1
|
Phytomedicinal therapeutics for male infertility: critical insights and scientific updates. J Nat Med 2022; 76:546-573. [PMID: 35377028 DOI: 10.1007/s11418-022-01619-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Infertility is a significant cause of anxiety, depression, and social stigma among couples and families. In such cases, male reproductive factors contribute widely to the extent of 20-70%. Male infertility is a multifactorial disease with several complications contributing to its diagnosis. Although its management encompasses both modern and traditional medicine arenas, the first line of treatment, adopted by most males, focuses on the reasonably successful medicinal plant-based conventional therapies. Phyto-therapeutics, which relies on active ingredients from traditionally known herbs, influences sexual behavior and male fertility factors. The potency of these phyto-actives depends on their preparation methods and forms of consumption, including decoctions, extracts, semi-purified compounds, etc., as inferred from in vitro and in vivo (laboratory animal models and human) studies. The mechanisms of action therein involve the testosterone pathway for stimulation of spermatogenesis, reduction of oxidative stress, inhibition of inflammation, activation of signaling pathways in the testes [extracellular-regulated kinase (ERK)/protein kinase B(PKB)/transformation of growth factor-beta 1(TGF-β1)/nuclear factor kappa-light-chain-enhancer of activated B cells NF-kB signaling pathways] and mediation of sexual behavior. This review critically focuses on the medicinal plants and their potent actives, along with the biochemical and molecular mechanisms that modulate vital pathways associated with the successful management of male infertility. Such intrinsic knowledge will significantly further studies on medicinal plants that improve male reproductive health.
Collapse
|
2
|
Chandramouli V, Niraj SK, Nair KG, Joseph J, Aruni W. Phytomolecules Repurposed as Covid-19 Inhibitors: Opportunity and Challenges. Curr Microbiol 2021; 78:3620-3633. [PMID: 34448061 PMCID: PMC8390070 DOI: 10.1007/s00284-021-02639-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022]
Abstract
The SARS-CoV-2 virus has spread worldwide to cause a full blown pandemic since 2020. To date, several promising synthetic therapeutics are repurposed and vaccines through different stages of clinical trials were approved and being administered, but still the efficacy of the drugs and vaccines are yet to be decoded. This article highlights the importance of traditional medicinal plants and the phytomolecules derived from them, which possess in vitro antiviral and anti-CoV properties and further explores their potential as inhibitors to molecular targets of SARS-CoV-2 that were evaluated by in silico approaches. Botanicals in traditional medicinal systems have been investigated for anti-SARS-CoV-2 activity through in silico and in vitro studies. However, information linking structure of phytomolecules to their antiviral activity is limited. Most phytomolecules with anti-CoV activity were studied for inhibition of the human ACE2 receptor through which the virus enters host cells, and non-structural proteins 3CLpro and PLpro. Although the proteases are ideal anti-CoV targets, information on plant-based inhibitors for the CoV structural proteins, e.g., spike, envelope, membrane, nucleocapsid required further investigations. In absence of scientific evaluations through in vitro and biocompatibility studies, plant-based antivirals fall short as treatment options. Plant-based anti-SARS-CoV-2 therapeutics can be promising alternatives to their synthetic counterparts as they are economical and bear fewer chances of toxicity, side effects, and viral resistance. Our review could provide a systematic overview of the potential phytomolecules which can be repurposed and subjected to further modes of experimental evaluation to qualify for use in treatment and prophylaxis of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Vaishnavi Chandramouli
- Advanced Institute for Wildlife Conservation, Tamil Nadu Forest Department, Government of Tamil Nadu, Chennai, 600048, India
| | - Shekhar Kumar Niraj
- Advanced Institute for Wildlife Conservation, Tamil Nadu Forest Department, Government of Tamil Nadu, Chennai, 600048, India
| | - Krishna G Nair
- MES T O Abdulla Memorial College, Kunnukara, Aluva, Kerala, 683578, India
| | - Jerrine Joseph
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119, India.
