1
|
Niu Y, Niu H, Chi L, Li P, Du J, Wang X, He X, Lu B, Pang Z. Trigonella foenum-graecum L. protects against renal function decline in a mouse model of type 2 diabetic nephropathy by modulating the PI3K-Akt-ERK signaling pathway. Front Pharmacol 2025; 16:1566723. [PMID: 40170727 PMCID: PMC11959092 DOI: 10.3389/fphar.2025.1566723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
Objectives Trigonella foenum-graecum L. (HLB) exhibits promising pharmacological properties for the treatment of type 2 diabetic nephropathy (DN). This study aims to enhance the understanding of HLB's pharmacodynamic effects and elucidate the mechanisms underlying its therapeutic potential in DN. Methods The pharmacodynamic effects of HLB were initially evaluated in a murine DN model through the oral administration of an aqueous extract of HLB. The primary bioactive constituents were subsequently identified using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS). Network pharmacology analysis was integrated with these data to uncover potential molecular targets of HLB in DN. Key renal metabolites were profiled using untargeted metabolomics, followed by metabolic pathway enrichment analysis conducted with the MetaboAnalyst 6.0 platform, which facilitated the identification of relevant metabolic pathways through which HLB modulates DN. Finally, quantitative real-time polymerase chain reaction (QRT-PCR) and Western blot (WB) techniques were employed to validate the expression levels of key genes and proteins, thereby confirming the molecular mechanisms underlying the effects of HLB in DN. Results Animal experiments indicated that HLB significantly improved blood glucose regulation and renal function while reducing oxidative stress and abnormalities in lipid metabolism in diabetic mice. A total of 34 compounds and 159 potential therapeutic targets were identified as key active components of HLB. The untargeted metabolomics analysis revealed 61 critical metabolites, among which the PI3K-Akt-ERK signaling pathway-known to be involved in diabetes-was highlighted as a crucial pathway. QRT-PCR and WB analyses demonstrated that HLB upregulated the expression of MAPK1, MAPK3, AKT1, and PI3K. Conclusion These results suggest that HLB may alleviate DN by modulating oxidative stress and lipid metabolism. Its effects are likely mediated through the PI3K-Akt-ERK signaling pathway, along with the upregulation of MAPK1, MAPK3, AKT1, and PI3K expression. This study lays the groundwork for further investigations into the molecular mechanisms underlying HLB's action in DN.
Collapse
Affiliation(s)
- Yang Niu
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, Beijing, China
| | - Hongjuan Niu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Luxuan Chi
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, Beijing, China
| | - Peihang Li
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, Beijing, China
| | - Jiyang Du
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, Beijing, China
| | - Xiaoqian Wang
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, Beijing, China
| | - Xu He
- Pharmacy Department, People’s Hospital of Dali Bai Autonomous Prefecture, Dali, China
| | - Binan Lu
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, Beijing, China
| | - Zongran Pang
- Key Laboratory of Ethnic Medicine in Ministry of Education, School of Pharmacy in Minzu University of China, Beijing, China
| |
Collapse
|
2
|
Wang S, Qin S, Cai B, Zhan J, Chen Q. Promising therapeutic mechanism for Chinese herbal medicine in ameliorating renal fibrosis in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:932649. [PMID: 37522131 PMCID: PMC10376707 DOI: 10.3389/fendo.2023.932649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most serious chronic microvascular abnormalities of diabetes mellitus and the major cause of uremia. Accumulating evidence has confirmed that fibrosis is a significant pathological feature that contributes to the development of chronic kidney disease in DN. However, the exact mechanism of renal fibrosis in DN is still unclear, which greatly hinders the treatment of DN. Chinese herbal medicine (CHM) has shown efficacy and safety in ameliorating inflammation and albuminuria in diabetic patients. In this review, we outline the underlying mechanisms of renal fibrosis in DN, including oxidative stress (OS) generation and OS-elicited ASK1-p38/JNK activation. Also, we briefly summarize the current status of CHM treating DN by improving renal fibrosis. The treatment of DN by inhibiting ASK1 activation to alleviate renal fibrosis in DN with CHM will promote the discovery of novel therapeutic targets for DN and provide a beneficial therapeutic method for DN.
