the disruption of other genes encoding proteins that function in a correlated manner in the quality control of N-linked glycoproteins in the ER. These results suggest that calcineurin and ER quality control system act as a platform for maintaining CWI in C. glabrata.
Collapse
Affiliation(s)
- Yutaka Tanaka
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Masato Sasaki
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Fumie Ito
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Toshio Aoyama
- Department of Electronic and Information Engineering, Suzuka National College of Technology, Shirako-tyo, Suzuka, Mie 510-0294, Japan
| | - Michiyo Sato-Okamoto
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | | | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Nobuyuki Shibata
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| |
Collapse
|
14
|
Caspase dependent apoptosis induced in yeast cells by nanosecond pulsed electric fields. Bioelectrochemistry 2017; 115:19-25. [DOI: 10.1016/j.bioelechem.2017.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/18/2017] [Accepted: 01/31/2017] [Indexed: 02/03/2023]
|
15
|
Kock C, Arlt H, Ungermann C, Heinisch JJ. Yeast cell wall integrity sensors form specific plasma membrane microdomains important for signalling. Cell Microbiol 2016; 18:1251-67. [DOI: 10.1111/cmi.12635] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Christian Kock
- Universität Osnabrück; Fachbereich Biologie/Chemie, AG Genetik; 49076 Osnabrück Germany
| | - Henning Arlt
- Universität Osnabrück; Fachbereich Biologie/Chemie, AG Biochemie; 49076 Osnabrück Germany
| | - Christian Ungermann
- Universität Osnabrück; Fachbereich Biologie/Chemie, AG Biochemie; 49076 Osnabrück Germany
| | - Jürgen J. Heinisch
- Universität Osnabrück; Fachbereich Biologie/Chemie, AG Genetik; 49076 Osnabrück Germany
| |
Collapse
|
16
|
Abstract
Apoptosis or programmed cell death (PCD) was initially described in metazoans as a genetically controlled process leading to intracellular breakdown and engulfment by a neighboring cell . This process was distinguished from other forms of cell death like necrosis by maintenance of plasma membrane integrity prior to engulfment and the well-defined genetic system controlling this process. Apoptosis was originally described as a mechanism to reshape tissues during development. Given this context, the assumption was made that this process would not be found in simpler eukaryotes such as budding yeast. Although basic components of the apoptotic pathway were identified in yeast, initial observations suggested that it was devoid of prosurvival and prodeath regulatory proteins identified in mammalian cells. However, as apoptosis became extensively linked to the elimination of damaged cells, key PCD regulatory proteins were identified in yeast that play similar roles in mammals. This review highlights recent discoveries that have permitted information regarding PCD regulation in yeast to now inform experiments in animals.
Collapse
|
17
|
Jin C, Kim SK, Willis SD, Cooper KF. The MAPKKKs Ste11 and Bck1 jointly transduce the high oxidative stress signal through the cell wall integrity MAP kinase pathway. MICROBIAL CELL 2015; 2:329-342. [PMID: 27135035 PMCID: PMC4850913 DOI: 10.15698/mic2015.09.226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oxidative stress stimulates the Rho1 GTPase, which in turn induces the cell wall integrity (CWI) MAP kinase cascade. CWI activation promotes stress-responsive gene expression through activation of transcription factors (Rlm1, SBF) and nuclear release and subsequent destruction of the repressor cyclin C. This study reports that, in response to high hydrogen peroxide exposure, or in the presence of constitutively active Rho1, cyclin C still translocates to the cytoplasm and is degraded in cells lacking Bck1, the MAPKKK of the CWI pathway. However, in mutants defective for both Bck1 and Ste11, the MAPKKK from the high osmolarity, pseudohyphal and mating MAPK pathways, cyclin C nuclear to cytoplasmic relocalization and destruction is prevented. Further analysis revealed that cyclin C goes from a diffuse nuclear signal to a terminal nucleolar localization in this double mutant. Live cell imaging confirmed that cyclin C transiently passes through the nucleolus prior to cytoplasmic entry in wild-type cells. Taken together with previous studies, these results indicate that under low levels of oxidative stress, Bck1 activation is sufficient to induce cyclin C translocation and degradation. However, higher stress conditions also stimulate Ste11, which reinforces the stress signal to cyclin C and other transcription factors. This model would provide a mechanism by which different stress levels can be sensed and interpreted by the cell.
