1
|
Rakhmanova TI, Gessler NN, Isakova EP, Klein OI, Deryabina YI, Popova TN. The Key Enzymes of Carbon Metabolism and the Glutathione Antioxidant System Protect Yarrowia lipolytica Yeast Against pH-Induced Stress. J Fungi (Basel) 2024; 10:747. [PMID: 39590666 PMCID: PMC11595425 DOI: 10.3390/jof10110747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
In this study, we first thoroughly assayed the response of the key enzymes of energy metabolism and the antioxidant system in Yarrowia lipolytica yeast at extreme pH. The activity of the tricarboxylic acid cycle enzymes, namely NAD-dependent isocitrate dehydrogenase, aconitate hydratase, NAD-dependent malate dehydrogenase, and fumarate hydratase, NADPH-producing enzymes of glucose-6-P dehydrogenase and NADP-dependent isocitrate dehydrogenase, and the enzymes of the glutathione system was assessed. All the enzymes that were tested showed a significant induction contrary to some decrease in the aconitate hydratase activity with acidic and alkaline stress. It is probable that a change in the enzyme activity in the mitochondria matrix is involved in the regulation of the cellular metabolism of Y. lipolytica, which allows the species to prosper at an extreme ambient pH. It distinguishes it from any other type of ascomycete. A close relationship between the induction of the Krebs cycle enzymes and the key enzymes of the glutathione system accompanied by an increased level of reduced glutathione was shown. The assumption that the increased activity of the Krebs cycle dehydrogenases and promotion of the pentose phosphate pathway at pH stress launches a set of events determining the adaptive response of Y. lipolytica yeast.
Collapse
Affiliation(s)
- Tatyana I. Rakhmanova
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl., 1, 394000 Voronezh, Russia; (T.I.R.); (T.N.P.)
| | - Natalia N. Gessler
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Ave. 33/2, 119071 Moscow, Russia; (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Elena P. Isakova
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Ave. 33/2, 119071 Moscow, Russia; (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Olga I. Klein
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Ave. 33/2, 119071 Moscow, Russia; (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Yulia I. Deryabina
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Ave. 33/2, 119071 Moscow, Russia; (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl., 1, 394000 Voronezh, Russia; (T.I.R.); (T.N.P.)
| |
Collapse
|
2
|
Padalko V, Posnik F, Adamczyk M. Mitochondrial Aconitase and Its Contribution to the Pathogenesis of Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9950. [PMID: 39337438 PMCID: PMC11431987 DOI: 10.3390/ijms25189950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
This survey reviews modern ideas on the structure and functions of mitochondrial and cytosolic aconitase isoenzymes in eukaryotes. Cumulative experimental evidence about mitochondrial aconitases (Aco2) as one of the main targets of reactive oxygen and nitrogen species is generalized. The important role of Aco2 in maintenance of homeostasis of the intracellular iron pool and maintenance of the mitochondrial DNA is discussed. The role of Aco2 in the pathogenesis of some neurodegenerative diseases is highlighted. Inactivation or dysfunction of Aco2 as well as mutations found in the ACO2 gene appear to be significant factors in the development and promotion of various types of neurodegenerative diseases. A restoration of efficient mitochondrial functioning as a source of energy for the cell by targeting Aco2 seems to be one of the promising therapeutic directions to minimize progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Volodymyr Padalko
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- School of Medicine, V. N. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine
| | - Filip Posnik
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Malgorzata Adamczyk
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
3
|
Zhang Y, Zhao T, Hu L, Xue J. Integrative Analysis of Core Genes and Biological Process Involved in Polycystic Ovary Syndrome. Reprod Sci 2023; 30:3055-3070. [PMID: 37171773 DOI: 10.1007/s43032-023-01259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common gynecological endocrine disordered disease, affecting the function of the ovaries in women of reproductive age. However, there are limited curative therapies for PCOS due to lack of reliable candidates. Hence, this study aimed to identify hub pathogenic genes and potential therapeutic targets for PCOS using bioinformatics tools. We obtained the expression profiles of 29 PCOS samples and 24 normal samples from three Gene Expression Omnibus (GEO) datasets. Then, the differentially expressed genes (DEGs) were screened, which were subjected to functional enrichment analyses. Moreover, we found 30 ferroptosis-related genes out of the 89 DEGs. Among the top 10 significant ferroptosis-related DEGs, 8 genes showed good predictive performance. We constructed interaction network of top three ferroptosis-related DEGs (SLC38A1, ACO1, DDIT3). Finally, real-time PCR was performed to test the relative expression of these genes. In conclusions, we have identified ferroptosis-related DEGs as core genes and potential therapeutic targets of PCOS based on comprehensive bioinformatics analysis. The findings are conducive to understanding of the pathogenesis of PCOS and paving the way towards curative therapies.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Obstetrics and Gynecology, Yan'an University Affiliated Hospital, No. 43 North Street, Baota District, Yan'an, 716000, Shaanxi, People's Republic of China
| | - Tianyi Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Lishuang Hu
- Department of Obstetrics and Gynecology, Yan'an University Affiliated Hospital, No. 43 North Street, Baota District, Yan'an, 716000, Shaanxi, People's Republic of China
| | - Juan Xue
- Department of Obstetrics and Gynecology, Yan'an University Affiliated Hospital, No. 43 North Street, Baota District, Yan'an, 716000, Shaanxi, People's Republic of China.