Collapse
Affiliation(s)
- Shengju Wang
- Department of Nephrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuai Qin
- Department of Nephrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Baochao Cai
- Diabetes Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Jihong Zhan
- Department of Nephrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Trigonella foenum-graecum L. and Psoralea corylifolia L. Improve Erectile Dysfunction in Streptozotocin-Induced Diabetic Rats through Suppression of Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4187359. [PMID: 35707467 PMCID: PMC9192318 DOI: 10.1155/2022/4187359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022]
Abstract
Background Diabetes mellitus-induced erectile dysfunction (DMED) is one of the most common complications of diabetes and is mainly attributed to oxidative stress. Hu-Lu-Ba-Wan (HLBW) is a classic Chinese formulation consisting of Trigonella foenum-graecum L. (TFG) and Psoralea corylifolia L. (PC). HLBW has been used not only for the treatment of diabetes but also for the treatment of erectile dysfunction in clinics. This study aimed to explore the efficacy and underlying mechanism of HLBW in ameliorating erectile function in streptozotocin-induced diabetic rats. Methods The diabetic model was established by tail vein injection of streptozotocin (26 mg/kg), and then DMED rats screened by the apomorphine test were randomly divided into two groups: the model group and the HLBW group. The rats in the HLBW group were administered HLBW granules daily for 12 weeks. Fasting blood glucose and fasting insulin were tested by a commercial kit. Intracavernous pressure (ICP) and mean arterial pressure (MAP) were measured by cavernous nerve electrostimulation before the rats were killed. Erectile function was evaluated with ICP/MAP. The markers of oxidative stress in the corpus cavernosum (CC) were assayed by assay kits. Apoptosis in cavernosal tissue was detected by Western blotting (WB). The expression levels of vascular endothelial marker (vWF), α-smooth muscle actin (α-SMA), endothelial nitric oxide synthase (eNOS), and NADPH oxidase subunit P47phox were determined by WB and PCR. Furthermore, the structure of the CC was further confirmed by Masson's trichrome staining. Results The results showed that HLBW significantly reduced blood glucose and increased insulin sensitivity. HLBW reduced oxidative stress and apoptosis. In addition, we observed that the expression levels of vWF, α-SMA, and eNOS as well as the ratio of smooth muscle to collagen increased in the HLBW group. Conclusions Our results demonstrated that HLBW could reduce oxidative stress damage in CC to improve diabetes mellitus-induced erectile dysfunction in rats by inhibiting NADPH oxidase.
Collapse
|
4
|
Zhou C, Qin Y, Chen R, Gao F, Zhang J, Lu F. Fenugreek attenuates obesity-induced inflammation and improves insulin resistance through downregulation of iRhom2/TACE. Life Sci 2020; 258:118222. [PMID: 32768577 DOI: 10.1016/j.lfs.2020.118222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022]
Abstract
AIMS We previously reported that fenugreek-derived 4-hydroxyisoleucine ameliorates insulin resistance via regulation of TNF-α converting enzyme (TACE) expression. In the present study, we further investigate the effects and mechanisms of fenugreek on obesity-induced inflammation and insulin signaling in the high-fat diet (HFD)-challenged obese mice. MAIN METHODS After 12 weeks of HFD intervention, mice were treated with the low or high dosages of fenugreek. Serum levels of glucose, insulin, lipid profile, inflammation cytokines, and adipokines were detected. Macrophage infiltration and adipose tissue morphology were observed. Western blot was conducted to investigate the expressions of inactive rhomboid 2 (iRhom2) and TACE as well as other signaling pathways in subcutaneous adipose tissue. KEY FINDINGS We showed that fenugreek significantly suppressed body weight gain and fat accumulation in HFD-challenged obese mice. Meanwhile, fasting glucose, insulin, and HOMA-IR in fenugreek-treated mice were remarkably decreased, which were properly explained by fenugreek-induced activation of the insulin receptor signaling pathway. Moreover, the anti-inflammatory properties of fenugreek were shown by the decrease of systemic and local expressions of pro-inflammatory cytokines as well as reduced macrophage infiltration into adipose tissue. Additionally, fenugreek markedly deactivated NF-κB and JNK pathways. Finally, we demonstrated that fenugreek strikingly repressed the transcriptions and expressions of iRhom2 and TACE. SIGNIFICANCE Fenugreek shows an encouraging and promising property in ameliorating insulin resistance and suppressing inflammation in obesity, which might be realized by fenugreek-mediated inhibition of iRhom2/TACE axis-facilitated TNF-α release from adipocytes.