Collapse
Affiliation(s)
- Chunyan Jin
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08055 USA
| | - Stephen K Kim
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08055 USA
| | - Stephen D Willis
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08055 USA
| | - Katrina F Cooper
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08055 USA
| |
Collapse
|
18
|
Moye-Rowley WS. Feelin' it: Differential oxidative stress sensing mediated by Cyclin C. MICROBIAL CELL 2015; 2:305-307. [PMID: 28357307 PMCID: PMC5354573 DOI: 10.15698/mic2015.09.228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- W Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
19
|
Sundaram V, Petkova MI, Pujol-Carrion N, Boada J, de la Torre-Ruiz MA. Tor1, Sch9 and PKA downregulation in quiescence rely on Mtl1 to preserve mitochondrial integrity and cell survival. Mol Microbiol 2015; 97:93-109. [DOI: 10.1111/mmi.13013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Venkatraghavan Sundaram
- Department of Basic Medical Sciences; IRB-Lleida; University of Lleida; Av. Alcalde Rovira Roure n° 80 25198 Lleida Spain
| | - Mima I. Petkova
- Department of Basic Medical Sciences; IRB-Lleida; University of Lleida; Av. Alcalde Rovira Roure n° 80 25198 Lleida Spain
| | - Nuria Pujol-Carrion
- Department of Basic Medical Sciences; IRB-Lleida; University of Lleida; Av. Alcalde Rovira Roure n° 80 25198 Lleida Spain
| | - Jordi Boada
- Department of Experimental Medicine; IRB-Lleida; University of Lleida; Av. Alcalde Rovira Roure n° 80 25198 Lleida Spain
| | - Maria Angeles de la Torre-Ruiz
- Department of Basic Medical Sciences; IRB-Lleida; University of Lleida; Av. Alcalde Rovira Roure n° 80 25198 Lleida Spain
| |
Collapse
|
20
|
Methylglyoxal activates the target of rapamycin complex 2-protein kinase C signaling pathway in Saccharomyces cerevisiae. Mol Cell Biol 2015; 35:1269-80. [PMID: 25624345 DOI: 10.1128/mcb.01118-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Methylglyoxal is a typical 2-oxoaldehyde derived from glycolysis. We show here that methylglyoxal activates the Pkc1-Mpk1 mitogen-activated protein (MAP) kinase cascade in a target of rapamycin complex 2 (TORC2)-dependent manner in the budding yeast Saccharomyces cerevisiae. We demonstrate that TORC2 phosphorylates Pkc1 at Thr(1125) and Ser(1143). Methylglyoxal enhanced the phosphorylation of Pkc1 at Ser(1143), which transmitted the signal to the downstream Mpk1 MAP kinase cascade. We found that the phosphorylation status of Pkc1(T1125) affected the phosphorylation of Pkc1 at Ser(1143), in addition to its protein levels. Methylglyoxal activated mammalian TORC2 signaling, which, in turn, phosphorylated Akt at Ser(473). Our results suggest that methylglyoxal is a conserved initiator of TORC2 signaling among eukaryotes.
Collapse
|
21
|
Up against the wall: is yeast cell wall integrity ensured by mechanosensing in plasma membrane microdomains? Appl Environ Microbiol 2014; 81:806-11. [PMID: 25398859 DOI: 10.1128/aem.03273-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Yeast cell wall integrity (CWI) signaling serves as a model of the regulation of fungal cell wall synthesis and provides the basis for the development of antifungal drugs. A set of five membrane-spanning sensors (Wsc1 to Wsc3, Mid2, and Mtl1) detect cell surface stress and commence the signaling pathway upon perturbations of either the cell wall structure or the plasma membrane. We here summarize the latest advances in the structure/function relationship primarily of the Wsc1 sensor and critically review the evidence that it acts as a mechanosensor. The relevance and physiological significance of the information obtained for the function of the other CWI sensors, as well as expected future developments, are discussed.