| |
Collapse
|
4
|
Rakhmanova TI, Sekova VY, Gessler NN, Isakova EP, Deryabina YI, Popova TN, Shurubor YI, Krasnikov BF. Kinetic and Regulatory Properties of Yarrowia lipolytica Aconitate Hydratase as a Model-Indicator of Cell Redox State under pH Stress. Int J Mol Sci 2023; 24:ijms24087670. [PMID: 37108831 PMCID: PMC10143702 DOI: 10.3390/ijms24087670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
This paper presents an analysis of the regulation activity of the partially purified preparations of cellular aconitate hydratase (AH) on the yeast Yarrowia lipolytica cultivated at extreme pH. As a result of purification, enzyme preparations were obtained from cells grown on media at pH 4.0, 5.5, and 9.0, purified by 48-, 46-, and 51-fold and having a specific activity of 0.43, 0.55 and 0.36 E/mg protein, respectively. The kinetic parameters of preparations from cells cultured at extreme pH demonstrated: (1) an increase in the affinity for citrate and isocitrate; and (2) a shift in the pH optima to the acidic and alkaline side in accordance with the modulation of the medium pH. The regulatory properties of the enzyme from cells subjected to alkaline stress showed increased sensitivity to Fe2+ ions and high peroxide resistance. Reduced glutathione (GSH) stimulated AH, while oxidized glutathione (GSSG) inhibited AH. A more pronounced effect of both GSH and GSSG was noted for the enzyme obtained from cells grown at pH 5.5. The data obtained provide new approaches to the use of Y. lipolytica as a model of eukaryotic cells demonstrating the development of a stress-induced pathology and to conducting a detailed analysis of enzymatic activity for its correction.
Collapse
Affiliation(s)
- Tatyana I Rakhmanova
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl., 1, 394000 Voronezh, Russia
| | - Varvara Yu Sekova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Natalya N Gessler
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Elena P Isakova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Yulia I Deryabina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Tatyana N Popova
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl., 1, 394000 Voronezh, Russia
| | - Yevgeniya I Shurubor
- Centre for Strategic Planning of FMBA of the Russian Federation, Pogodinskaya St., Bld.10, 119121 Moscow, Russia
| | - Boris F Krasnikov
- Centre for Strategic Planning of FMBA of the Russian Federation, Pogodinskaya St., Bld.10, 119121 Moscow, Russia
| |
Collapse
|
5
|
Stenberg S, Li J, Gjuvsland AB, Persson K, Demitz-Helin E, González Peña C, Yue JX, Gilchrist C, Ärengård T, Ghiaci P, Larsson-Berglund L, Zackrisson M, Smits S, Hallin J, Höög JL, Molin M, Liti G, Omholt SW, Warringer J. Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative phosphorylation. eLife 2022; 11:e76095. [PMID: 35801695 PMCID: PMC9427111 DOI: 10.7554/elife.76095] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Deletion of mitochondrial DNA in eukaryotes is currently attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that this process critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication through Rtg2 and Rtg3. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. This shows that oxidative stress-induced mitochondrial impairment may be under strict regulatory control. If the results extend to human cells, the results may prove to be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease.