Collapse
Affiliation(s)
- Cong Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiaoyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Furong Lu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Zhou L, Tang J, Yang X, Dong H, Xiong X, Huang J, Zhang L, Qin H, Yan S. Five Constituents in Psoralea corylifolia L. Attenuate Palmitic Acid-Induced Hepatocyte Injury via Inhibiting the Protein Kinase C-α/Nicotinamide-Adenine Dinucleotide Phosphate Oxidase Pathway. Front Pharmacol 2020; 10:1589. [PMID: 32116659 PMCID: PMC7025552 DOI: 10.3389/fphar.2019.01589] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Psoralea corylifolia L. (PC) is a traditional Chinese herb used to treat yang deficiency of the spleen and kidney in pediatric disease. Our previous studies have found that PC can alleviate the liver oxidative stress of juvenile mice with nonalcoholic steatohepatitis (NASH), and its mechanism is related to the inhibition of the protein kinase C-α (PKC-α)/nicotinamide-adenine dinucleotide phosphate oxidase (NOX) signaling pathway. The aim of this study was to confirm the aforementioned drug target in vitro and to conduct preliminary screening for some effective compounds of PC on the treatment of NASH. A primary hepatocyte model of non alcoholic fatty liver disease was established by palmitic acid. The existence of Psoralen, Isopsoralen, Neobavaisoflavone, Isobavachalcone, and Bakuchiol were identified by ultra-performance liquid chromatography. Then, five PC compounds were administered. Intracellular triglyceride and total cholesterol content, the cell supernatant alanine aminotransferase and aspartate aminotransferase, and hepatocellular superoxide anion were examined. The changes of PKC-α/NOX signaling pathways in hepatocytes were also determined. Furthermore, PKC-α activator phorbol 12-myristate 13-acetate was administered for 4 h before Psoralen intervention was conducted again to detect the changes of PKC-α/NOX signaling pathways. Our data demonstrated that Psoralen, Isopsoralen, and Isobavachalcone decreased intracellular content of triglyceride while all five PC compounds improved hepatocellular total cholesterol accumulation and hepatocyte damage in palmitic acid-induced primary hepatocyte model of non alcoholic fatty liver disease. All five PC compounds could also reduce hepatocytic superoxide anion levels, nicotinamide-adenine dinucleotide phosphate/reduced nicotinamide-adenine dinucleotide phosphate ratio, NOX activity as well as p47phox protein expression and PKCα activation in hepatocytes. Psoralen exhibited the best efficacy but the effectiveness was lost when pre-stimulated by phorbol 12-myristate 13-acetate. The results suggest that Psoralen, Isopsoralen, and Isobavachalcone could improve hepatocyte steatosis; five PC compounds could ameliorate hepatocyte injury, relieve oxidative stress, and downregulate the PKC-α/NOX signaling pathway of hepatocytes. In addition, Psoralen exhibits the best efficacy and a prospective PKC-α inhibitor pharmaceutical activity.
Collapse
Affiliation(s)
- Lishan Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianqiao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Yang
- Department of Discipline Inspection and Supervision, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Xiong
- Department of Integrated Traditional Chinese and Western Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Huang
- Department of Pathology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linli Zhang
- Hubei University of Chinese Medicine, Wuhan, China
| | - Huan Qin
- Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suqi Yan
- Department of Integrated Traditional Chinese and Western Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Establishment and Comparison of Juvenile Female Mouse Models of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Gastroenterol Res Pract 2018; 2018:8929620. [PMID: 30158971 PMCID: PMC6109512 DOI: 10.1155/2018/8929620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/06/2018] [Accepted: 07/08/2018] [Indexed: 12/14/2022] Open
Abstract
Experimental research has successfully established an adult offspring animal model of nonalcoholic fatty liver disease (NAFLD), but the female offspring model of NAFLD in young age has not been well characterized yet. The aim of this study was to present a direct comparison of the maternal versus postweaning female juvenile NAFLD and nonalcoholic steatohepatitis (NASH) animal models. Four different female mouse models were established and compared using different high-fat diet feeding (HF) strategies in maternal mice and their offspring. The models were non-HF maternal mice and HF offspring with high-high fat (C/HHF), non-HF maternal mice and HF offspring with low-high fat (C/LHF), HF maternal mice and offspring both with high-high fat (HHF/HHF), and HF maternal mice and offspring both with low-high fat (LHF/LHF). A female control group (C/C) was also established. The offspring mice were raised to the age of 8 weeks and then euthanized. Blood glucose levels, lipid profiles, liver function, and triglycerides/total cholesterol contents were examined. Hepatic morphology and superoxide anion levels were evaluated. The nicotinamide-adenine dinucleotide phosphate activity and related regulatory subunits protein expression in the liver tissue were also determined. Our data demonstrated that offspring fat intake contributed to the successful establishment of NAFLD and maternal-offspring fat intake contributed to the successful establishment of NASH in juvenile female mice. Offspring high-fat exposure might be associated with the development of NAFLD and maternal high-fat exposure might be associated with the development of NASH in juvenile female offspring. Higher calories from a fat diet program (both in maternal and offspring) are more prone to inducing liver injury in offspring. In addition, the combination of the aforementioned two factors could aggravate this process. Moreover, oxidative stress was prominent in the juvenile female mouse model of NAFLD/NASH, and the mechanism might be related to the activation of liver NADPH oxidase.