| | - Wilson Aruni
- Sathyabama Institute of Science and Technology, Chennai, 600119, India
- School of Medicine, Loma Linda University, Loma Linda, CA, USA
- Musculoskeletal Disease Research Laboratory US, Department of Veteran Affairs, Loma Linda, CA, USA
| |
Collapse
|
3
|
Ke L, Li Q, Song J, Jiao W, Ji A, Chen T, Pan H, Song Y. The mitochondrial biogenesis signaling pathway is a potential therapeutic target for myasthenia gravis via energy metabolism (Review). Exp Ther Med 2021; 22:702. [PMID: 34007311 PMCID: PMC8120506 DOI: 10.3892/etm.2021.10134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Myasthenia gravis (MG) is an autoantibody-mediated autoimmune disease that is characterized by muscle weakness and fatigue. Traditional treatments for MG target the neuromuscular junction (NMJ) or the immune system. However, the efficacy of such treatments is limited, and novel therapeutic options for MG are urgently required. In the current review, a new therapeutic strategy is proposed based on the mitochondrial biogenesis and energy metabolism pathway, as stimulating mitochondrial biogenesis and the energy metabolism might alleviate myasthenia gravis. A number of cellular sensors of the energy metabolism were investigated, including AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1). AMPK and SIRT1 are sensors that regulate cellular energy homeostasis and maintain energy metabolism by balancing anabolism and catabolism. Peroxisome proliferator-activated receptor γ coactivator 1α and its downstream transcription factors nuclear respiratory factors 1, nuclear respiratory factors 2, and transcription factor A are key sensors of mitochondrial biogenesis, which can restore mitochondrial DNA and produce new mitochondria. These processes help to control muscle contraction and relieve the symptoms of MG, including muscle weakness caused by dysfunctional NMJ transmission. Therefore, the present review provides evidence for the therapeutic potential of targeting mitochondrial biogenesis for the treatment of MG.
Collapse
Affiliation(s)
- Lingling Ke
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qing Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jingwei Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Wei Jiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Aidong Ji
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yafang Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
4
|
The Effect of Hydro-Alcoholic Extract of Nigella sativa on Bmp7 and Bmp8b Expression in Rats Fed with a High-Fat Diet. Jundishapur J Nat Pharm Prod 2020. [DOI: 10.5812/jjnpp.65662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Bone morphogenetic protein7 (BMP7) and bone morphogenetic protein 8b (BMP8b) can induce browning of white adipose tissue. Objectives: The present study aimed to investigate the antioxidative effects of hydro-alcoholic extract of Nigella sativa on the repair of oxidative damage caused by a high-fat diet. Also, Bmp7 and Bmp8b gene expressions were investigated on white adipose tissue of the rats and then compared with metformin effects. Methods: Eighty rats were divided into two groups of prevention and treatment; then each set was divided into four sub-groups based on the administered diet (i.e., ordinary, fat, metformin, and extract of Nigella sativa). Lipid profile, paraoxonase1, malondialdehyde (MDA), HDL, and antioxidant capacity were measured in serum samples, and relative Bmp7 and Bmp8b gene expressions were calculated in white adipose tissue. Results: For both prevention and treatment sets, the weight of rats who received a high-fat diet decreased more compared to those in the normal diet group. The weight of rats who received metformin or nigella extract was also decreased compared to the high-fat diet group. MDA was also increased, but total antioxidant capacity and catalase were decreased in rats of the high-fat diet group compared to the normal diet group. MDA was also declined in nigella receiving rats, but liver PON1 activity, total antioxidant capacity, and catalase were increased, compared to the second group (P < 0.05). In the prevention and treatment set, Bmp8b gene expression was increased in the metformin and Nigella sativa groups, whereas it was decreased among those who received a high-fat diet. Bmp7 gene expression was decreased in the high-fat diet set, but metformin and Nigella sativa extract didn’t influence Bmp7 gene expression. Conclusions: This study demonstrated that Nigella sativa extract has a protective role against oxidative stress in a high-fat diet.