Collapse
Affiliation(s)
- Simon Stenberg
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Norwegian University of Life SciencesÅsNorway
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Jing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer CenterGuangzhouChina
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
| | - Arne B Gjuvsland
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Norwegian University of Life SciencesÅsNorway
| | - Karl Persson
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Erik Demitz-Helin
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Carles González Peña
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer CenterGuangzhouChina
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
| | - Ciaran Gilchrist
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Timmy Ärengård
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Payam Ghiaci
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Lisa Larsson-Berglund
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Martin Zackrisson
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Silvana Smits
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Johan Hallin
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Mikael Molin
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
- Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburgSweden
| | - Gianni Liti
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
| | - Stig W Omholt
- Department of Circulation and Medical Imaging, Cardiac Exercise Research Group, Norwegian University of Science and TechnologyTrondheimNorway
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| |
Collapse
|
6
|
Vowinckel J, Hartl J, Marx H, Kerick M, Runggatscher K, Keller MA, Mülleder M, Day J, Weber M, Rinnerthaler M, Yu JSL, Aulakh SK, Lehmann A, Mattanovich D, Timmermann B, Zhang N, Dunn CD, MacRae JI, Breitenbach M, Ralser M. The metabolic growth limitations of petite cells lacking the mitochondrial genome. Nat Metab 2021; 3:1521-1535. [PMID: 34799698 PMCID: PMC7612105 DOI: 10.1038/s42255-021-00477-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/10/2021] [Indexed: 12/25/2022]
Abstract
Eukaryotic cells can survive the loss of their mitochondrial genome, but consequently suffer from severe growth defects. 'Petite yeasts', characterized by mitochondrial genome loss, are instrumental for studying mitochondrial function and physiology. However, the molecular cause of their reduced growth rate remains an open question. Here we show that petite cells suffer from an insufficient capacity to synthesize glutamate, glutamine, leucine and arginine, negatively impacting their growth. Using a combination of molecular genetics and omics approaches, we demonstrate the evolution of fast growth overcomes these amino acid deficiencies, by alleviating a perturbation in mitochondrial iron metabolism and by restoring a defect in the mitochondrial tricarboxylic acid cycle, caused by aconitase inhibition. Our results hence explain the slow growth of mitochondrial genome-deficient cells with a partial auxotrophy in four amino acids that results from distorted iron metabolism and an inhibited tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Jakob Vowinckel
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Biognosys AG, Schlieren, Switzerland
| | - Johannes Hartl
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Berlin, Germany
| | - Hans Marx
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Martin Kerick
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics and Max Planck Unit for the Science of Pathogens, Berlin, Germany
- Institute of Parasitology and Biomedicine 'López-Neyra' (IPBLN, CSIC), Granada, Spain
| | - Kathrin Runggatscher
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Markus A Keller
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Mülleder
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Berlin, Germany
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Jason Day
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Manuela Weber
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Jason S L Yu
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Simran Kaur Aulakh
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Andrea Lehmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Berlin, Germany
| | - Diethard Mattanovich
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics and Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Nianshu Zhang
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Cory D Dunn
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Molecular Biology and Genetics, Koç University, İstanbul, Turkey
| | - James I MacRae
- Metabolomics Laboratory, The Francis Crick Institute, London, UK
| | | | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Berlin, Germany.
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
7
|
Bhondeley M, Liu Z. Mitochondrial Biogenesis Is Positively Regulated by Casein Kinase I Hrr25 Through Phosphorylation of Puf3 in Saccharomyces cerevisiae. Genetics 2020; 215:463-482. [PMID: 32317286 PMCID: PMC7268985 DOI: 10.1534/genetics.120.303191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/20/2020] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial biogenesis requires coordinated expression of genes encoding mitochondrial proteins, which in Saccharomyces cerevisiae is achieved in part via post-transcriptional control by the Pumilio RNA-binding domain protein Puf3 Puf3 binds to the 3'-UTR of many messenger RNAs (mRNAs) that encode mitochondrial proteins, regulating their turnover, translation, and/or mitochondrial targeting. Puf3 hyperphosphorylation correlates with increased mitochondrial biogenesis; however, the kinase responsible for Puf3 phosphorylation is unclear. Here, we show that the casein kinase I protein Hrr25 negatively regulates Puf3 by mediating its phosphorylation. An hrr25 mutation results in reduced phosphorylation of Puf3 in vivo and a puf3 deletion mutation reverses growth defects of hrr25 mutant cells grown on medium with a nonfermentable carbon source. We show that Hrr25 directly phosphorylates Puf3, and that the interaction between Puf3 and Hrr25 is mediated through the N-terminal domain of Puf3 and the kinase domain of Hrr25 We further found that an hrr25 mutation reduces GFP expression from GFP reporter constructs carrying the 3'-UTR of Puf3 targets. Downregulation of GFP expression due to an hrr25 mutation can be reversed either by puf3Δ or by mutations to the Puf3-binding sites in the 3'-UTR of the GFP reporter constructs. Together, our data indicate that Hrr25 is a positive regulator of mitochondrial biogenesis by phosphorylating Puf3 and inhibiting its function in downregulating target mRNAs encoding mitochondrial proteins.