Collapse
|
7
|
Lv W, Booz GW, Fan F, Wang Y, Roman RJ. Oxidative Stress and Renal Fibrosis: Recent Insights for the Development of Novel Therapeutic Strategies. Front Physiol 2018; 9:105. [PMID: 29503620 PMCID: PMC5820314 DOI: 10.3389/fphys.2018.00105] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is a significant worldwide healthcare problem. Regardless of the initial injury, renal fibrosis is the common final pathway leading to end stage renal disease. Although the underlying mechanisms are not fully defined, evidence indicates that besides inflammation, oxidative stress plays a crucial role in the etiology of renal fibrosis. Oxidative stress results from an imbalance between the production of free radicals that are often increased by inflammation and mitochondrial dysfunction, and reduced anti-oxidant defenses. Several studies have demonstrated that oxidative stress may occur secondary to activation of transforming growth factor β1 (TGF-β1) activity, consistent with its role to increase nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) activity. A number of other oxidative stress-related signal pathways have also been identified, such as nuclear factor erythroid-2 related factor 2 (Nrf2), the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-cGMP-dependent protein kinase 1-phosphodiesterase (cGMP-cGK1-PDE) signaling pathway, and the peroxisome proliferator-activated receptor gamma (PPARγ) pathway. Several antioxidant and renoprotective agents, including cysteamine bitartrate, epoxyeicosatrienoic acids (EETs), and cytoglobin (Cygb) have demonstrated ameliorative effects on renal fibrosis in preclinical or clinical studies. The mechanism of action of many traditional Chinese medicines used to treat renal disorders is based on their antioxidant properties, which could form the basis for new therapeutic approaches. This review focuses on the signaling pathways triggered by oxidative stress that lead to renal fibrosis and provides an update on the development of novel anti-oxidant therapies for CKD.
Collapse
Affiliation(s)
- Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
8
|
Zhou L, Tang J, Xiong X, Dong H, Huang J, Zhou S, Zhang L, Qin H, Yan S. Psoralea corylifolia L. Attenuates Nonalcoholic Steatohepatitis in Juvenile Mouse. Front Pharmacol 2017; 8:876. [PMID: 29249967 PMCID: PMC5715270 DOI: 10.3389/fphar.2017.00876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
Psoralea corylifolia L. (PC) is a traditional Chinese herb used to treat yang deficiency of the spleen and kidney in pediatric disease. Recent studies have shown its liver protection and anti-oxidative effects. The aim of this study was to explore the effect and mechanism of PC on nonalcoholic steatohepatitis in juvenile mice. The juvenile mouse model of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH) was established by being fed a high-fat diet in maternal-offspring manner. PC granules were prepared and the quality was assessed. The main components were identified by high performance liquid chromatography. Then, different dosages of PC were administered for 6 weeks. Homeostatic model assessment of insulin resistance, plasma liver enzymes, hepatic morphology, hepatic superoxide anion, and triglyceride/total cholesterol levels were examined. The changes of nuclear factor-κB (NF-κB) activity phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) and protein kinase C-α (PKC-α)/nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase signaling pathways in hepatic tissues were also determined. Our data demonstrated that PC significantly improved liver dysfunction, liver triglyceride/total cholesterol accumulation and insulin resistance in juvenile NAFLD/NASH mice. PC also alleviated hepatic steatosis, inflammatory cell infiltration, and fibroplasia in the portal area. Additionally, PC inhibited the activation of NF-κB and the mRNA expression of inflammatory factors while enhancing PI3K/Akt signaling in hepatic tissues. PC could also reduce hepatic superoxide anion levels, and NADPH oxidase activity as well as p47phox protein expression and PKCα activation in hepatic tissues. The results suggest that PC is effective in the treatment of NASH in juvenile mice. The mechanism may be related to the attenuation of hepatic oxidative stress through the PKC-α/NADPH oxidase signaling pathway.