Collapse
|
5
|
Effectiveness of Electroacupuncture for Simple Obesity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2367610. [PMID: 32714399 PMCID: PMC7341404 DOI: 10.1155/2020/2367610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To evaluate the effectiveness of electroacupuncture in the treatment of simple obesity. METHODS Randomized clinical trials concerning electroacupuncture as a treatment of simple obesity published prior to October 31, 2019, were searched in the following Chinese and English databases: Chinese National Knowledge Infrastructure (CNKI), WanFang Database, China Science and Technology Journal Database (VIP), Chinese Biomedical Literature Database (CBM), PubMed, Cochrane Library, Web of Science, and Scopus. After data collection and quality evaluation, meta-analysis was performed using RevMan 5.3 software and Stata 15.0 software. RESULTS A total of 13 studies involving 937 patients with simple obesity were included in the meta-analysis. Results revealed that the total effective rate (RR = 1.29, 95% CI [1.13, 1.48]; P=0.0002), BMI (MD = -1.82, 95% CI [-2.21, -1.43]; P < 0.000), waist circumference (MD = -2.39, 95% CI [-3.95, -0.84]; P=0.003), hip circumference (MD = 0.31, 95% CI [-2.37, 2.99]; P=0.82), waist-hip ratio (MD = -0.05, 95% CI [-0.07, -0.03]; P < 0.00), and body fat rate (MD = -1.56, 95% CI [-2.35, -0.78]; P=0.0001) in the electroacupuncture group were superior to those in the control group. Analysis of acupoint clustering and correlation using SPSS 24.0 and Clementine 12.0 revealed the highest statistical support for acupoint groups CV12-CV4 and CV12-ST25-CV4, while ST36-CV12-ST25, SP6, and ST40-ST24-SP15-ST37-CV4 were found to be validly clustered acupoints. CONCLUSION For treating simple obesity, electroacupuncture is superior to other interventions such as acupuncture, acupoint catgut embedding therapy, and simple lifestyle modification for improvement in body fat rate, waist circumference, and waist-hip ratio, although not hip circumference. Acupoint analysis revealed that ST25, CV12, CV4, SP6, and ST36 can form the basis for electroacupuncture therapy for the treatment of simple obesity.
Collapse
|
6
|
Lu M, He Y, Gong M, Li Q, Tang Q, Wang X, Wang Y, Yuan M, Yu Z, Xu B. Role of Neuro-Immune Cross-Talk in the Anti-obesity Effect of Electro-Acupuncture. Front Neurosci 2020; 14:151. [PMID: 32180699 PMCID: PMC7059539 DOI: 10.3389/fnins.2020.00151] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
There is evidence to show that electro-acupuncture (EA) has a promotive effect on both lipolysis and thermogenesis, and that these mechanisms underlie the anti-obesity effect of EA. The sympathetic nervous system (SNS) is known to play a role in thermogenesis. Additionally, obesity is characterized by a chronic low-grade inflammatory state. Based on these findings, the aim of the present study is to investigate the potential neuro-immune mechanisms underlying the therapeutic effect of EA in obesity. In the experiment, we used a high fat diet (HFD) rats model to study the effect of EA in reducing body weight. EA increases the activity of sympathetic nerves in inguinal white adipose tissue (iWAT), especially in the HFD group. Compared to HFD rats, EA can decrease sympathetic associated macrophage (SAM) and the level of norepinephrine transporter protein (Slc6a2). The relative uncoupling protein 1 expression shows EA increases thermogenesis in iWAT, and increases β3 receptors. Interestingly, injecting β antagonist in iWAT increases Slc6a2 protein levels. Additionally, the SNS-macrophage cross-talk response to EA showed in iWAT but not in epididymis white adipose tissue. The results of the present study indicate that EA exerts its anti-obesity effect via three mechanisms: (1) inhibition of SAMs and the norepinephrine transporter protein SlC6a2, (2) promoting SNS activity and thermogenesis, and (3) regulating immunologic balance.