Collapse
Affiliation(s)
- Manika Bhondeley
- Department of Biological Sciences, University of New Orleans, Louisiana 70148
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, Louisiana 70148
| |
Collapse
|
8
|
The Fe II(citrate) Fenton reaction under physiological conditions. J Inorg Biochem 2020; 206:111018. [PMID: 32050088 DOI: 10.1016/j.jinorgbio.2020.111018] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 12/13/2022]
Abstract
The Fenton reaction of FeII(citrate) in the presence and absence of bicarbonate (HCO3-) is studied. It is found that the rate constant of the Fenton reaction (kobs) increases with increasing [citrate]. kobs also increase with increasing [HCO3-]; this effect is most significant at biological citrate concentrations. Methane and ethane gases are formed from (CH3)2SO when the Fenton reaction is carried out in the presence of large [citrate] due to the reaction of the citrate radical, (-2OC)CH2C(OH)(CO2-)CH(CO2-)/(-2OC)CH2C(O)(CO2-)CH2(CO2-) with (CH3)2SO. In the absence of citrate (CH3)2SO2 is the main product of the Fenton reaction. However, in the presence of 0.10 mM citrate, no (CH3)2SO2 is formed, some (CH3)SOOH is formed, along with a low yield of beta-ketoglutaric acid. Formation of (CH3)SOOH and beta-ketoglutaric acid are due to the citrate radical and FeIV(citrate). In the presence of bicarbonate formation of abundant beta-ketoglutaric acid confirms the formation of carbonate radical anion (CO3-). Thus, bicarbonate affects the mechanism and kinetics of the reaction dramatically. Hydroxyl radicals (OH) are not formed in the presence of bicarbonate and probably also not in its absence. These results point out that hydroxyl radicals, formed by the Fenton reaction, do not initiate oxidative stress in biological systems.
Collapse
|
9
|
Isakova EP, Matushkina IN, Popova TN, Dergacheva DI, Gessler NN, Klein OI, Semenikhina AV, Deryabina YI, La Porta N, Saris NEL. Metabolic Remodeling during Long-Lasting Cultivation of the Endomyces magnusii Yeast on Oxidative and Fermentative Substrates. Microorganisms 2020; 8:E91. [PMID: 31936585 PMCID: PMC7022524 DOI: 10.3390/microorganisms8010091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 11/22/2022] Open
Abstract
In this study, we evaluated the metabolic profile of the aerobic microorganism of Endomyces magnusii with a complete respiration chain and well-developed mitochondria system during long-lasting cultivation. The yeast was grown in batches using glycerol and glucose as the sole carbon source for a week. The profile included the cellular biological and chemical parameters, which determined the redox status of the yeast cells. We studied the activities of the antioxidant systems (catalases and superoxide dismutases), glutathione system enzymes (glutathione peroxidase and reductase), aconitase, as well as the main enzymes maintaining NADPH levels in the cells (glucose-6-phosphate dehydrogenase and NADP+-isocitrate dehydrogenase) during aging of Endomyces magnusii on two kinds of substrates. We also investigated the dynamics of change in oxidized and reduced glutathione, conjugated dienes, and reactive oxidative species in the cells at different growth stages, including the deep stationary stages. Our results revealed a similar trend in the changes in the activity of all the enzymes tested, which increased 2-4-fold upon aging. The yeast cytosol had a very high reduced glutathione content, 22 times than that of Saccharomyces cerevisiae, and remained unchanged during growth, whereas there was a 7.5-fold increase in the reduced glutathione-to-oxidized glutathione ratio. The much higher level of reactive oxidative species was observed in the cells in the late and deep stationary phases, especially in the cells using glycerol. Cell aging of the culture grown on glycerol, which promotes active oxidative phosphorylation in the mitochondria, facilitated the functioning of powerful antioxidant systems (catalases, superoxide dismutases, and glutathione system enzymes) induced by reactive oxidative species. Moreover, it stimulated NADPH synthesis, regulating the cytosolic reduced glutathione level, which in turn determines the redox potential of the yeast cell during the early aging process.