Collapse
Affiliation(s)
- Lishan Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianqiao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Xiong
- Department of Integrated Traditional Chinese and Western Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Huang
- Department of Pathology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shunchang Zhou
- Center of Experimental Animals, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Zhang
- Department of Pediatrics, Integrated Traditional Chinese and Western Medicine Hospital of Wuhan, Wuhan, China
| | - Huan Qin
- Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suqi Yan
- Department of Integrated Traditional Chinese and Western Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Yan JQ, Huang F, Hao F, Su XL, Meng Q, Xu MJ. Oxidative Stress in the Rostral Ventrolateral Medulla Contributes To Cardiovascular Regulation in Preeclampsia. Front Physiol 2017; 8:772. [PMID: 29085302 PMCID: PMC5649191 DOI: 10.3389/fphys.2017.00772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/21/2017] [Indexed: 12/24/2022] Open
Abstract
Background: It has been demonstrated that preeclampsia, a pregnancy-specific hypertension disorder, is characterized by high blood pressure (BP) and sympathetic overactivity. Increased reactive oxygen species (ROS) in the rostral ventrolateral medulla (RVLM), a key region for controlling sympathetic tone, has been reported to contribute to high level of BP and sympathetic outflow. The aim of the present study was to determine the role of the RVLM ROS in mediating the preeclampsia-associated cardiovascular dysfunction. Methods: The animal model of preeclampsia was produced by administration of desoxycorticosterone acetate (DOCA) to pregnant rats. Results: Compared with normal pregnant rats without DOCA treatment (NP), the protein concentration and norepinephrine excretion in 24-h urine, as well as BP in pregnant rats with DOCA treatment (PDS) were significantly increased. The levels of superoxide anion and the protein expression of NADPH oxidase subtype (NOX4) in the RVLM were significantly increased in PDS than in NP groups. Furthermore, microinjection of the superoxide dismutase (SOD) mimic Tempol (5 nmol) into the RVLM significantly decreased BP, heart rate, and renal sympathetic never activity in PDS but not in NP group. Conclusion: The present data suggest that high BP and sympathetic overactivity in preeclampsia rats is associated with increased oxidative stress in the RVLM via upregulation of NOX4 expression.
Collapse
Affiliation(s)
- Jiu-Qiong Yan
- Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Fang Huang
- Department of Geriatics, Jinling Hospital, Nanjing, China
| | - Fan Hao
- Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Ling Su
- Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qi Meng
- Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ming-Juan Xu
- Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
10
|
Qiao Y, Gao K, Wang Y, Wang X, Cui B. Resveratrol ameliorates diabetic nephropathy in rats through negative regulation of the p38 MAPK/TGF-β1 pathway. Exp Ther Med 2017; 13:3223-3230. [PMID: 28588674 PMCID: PMC5450784 DOI: 10.3892/etm.2017.4420] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/20/2017] [Indexed: 12/25/2022] Open
Abstract
Resveratrol (RSV) has been shown to have a renoprotective effect against diabetic nephropathy, but the underlying mechanisms of this have not been fully elucidated. The aim of the current study was to explore the mechanisms responsible for the therapeutic effects of RSV in rat mesangial cells in vitro and in a rat model of diabetic nephropathy. The viability of CRL-2573 rat mesangial cells and their expression levels of p38, phosphorylated (p)-p38, transforming growth factor beta 1 (TGF-β1) and fibronectin were assessed in response to treatment with high glucose, with or without RSV. Diabetic nephropathy was also induced in Sprague-Dawley rats by streptozotocin treatment. At 8 weeks, basic biochemical parameters and histopathological abnormalities as well as the expression of p38, p-p38, TGF-β1 and fibronectin in rat kidneys were compared between control diabetic rats and those treated with 20 mg/kg RSV daily for 4 weeks. In the mesangial cell line, RSV inhibited high glucose-induced increases in cell viability and fibronectin expression by significantly reducing p38 mitogen-activated protein kinase (MAPK) activation and TGF-β1 expression (P<0.05). In diabetic rats, RSV significantly decreased blood glucose, serum creatinine and urinary albumin levels, as well as the kidney weight and ratio of kidney weight/body weight compared with the control group (P<0.05). Moreover, RSV ameliorated renal histological changes and downregulated the expression of p-p38, TGF-β1 and fibronectin in the kidneys of diabetic rats. These data suggested that RSV protected renal tissue from diabetes-induced injury and that this activity may be via inhibition of the p38 MAPK/TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Yuan Qiao