Collapse
|
22
|
Strich R, Cooper KF. The dual role of cyclin C connects stress regulated gene expression to mitochondrial dynamics. MICROBIAL CELL 2014; 1:318-324. [PMID: 28357211 PMCID: PMC5349174 DOI: 10.15698/mic2014.10.169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Following exposure to cytotoxic agents, cellular damage is first recognized by a
variety of sensor mechanisms. Thenceforth, the damage signal is transduced to
the nucleus to install the correct gene expression program including the
induction of genes whose products either detoxify destructive compounds or
repair the damage they cause. Next, the stress signal is disseminated throughout
the cell to effect the appropriate changes at organelles including the
mitochondria. The mitochondria represent an important signaling platform for the
stress response. An initial stress response of the mitochondria is extensive
fragmentation. If the damage is prodigious, the mitochondria fragment (fission)
and lose their outer membrane integrity leading to the release of pro-apoptotic
factors necessary for programmed cell death (PCD) execution. As this complex
biological process contains many moving parts, it must be exquisitely
coordinated as the ultimate decision is life or death. The conserved C-type
cyclin plays an important role in executing this molecular Rubicon by coupling
changes in gene expression to mitochondrial fission and PCD. Cyclin C, along
with its cyclin dependent kinase partner Cdk8, associates with the RNA
polymerase holoenzyme to regulate transcription. In particular, cyclin C-Cdk8
repress many stress responsive genes. To relieve this repression, cyclin C is
destroyed in cells exposed to pro-oxidants and other stressors. However, prior
to its destruction, cyclin C, but not Cdk8, is released from its nuclear anchor
(Med13), translocates from the nucleus to the cytoplasm where it interacts with
the fission machinery and is both necessary and sufficient to induce extensive
mitochondria fragmentation. Furthermore, cytoplasmic cyclin C promotes PCD
indicating that it mediates both mitochondrial fission and cell death pathways.
This review will summarize the role cyclin C plays in regulating
stress-responsive transcription. In addition, we will detail this new function
mediating mitochondrial fission and PCD. Although both these roles of cyclin C
are conserved, this review will concentrate on cyclin C's dual role in the
budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Randy Strich
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford NJ, USA
| | - Katrina F Cooper
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford NJ, USA
| |
Collapse
|
23
|
Jin C, Strich R, Cooper KF. Slt2p phosphorylation induces cyclin C nuclear-to-cytoplasmic translocation in response to oxidative stress. Mol Biol Cell 2014; 25:1396-407. [PMID: 24554767 PMCID: PMC3983003 DOI: 10.1091/mbc.e13-09-0550] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The conserved transcription factor cyclin C is both translocated to the cytoplasm and destroyed after oxidative stress. The signaling pathway that transmits the stress signal to cyclin C is complex and uses both the MAPK Slt2p and its pseudokinase homologue, Kdx1, via different mechanisms. The yeast C-type cyclin represses the transcription of genes required for the stress response and meiosis. To relieve this repression, cyclin C undergoes nuclear-to-cytoplasmic translocation in response to many stressors, including hydrogen peroxide, where it is destroyed by ubiquitin-mediated proteolysis. Before its destruction, cyclin C promotes stress-induced mitochondrial fission and programmed cell death, indicating that relocalization is an important cell fate regulator. Here we show that cyclin C cytoplasmic translocation requires the cell wall integrity (CWI) mitogen-activated protein kinase Slt2p, its pseudokinase paralogue, Kdx1p, and an associating transcription factor, Ask10p. Furthermore, Slt2p and Kdx1p regulate cyclin C stability through different but required mechanisms. Slt2p associates with, and directly phosphorylates, cyclin C at Ser-266. Eliminating or mimicking phosphorylation at this site restricts or enhances cyclin C cytoplasmic translocation and degradation, respectively. Conversely, Kdx1p does not bind cyclin C but instead coimmunoprecipitates with Ask10p, a transcription factor previously identified as a regulator of cyclin C destruction. These results reveal a complex regulatory circuitry involving both downstream effectors of the CWI mitogen-activated protein kinase signal transduction pathway to target the relocalization and consequent destruction of a single transcriptional repressor.
Collapse
Affiliation(s)
- Chunyan Jin
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084
| | | | | |
Collapse
|