Collapse
Affiliation(s)
- Elena P. Isakova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Irina N. Matushkina
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl.,1, 394000 Voronezh, Russia; (I.N.M.); (T.N.P.); (A.V.S.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl.,1, 394000 Voronezh, Russia; (I.N.M.); (T.N.P.); (A.V.S.)
| | - Darya I. Dergacheva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Natalya N. Gessler
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Olga I. Klein
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Anastasya V. Semenikhina
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl.,1, 394000 Voronezh, Russia; (I.N.M.); (T.N.P.); (A.V.S.)
| | - Yulia I. Deryabina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Nicola La Porta
- IASMA Research and Innovation Centre, Fondazione Edmund, Mach, Department of Sustainable Agroecosystems and Bioresources, Via Mach 1, 38010 San Michele all’Adige, Italy
| | - Nils-Eric L. Saris
- Department of Food and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, POB 56, 00014 Helsinki, Finland;
| |
Collapse
|
10
|
MIYAKAWA I. Organization and dynamics of yeast mitochondrial nucleoids. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:339-359. [PMID: 28496055 PMCID: PMC5489437 DOI: 10.2183/pjab.93.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mitochondrial DNA (mtDNA) is packaged by association with specific proteins in compact DNA-protein complexes named mitochondrial nucleoids (mt-nucleoids). The budding yeast Saccharomyces cerevisiae is able to grow either aerobically or anaerobically. Due to this characteristic, S. cerevisiae has been extensively used as a model organism to study genetics, morphology and biochemistry of mitochondria for a long time. Mitochondria of S. cerevisiae frequently fuse and divide, and perform dynamic morphological changes depending on the culture conditions and the stage of life cycle of the yeast cells. The mt-nucleoids also dynamically change their morphology, accompanying morphological changes of mitochondria. The mt-nucleoids have been isolated morphologically intact and functional analyses of mt-nucleoid proteins have been extensively performed. These studies have revealed that the functions of mt-nucleoid proteins are essential for maintenance of mtDNA. The aims of this review are to summarize the history on the research of yeast mt-nucleoids as well as recent findings on the organization of the mt-nucleoids and mitochondrial dynamics.
Collapse
Affiliation(s)
- Isamu MIYAKAWA
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi, Japan
- Correspondence should be addressed: I. Miyakawa, Department of Biology, Faculty of Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan (e-mail: )
| |
Collapse
|
11
|
Ponsuksili S, Trakooljul N, Hadlich F, Haack F, Murani E, Wimmers K. Genetically regulated hepatic transcripts and pathways orchestrate haematological, biochemical and body composition traits. Sci Rep 2016; 6:39614. [PMID: 28000754 PMCID: PMC5175187 DOI: 10.1038/srep39614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/22/2016] [Indexed: 01/19/2023] Open
Abstract
The liver is the central metabolic organ and exhibits fundamental functions in haematological traits. Hepatic expression, haematological, plasma biochemical, and body composition traits were assessed in a porcine model (n = 297) to establish tissue-specific genetic variations that influence the function of immune-metabolism-correlated expression networks. At FDR (false discovery rate) <1%, more than 3,600 transcripts were jointly correlated (r = |0.22-0.48|) with the traits. Functional enrichment analysis demonstrated common links of metabolic and immune traits. To understand how immune and metabolic traits are affected via genetic regulation of gene expression, eQTLs were assessed. 20517 significant (FDR < 5%) eQTLs for 1401 transcripts were identified, among which 443 transcripts were associated with at least one of the examined traits and had cis-eQTL (such as ACO1 (6.52 × 10-7) and SOD1 (6.41 × 10-30). The present study establishes a comprehensive view of hepatic gene activity which links together metabolic and immune traits in a porcine model for medical research.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Research Unit 'Functional Genome Analysis', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Research Unit 'Genomics', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Frieder Hadlich
- Research Unit 'Functional Genome Analysis', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Fiete Haack
- Research Unit 'Functional Genome Analysis', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Eduard Murani