- Department of Endocrinology, Shaanxi Provincial Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ke Gao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Yangwei Wang
- Department of Endocrinology, Shaanxi Provincial Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xueliang Wang
- Department of Public Health, College of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bo Cui
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
11
|
Gong J, Fang K, Dong H, Wang D, Hu M, Lu F. Effect of fenugreek on hyperglycaemia and hyperlipidemia in diabetes and prediabetes: A meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:260-268. [PMID: 27496582 DOI: 10.1016/j.jep.2016.08.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/31/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fenugreek is a widely used herb for the treatment of diabetes mellitus (DM) but the effects in randomized controlled trials (RCTs) were controversial. Therefore, a meta-analysis was conducted to estimate the overall effects of fenugreek on hyperglycaemia and hyperlipidemia in diabetes and prediabetes. MATERIALS AND METHODS PubMed, EMBASE, web of science, Chinese Biomedical Literature database (CBM), the Cochrane library, China Doctor Dissertations Full-text Database (CDFD), Wan Fang medical database, China Proceedings of Conference Full-text Database (CPCD), China national knowledge internet (CNKI) and China Master's Theses Full-text Database (CMFD) were searched to find the available literatures. RCTs with regard to the efficacy and safety of fenugreek on prediabetes or DM were included. The data of fasting blood glucose (FBG), postprandial 2h blood glucose (2hBG), glycosylated hemoglobin (HbA1c), triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-c) and high density lipoprotein cholesterol (HDL-c) were extracted to appraise the net change with fixed or randomized effect model. RESULTS A total of 10 articles (12 studies) were included in the analysis. Pooled results showed fenugreek significantly decreased the levels of FBG (MD -0.84mmol/L; 95% CI -1.38 to -0.31; p=0.002), 2hBG (MD -1.30mmol/L; 95% CI -1.78 to -0.83; p<0.0001), HbA1c (MD -1.16; 95% CI -1.23 to -1.09; p<0.00001) and TC (MD -0.30mmol/L; 95% CI-0.56 to -0.03; p=0.03). In spite of the reductive trends in the TG or LDL-c levels and incremental trends of HDL-c, these results were not statistically significant or need further verification for fenugreek in the treatment of DM and prediabetes. Some studies were of low quality. No liver and kidney toxicity were found in all included studies, and the main side effects were gastrointestinal discomfort. CONCLUSIONS The results suggest fenugreek has the hypoglycaemic and TC-lowering efficacy; however, the effects on TG, LDL-c and HDL-c need further confirmations.
Collapse
Affiliation(s)
- Jing Gong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ke Fang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dingkun Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Meilin Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
12
|
Diosgenin and 5-Methoxypsoralen Ameliorate Insulin Resistance through ER-α/PI3K/Akt-Signaling Pathways in HepG2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7493694. [PMID: 27656241 PMCID: PMC5021865 DOI: 10.1155/2016/7493694] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/27/2016] [Accepted: 08/02/2016] [Indexed: 12/12/2022]
Abstract
To determine the effects and the underlying mechanism of diosgenin (DSG) and 5-methoxypsoralen (5-MOP), two main active components in the classical Chinese prescription Hu-Lu-Ba-Wan (HLBW), on insulin resistance, HepG2 cells were incubated in medium containing insulin. Treatments with DSG, 5-MOP, and their combination were performed, respectively. The result showed that the incubation of HepG2 cells with high concentration insulin markedly decreased glucose consumption and glycogen synthesis. However, treatment with DSG, 5-MOP, or their combination significantly reversed the condition and increased the phosphorylated expression of estrogen receptor-α (ERα), sarcoma (Src), Akt/protein kinase B, glycogen synthase kinase-3β (GSK-3β), and the p85 regulatory subunit of phosphatidylinositol 3-kinase p85 (PI3Kp85). At the transcriptional level, expression of the genes mentioned above also increased except for the negative regulation of GSK-3β mRNA. The increased expression of glucose transport-4 (GLUT-4) was meanwhile observed through immunofluorescence. Nevertheless, the synergistic effect of DSG and 5-MOP on improving glycometabolism was not obvious in the present study. These results suggested that DSG and 5-MOP may improve insulin resistance through an ER-mediated PI3K/Akt activation pathway which may be a new strategy for type 2 diabetes mellitus, especially for women in an estrogen-deficient condition.