Collapse
Affiliation(s)
- Mengjiang Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan He
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meirong Gong
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Li
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianqian Tang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yaling Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengqian Yuan
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Tang Q, Lu M, Xu B, Wang Y, Lu S, Yu Z, Jing X, Yuan J. Electroacupuncture Regulates Inguinal White Adipose Tissue Browning by Promoting Sirtuin-1-Dependent PPAR γ Deacetylation and Mitochondrial Biogenesis. Front Endocrinol (Lausanne) 2020; 11:607113. [PMID: 33551999 PMCID: PMC7859442 DOI: 10.3389/fendo.2020.607113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/04/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Previous studies had suggested that electroacupuncture (EA) can promote white adipose tissue (WAT) browning to counter obesity. But the mechanism was still not very clear. AIM In this study, we aim to study the effect of EA on promoting inguinal WAT (iWAT) browning and its possible mechanism. METHOD Three-week-old rats were randomly divided into a normal diet (ND) group and a high-fat diet (HFD) group. After 10 weeks, the HFD rats were grouped into HFD + EA group and HFD control group. Rats in the EA group were electro-acupunctured for 4 weeks on Tianshu (ST25) acupoint under gas anesthesia with isoflurane, while the rats in HFD group were under gas anesthesia only. Body weight and cumulative food intake were monitored, and H&E staining was performed to assess adipocyte area. The effect of EA on WAT was assessed by qPCR, immunoblotting, immunoprecipitation and Co-immunoprecipitation. Mitochondria were isolated from IWAT to observe the expression of mitochondrial transcription factor A (TFAM). RESULTS The body weight, WAT/body weight ratio and cumulative food consumption obviously decreased (P < 0.05) in the EA group. The expressions of brown adipose tissue (BAT) markers were increased in the iWAT of EA rats. Nevertheless, the mRNA expressions of WAT genes were suppressed by 4-week EA treatment. Moreover, EA increased the protein expressions of SIRT-1, PPARγ, PGC-1α, UCP1 and PRDM16 which trigger the molecular conversion of iWAT browning. The decrease of PPARγ acetylation was also found in EA group, indicating EA could advance WAT-browning through SIRT-1 dependent PPARγ deacetylation pathway. Besides, we found that EA could activate AMPK to further regulate PGC-1α-TFAM-UCP1 pathway to induce mitochondrial biogenesis. CONCLUSION In conclusion, EA can remodel WAT to BAT through inducing SIRT-1 dependent PPARγ deacetylation, and regulating PGC-1α-TFAM-UCP1 pathway to induce mitochondrial biogenesis. This may be one of the mechanisms by which EA affects weight loss.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xinyue Jing
- *Correspondence: Xinyue Jing, ; Jinhong Yuan,
| | | |
Collapse
|
8
|
Xu J, Chen L, Tang L, Chang L, Liu S, Tan J, Chen Y, Ren Y, Liang F, Cui J. Electroacupuncture inhibits weight gain in diet-induced obese rats by activating hypothalamic LKB1-AMPK signaling. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:147. [PMID: 25963634 PMCID: PMC4485871 DOI: 10.1186/s12906-015-0667-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 04/30/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Electroacupuncture (EA) is reported to be an effective treatment for obesity, but its mechanism is unclear. This study aimed to investigate the relationship between hypothalamic LKB1-AMPK-ACC signaling and EA. METHODS Fifty male Sprague-Dawley rats were divided into two groups fed either chow (chow-fed group) or high-fat diet (HF group). After 4 weeks of feeding, obese rats in the HF group (defined as weighing 20% or more than rats in the chow-fed group) were randomly allocated into an EA or Diet-induced obesity (DIO) group. The EA group was given EA on bilateral ST25-ST36 for 4 weeks, while the DIO group received no further intervention. Body weight of the chow-fed, DIO, and EA groups were measured weekly. mRNA and protein levels of the hypothalamic LKB1-AMPK-ACC signaling pathway were detected using real-time (RT)-PCR and western blot, respectively. RESULTS After 4 weeks of EA treatment, the weight growth trend of rats in the EA group was inhibited compared with those in the DIO group. RT-PCR and western blotting showed that EA upregulated the transcription of Adenosine 5'-monophosphate-activated protein kinase α2 (AMPKα2), promoted protein expression of Liver kinase B1 (LKB1) and AMPKα1, and inhibited acetyl-CoA carboxylase (ACC) protein expression in the hypothalamus. CONCLUSIONS This study suggests that hypothalamic LKB1-AMPK-ACC signaling plays an important role in EA treatment for obesity.