- Research Unit 'Genomics', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Research Unit 'Genomics', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| |
Collapse
|
12
|
A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts. mBio 2016; 7:mBio.01782-16. [PMID: 27795405 PMCID: PMC5082906 DOI: 10.1128/mbio.01782-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Iron is an essential micronutrient for both pathogens and their hosts, which restrict iron availability during infections in an effort to prevent microbial growth. Successful human pathogens like the yeast Candida glabrata have thus developed effective iron acquisition strategies. Their regulation has been investigated well for some pathogenic fungi and in the model organism Saccharomyces cerevisiae, which employs an evolutionarily derived system. Here, we show that C. glabrata uses a regulation network largely consisting of components of the S. cerevisiae regulon but also of elements of other pathogenic fungi. Specifically, similarly to baker's yeast, Aft1 is the main positive regulator under iron starvation conditions, while Cth2 degrades mRNAs encoding iron-requiring enzymes. However, unlike the case with S. cerevisiae, a Sef1 ortholog is required for full growth under iron limitation conditions, making C. glabrata an evolutionary intermediate to SEF1-dependent fungal pathogens. Therefore, C. glabrata has evolved an iron homeostasis system which seems to be unique within the pathogenic fungi. IMPORTANCE The fungus Candida glabrata represents an evolutionarily close relative of the well-studied and benign baker's yeast and model organism Saccharomyces cerevisiae On the other hand, C. glabrata is an important opportunistic human pathogen causing both superficial and systemic infections. The ability to acquire trace metals, in particular, iron, and to tightly regulate this process during infection is considered an important virulence attribute of a variety of pathogens. Importantly, S. cerevisiae uses a highly derivative regulatory system distinct from those of other fungi. Until now, the regulatory mechanism of iron homeostasis in C. glabrata has been mostly unknown. Our study revealed a hybrid iron regulation network that is unique to C. glabrata and is placed at an evolutionary midpoint between those of S. cerevisiae and related fungal pathogens. We thereby show that, in the host, even a successful human pathogen can rely largely on a strategy normally found in nonpathogenic fungi from a terrestrial environment.
Collapse
|
13
|
Kingsbury JM, Shamaprasad N, Billmyre RB, Heitman J, Cardenas ME. Cancer-associated isocitrate dehydrogenase mutations induce mitochondrial DNA instability. Hum Mol Genet 2016; 25:3524-3538. [PMID: 27427385 DOI: 10.1093/hmg/ddw195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/15/2022] Open
Abstract
A major advance in understanding the progression and prognostic outcome of certain cancers, such as low-grade gliomas, acute myeloid leukaemia, and chondrosarcomas, has been the identification of early-occurring mutations in the NADP+-dependent isocitrate dehydrogenase genes IDH1 and IDH2 These mutations result in the production of the onco-metabolite D-2-hydroxyglutarate (2HG), thought to contribute to disease progression. To better understand the mechanisms of 2HG pathophysiology, we introduced the analogous glioma-associated mutations into the NADP+ isocitrate dehydrogenase genes (IDP1, IDP2, IDP3) in Saccharomyces cerevisiae Intriguingly, expression of the mitochondrial IDP1R148H mutant allele results in high levels of 2HG production as well as extensive mtDNA loss and respiration defects. We find no evidence for a reactive oxygen-mediated mechanism mediating this mtDNA loss. Instead, we show that 2HG production perturbs the iron sensing mechanisms as indicated by upregulation of the Aft1-controlled iron regulon and a concomitant increase in iron levels. Accordingly, iron chelation, or overexpression of a truncated AFT1 allele that dampens transcription of the iron regulon, suppresses the loss of respirative capacity. Additional suppressing factors include overexpression of the mitochondrial aldehyde dehydrogenase gene ALD5 or disruption of the retrograde response transcription factor RTG1 Furthermore, elevated α-ketoglutarate levels also suppress 2HG-mediated respiration loss; consistent with a mechanism by which 2HG contributes to mtDNA loss by acting as a toxic α-ketoglutarate analog. Our findings provide insight into the mechanisms that may contribute to 2HG oncogenicity in glioma and acute myeloid leukaemia progression, with the promise for innovative diagnostic and prognostic strategies and novel therapeutic modalities.