Collapse
|
13
|
Protein kinase C α inhibition prevents peritoneal damage in a mouse model of chronic peritoneal exposure to high-glucose dialysate. Kidney Int 2016; 89:1253-67. [DOI: 10.1016/j.kint.2016.01.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 12/23/2015] [Accepted: 01/07/2016] [Indexed: 12/27/2022]
|
14
|
Sun GD, Li CY, Cui WP, Guo QY, Dong CQ, Zou HB, Liu SJ, Dong WP, Miao LN. Review of Herbal Traditional Chinese Medicine for the Treatment of Diabetic Nephropathy. J Diabetes Res 2016; 2016:5749857. [PMID: 26649322 PMCID: PMC4662991 DOI: 10.1155/2016/5749857] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/22/2015] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) is the most serious chronic complications of diabetes; 20-40% of diabetic patients develop into end stage renal disease (ESRD). However, exact pathogenesis of DN is not fully clear and we have great difficulties in curing DN; poor treatment of DN led to high chances of mortality worldwide. A lot of western medicines such as ACEI and ARB have been demonstrated to protect renal function of DN but are not enough to delay or retard the progression of DN; therefore, exploring exact and feasible drug is current research hotspot in medicine. Traditional Chinese medicine (TCM) has been widely used to treat and control diabetes and its complications such as DN in a lot of scientific researches, which will give insights into the mechanism of DN, but they are not enough to reveal all the details. In this paper, we summarize the applications of herbal TCM preparations, single herbal TCM, and/or monomers from herbal TCM in the treatment of DN in the recent 10 years, depicting the renal protective effects and the corresponding mechanism, through which we shed light on the renal protective roles of TCM in DN with a particular focus on the molecular basis of the effect and provide a beneficial supplement to the drug therapy for DN.
Collapse
Affiliation(s)
- Guang-dong Sun
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
- *Guang-dong Sun: and
| | - Chao-yuan Li
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Wen-peng Cui
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Qiao-yan Guo
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Chang-qing Dong
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Hong-bin Zou
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Shu-jun Liu
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Wen-peng Dong
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Li-ning Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
- *Li-ning Miao:
| |
Collapse
|
15
|
Gong J, Dong H, Jiang SJ, Wang DK, Fang K, Yang DS, Zou X, Xu LJ, Wang KF, Lu FE. Fenugreek lactone attenuates palmitate-induced apoptosis and dysfunction in pancreatic β-cells. World J Gastroenterol 2015; 21:13457-13465. [PMID: 26730156 PMCID: PMC4690174 DOI: 10.3748/wjg.v21.i48.13457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/09/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of fenugreek lactone (FL) on palmitate (PA)-induced apoptosis and dysfunction in insulin secretion in pancreatic NIT-1 β-cells. METHODS Cells were cultured in the presence or absence of FL and PA (0.25 mmol/L) for 48 h. Then, lipid droplets in NIT-1 cells were observed by oil red O staining, and the intracellular triglyceride content was measured by colorimetric assay. The insulin content in the supernatant was determined using an insulin radio-immunoassay. Oxidative stress-associated parameters, including total superoxide dismutase, glutathione peroxidase and catalase activity and malondialdehyde levels in the suspensions were also examined. The expression of upstream regulators of oxidative stress, such as protein kinase C-α (PKC-α), phospho-PKC-α and P47phox, were determined by Western blot analysis and real-time PCR. In addition, apoptosis was evaluated in NIT-1 cells by flow cytometry assays and caspase-3 viability assays. RESULTS Our results indicated that compared to the control group, PA induced an increase in lipid accumulation and apoptosis and a decrease in insulin secretion in NIT-1 cells. Oxidative stress in NIT-1 cells was activated after 48 h of exposure to PA. However, FL reversed the above changes. These effects were accompanied by the inhibition of PKC-α, phospho-PKC-α and P47phox expression and the activation of caspase-3. CONCLUSION FL attenuates PA-induced apoptosis and insulin secretion dysfunction in NIT-1 pancreatic β-cells. The mechanism for this action may be associated with improvements in levels of oxidative stress.