Collapse
Affiliation(s)
- Jing Xu
- Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, Sichuan, China.
| | - Liang Chen
- Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, Sichuan, China.
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
| | - Lewei Tang
- Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, Sichuan, China.
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
| | - Le Chang
- Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, Sichuan, China.
| | - Si Liu
- Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, Sichuan, China.
| | - Jinfeng Tan
- Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, Sichuan, China.
| | - Yinglong Chen
- Guiyang College of Traditional Chinese Medicine, No. 50 Shi Dong Road Guiyang Province, 550002, Guiyang, Guizhou, China.
| | - Yulan Ren
- Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, Sichuan, China.
| | - Fanrong Liang
- Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, Sichuan, China.
| | - Jin Cui
- Guiyang College of Traditional Chinese Medicine, No. 50 Shi Dong Road Guiyang Province, 550002, Guiyang, Guizhou, China.
| |
Collapse
|
9
|
Wu HH, Liu NJ, Yang Z, Tao XM, Du YP, Wang XC, Lu B, Zhang ZY, Hu RM, Wen J. Association and interaction analysis of PPARGC1A and serum uric acid on type 2 diabetes mellitus in Chinese Han population. Diabetol Metab Syndr 2014; 6:107. [PMID: 25302081 PMCID: PMC4190481 DOI: 10.1186/1758-5996-6-107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/26/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor gamma coactivator-1α (PPARGC1A/ PGC-1α) is a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily. The activity of PGC-1α or genetic variations in the gene encoding the enzyme may contribute to individual variations in mitochondrial function and insulin resistance or diabetes. The objective of this study was to assess the extent to which PPARGC1A (rs8192678) and serum uric acid (UA) and its interaction impact on T2DM susceptibility in Chinese Han population. METHOD We conducted a study in a cohort that included 1166 T2DM patients and 1135 controls, and was genotyped for the presence of the PPARGC1A rs8192678 polymorphisms. Genotyping was performed by iPLEX technology. The association between rs8192678 or UA and T2DM was assessed by univariate and multivariate logistic regression (MLR) analysis controlling for confounders. The interaction between rs8192678 and UA for T2DM susceptibility was also assessed by MLR analysis. RESULTS The generalized linear regression analysis failed to show an association between the PPARGC1A rs8192678 polymorphisms and T2DM. Interestingly, the present study provided data suggesting that the minor A-allele of PPARGC1A (rs8192678) had a protective effect against T2DM in subjects with higher level of UA (ORint =1.50 95% CI: 1.06-2.12 for allele and P = 0.02, ORint =1.63 95% CI: 1.17-2.26 for genotype and P = 0.004). CONCLUSION The combination of higher level of UA and PPARGC1A (rs8192678) was an independent predictor for T2DM.
Collapse
Affiliation(s)
- Hui-Hui Wu
- />Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing’an District, Shanghai 200040 China
| | - Nai-Jia Liu
- />Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing’an District, Shanghai 200040 China
| | - Zhen Yang
- />Department of Endocrinology and Metabolism, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai, 200020 China
| | - Xiao-Ming Tao
- />Department of Endocrinology and Metabolism, Hua Dong Hospital, Fudan University, Shanghai, 200040 China
| | - Yan-Ping Du
- />Department of Endocrinology and Metabolism, Hua Dong Hospital, Fudan University, Shanghai, 200040 China
| | - Xuan-Chun Wang
- />Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing’an District, Shanghai 200040 China
| | - Bin Lu
- />Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing’an District, Shanghai 200040 China
| | - Zhao-Yun Zhang
- />Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing’an District, Shanghai 200040 China
| | - Ren-Ming Hu
- />Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing’an District, Shanghai 200040 China
| | - Jie Wen
- />Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing’an District, Shanghai 200040 China
- />Department of Endocrinology and Metabolism, Jing’an District Center Hospital of Shanghai, Shanghai, 200040 China
| |
Collapse
|