Collapse
Affiliation(s)
- Joanne M Kingsbury
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Nachiketha Shamaprasad
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - R Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Maria E Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
14
|
Kanprasoet W, Jensen LT, Sriprach S, Thitiananpakorn K, Rattanapornsompong K, Jensen AN. Deletion of Mitochondrial Porin Alleviates Stress Sensitivity in the Yeast Model of Shwachman-Diamond Syndrome. J Genet Genomics 2015; 42:671-84. [DOI: 10.1016/j.jgg.2015.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/13/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
|
15
|
Zhang C. Involvement of Iron-Containing Proteins in Genome Integrity in Arabidopsis Thaliana. Genome Integr 2015; 6:2. [PMID: 27330736 PMCID: PMC4911903 DOI: 10.4103/2041-9414.155953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 01/03/2023] Open
Abstract
The Arabidopsis genome encodes numerous iron-containing proteins such as iron-sulfur (Fe-S) cluster proteins and hemoproteins. These proteins generally utilize iron as a cofactor, and they perform critical roles in photosynthesis, genome stability, electron transfer, and oxidation-reduction reactions. Plants have evolved sophisticated mechanisms to maintain iron homeostasis for the assembly of functional iron-containing proteins, thereby ensuring genome stability, cell development, and plant growth. Over the past few years, our understanding of iron-containing proteins and their functions involved in genome stability has expanded enormously. In this review, I provide the current perspectives on iron homeostasis in Arabidopsis, followed by a summary of iron-containing protein functions involved in genome stability maintenance and a discussion of their possible molecular mechanisms.
Collapse
Affiliation(s)
- Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
16
|
Sudden sensorineural hearing loss and polymorphisms in iron homeostasis genes: new insights from a case-control study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:834736. [PMID: 25789325 PMCID: PMC4348611 DOI: 10.1155/2015/834736] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/15/2014] [Accepted: 01/06/2015] [Indexed: 12/19/2022]
Abstract
Background. Even if various pathophysiological events have been proposed as explanations, the putative cause of sudden hearing loss remains unclear. Objectives. To investigate and to reveal associations (if any) between the main iron-related gene variants and idiopathic sudden sensorineural hearing loss. Study Design. Case-control study. Materials and Methods. A total of 200 sudden sensorineural hearing loss patients (median age 63.65 years; range 10-92) were compared with 400 healthy control subjects. The following genetic variants were investigated: the polymorphism c.-8CG in the promoter of the ferroportin gene (FPN1; SLC40A1), the two isoforms C1 and C2 (p.P570S) of the transferrin protein (TF), the amino acidic substitutions p.H63D and p.C282Y in the hereditary hemochromatosis protein (HFE), and the polymorphism c.-582AG in the promoter of the HEPC gene, which encodes the protein hepcidin (HAMP). Results. The homozygous genotype c.-8GG of the SLC40A1 gene revealed an OR for ISSNHL risk of 4.27 (CI 95%, 2.65-6.89; P = 0.001), being overrepresented among cases. Conclusions. Our study indicates that the homozygous genotype FPN1 -8GG was significantly associated with increased risk of developing sudden hearing loss. These findings suggest new research should be conducted in the field of iron homeostasis in the inner ear.
Collapse
|
17
|
Schulz JC, Zampieri M, Wanka S, von Mering C, Sauer U. Large-scale functional analysis of the roles of phosphorylation in yeast metabolic pathways. Sci Signal 2014; 7:rs6. [DOI: 10.1126/scisignal.2005602] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
18
|
Frawley ER, Fang FC. The ins and outs of bacterial iron metabolism. Mol Microbiol 2014; 93:609-16. [PMID: 25040830 DOI: 10.1111/mmi.12709] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2014] [Indexed: 02/07/2023]
Abstract
Iron is a critical nutrient for the growth and survival of most bacterial species. Accordingly, much attention has been paid to the mechanisms by which host organisms sequester iron from invading bacteria and how bacteria acquire iron from their environment. However, under oxidative stress conditions such as those encountered within phagocytic cells during the host immune response, iron is released from proteins and can act as a catalyst for Fenton chemistry to produce cytotoxic reactive oxygen species. The transitory efflux of free intracellular iron may be beneficial to bacteria under such conditions. The recent discovery of putative iron efflux transporters in Salmonella enterica serovar Typhimurium is discussed in the context of cellular iron homeostasis.
Collapse
Affiliation(s)
- Elaine R Frawley
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|