Collapse
|
16
|
Gong J, Dong H, Jiang SJ, Wang DK, Fang K, Yang DS, Zou X, Xu LJ, Wang KF, Lu FE. Fenugreek lactone attenuates palmitate-induced apoptosis and dysfunction in pancreatic β-cells. World J Gastroenterol 2015. [PMID: 26730156 DOI: pmid/26730156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AIM To investigate the effect of fenugreek lactone (FL) on palmitate (PA)-induced apoptosis and dysfunction in insulin secretion in pancreatic NIT-1 β-cells. METHODS Cells were cultured in the presence or absence of FL and PA (0.25 mmol/L) for 48 h. Then, lipid droplets in NIT-1 cells were observed by oil red O staining, and the intracellular triglyceride content was measured by colorimetric assay. The insulin content in the supernatant was determined using an insulin radio-immunoassay. Oxidative stress-associated parameters, including total superoxide dismutase, glutathione peroxidase and catalase activity and malondialdehyde levels in the suspensions were also examined. The expression of upstream regulators of oxidative stress, such as protein kinase C-α (PKC-α), phospho-PKC-α and P47phox, were determined by Western blot analysis and real-time PCR. In addition, apoptosis was evaluated in NIT-1 cells by flow cytometry assays and caspase-3 viability assays. RESULTS Our results indicated that compared to the control group, PA induced an increase in lipid accumulation and apoptosis and a decrease in insulin secretion in NIT-1 cells. Oxidative stress in NIT-1 cells was activated after 48 h of exposure to PA. However, FL reversed the above changes. These effects were accompanied by the inhibition of PKC-α, phospho-PKC-α and P47phox expression and the activation of caspase-3. CONCLUSION FL attenuates PA-induced apoptosis and insulin secretion dysfunction in NIT-1 pancreatic β-cells. The mechanism for this action may be associated with improvements in levels of oxidative stress.
Collapse
Affiliation(s)
- Jing Gong
- Jing Gong, Hui Dong, Shu-Jun Jiang, Ding-Kun Wang, Ke Fang, Xin Zou, Li-Jun Xu, Kai-Fu Wang, Fu-Er Lu, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hui Dong
- Jing Gong, Hui Dong, Shu-Jun Jiang, Ding-Kun Wang, Ke Fang, Xin Zou, Li-Jun Xu, Kai-Fu Wang, Fu-Er Lu, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Shu-Jun Jiang
- Jing Gong, Hui Dong, Shu-Jun Jiang, Ding-Kun Wang, Ke Fang, Xin Zou, Li-Jun Xu, Kai-Fu Wang, Fu-Er Lu, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ding-Kun Wang
- Jing Gong, Hui Dong, Shu-Jun Jiang, Ding-Kun Wang, Ke Fang, Xin Zou, Li-Jun Xu, Kai-Fu Wang, Fu-Er Lu, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ke Fang
- Jing Gong, Hui Dong, Shu-Jun Jiang, Ding-Kun Wang, Ke Fang, Xin Zou, Li-Jun Xu, Kai-Fu Wang, Fu-Er Lu, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - De-Sen Yang
- Jing Gong, Hui Dong, Shu-Jun Jiang, Ding-Kun Wang, Ke Fang, Xin Zou, Li-Jun Xu, Kai-Fu Wang, Fu-Er Lu, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xin Zou
- Jing Gong, Hui Dong, Shu-Jun Jiang, Ding-Kun Wang, Ke Fang, Xin Zou, Li-Jun Xu, Kai-Fu Wang, Fu-Er Lu, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Li-Jun Xu
- Jing Gong, Hui Dong, Shu-Jun Jiang, Ding-Kun Wang, Ke Fang, Xin Zou, Li-Jun Xu, Kai-Fu Wang, Fu-Er Lu, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Kai-Fu Wang
- Jing Gong, Hui Dong, Shu-Jun Jiang, Ding-Kun Wang, Ke Fang, Xin Zou, Li-Jun Xu, Kai-Fu Wang, Fu-Er Lu, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fu-Er Lu
- Jing Gong, Hui Dong, Shu-Jun Jiang, Ding-Kun Wang, Ke Fang, Xin Zou, Li-Jun Xu, Kai-Fu Wang, Fu-Er Lu, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|