1
|
Alkailani MI, Aittaleb M, Tissir F. WNT signaling at the intersection between neurogenesis and brain tumorigenesis. Front Mol Neurosci 2022; 15:1017568. [PMID: 36267699 PMCID: PMC9577257 DOI: 10.3389/fnmol.2022.1017568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Neurogenesis and tumorigenesis share signaling molecules/pathways involved in cell proliferation, differentiation, migration, and death. Self-renewal of neural stem cells is a tightly regulated process that secures the accuracy of cell division and eliminates cells that undergo mitotic errors. Abnormalities in the molecular mechanisms controlling this process can trigger aneuploidy and genome instability, leading to neoplastic transformation. Mutations that affect cell adhesion, polarity, or migration enhance the invasive potential and favor the progression of tumors. Here, we review recent evidence of the WNT pathway’s involvement in both neurogenesis and tumorigenesis and discuss the experimental progress on therapeutic opportunities targeting components of this pathway.
Collapse
Affiliation(s)
- Maisa I. Alkailani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Mohamed Aittaleb
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Fadel Tissir
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- *Correspondence: Fadel Tissir,
| |
Collapse
|
2
|
Karami Fath M, Azami J, Masoudi A, Mosaddeghi Heris R, Rahmani E, Alavi F, Alagheband Bahrami A, Payandeh Z, Khalesi B, Dadkhah M, Pourzardosht N, Tarhriz V. Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell Int 2022; 22:262. [PMID: 35989351 PMCID: PMC9394011 DOI: 10.1186/s12935-022-02642-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/26/2022] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma belongs to the most aggressive type of cancer with a low survival rate that is characterized by the ability in forming a highly immunosuppressive tumor microenvironment. Intercellular communication are created via exosomes in the tumor microenvironment through the transport of various biomolecules. They are primarily involved in tumor growth, differentiation, metastasis, and chemotherapy or radiation resistance. Recently several studies have highlighted the critical role of tumor-derived exosomes against immune cells. According to the structural and functional properties, exosomes could be essential instruments to gain a better molecular mechanism for tumor understanding. Additionally, they are qualified as diagnostic/prognostic markers and therapeutic tools for specific targeting of invasive tumor cells such as glioblastomas. Due to the strong dependency of exosome features on the original cells and their developmental status, it is essential to review their critical modulating molecules, clinical relevance to glioma, and associated signaling pathways. This review is a non-clinical study, as the possible role of exosomes and exosomal microRNAs in glioma cancer are reported. In addition, their content to overcome cancer resistance and their potential as diagnostic biomarkers are analyzed.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jalil Azami
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Alireza Masoudi
- Department of Laboratory Sciences, Faculty of Alied Medical Sciences, Qom University of Medical Sciences, Qom, Iran
| | | | - Elnaz Rahmani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Alavi
- Department of Pathobiology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research, Tabriz, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Luiz MT, Delello Di Filippo L, Tofani LB, de Araújo JTC, Dutra JAP, Marchetti JM, Chorilli M. Highlights in targeted nanoparticles as a delivery strategy for glioma treatment. Int J Pharm 2021; 604:120758. [PMID: 34090991 DOI: 10.1016/j.ijpharm.2021.120758] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022]
Abstract
Glioma is the most common type of Central Nervous System (CNS) neoplasia and it arises from glial cells. As glial cells are formed by different types of cells, glioma can be classified according to the cells that originate it or the malignancy grade. Glioblastoma multiforme is the most common and aggressive glioma. The high lethality of this tumor is related to the difficulty in performing surgical removal, chemotherapy, and radiotherapy in the CNS. To improve glioma treatment, a wide range of chemotherapeutics have been encapsulated in nanosystems to increase their ability to overcome the blood-brain barrier (BBB) and specifically reach the tumoral cells, reducing side effects and improving drug concentration in the tumor microenvironment. Several studies have investigated nanosystems covered with targeting ligands (e.g., proteins, peptides, aptamers, folate, and glucose) to increase the ability of drugs to cross the BBB and enhance their specificity to glioma through specific recognition by receptors on BBB and glioma cells. This review addresses the main targeting ligands used in nanosystems to overcome the BBB and promote the active targeting of drugs for glioma. Furthermore, the advantages of using these molecules in glioma treatment are discussed.
Collapse
Affiliation(s)
- Marcela Tavares Luiz
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, São Paulo, Brazil
| | | | - Larissa Bueno Tofani
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | | | | | - Juliana Maldonado Marchetti
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil.
| |
Collapse
|
4
|
Yadav M, Khandelwal R, Mudgal U, Srinitha S, Khandekar N, Nayarisseri A, Vuree S, Singh SK. Identification of Potent VEGF Inhibitors for the Clinical Treatment of Glioblastoma, A Virtual Screening Approach. Asian Pac J Cancer Prev 2019; 20:2681-2692. [PMID: 31554364 PMCID: PMC6976853 DOI: 10.31557/apjcp.2019.20.9.2681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 09/02/2019] [Indexed: 02/04/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) expression could be found in all glioblastomas. VEGF takes part in numerous changes including the endothelial cell proliferation, the vasculature of solid tumor: its survival invasion, and migration, chemotaxis of bone marrow-derived progenitor cells, vasodilation and vascular permeability. VEGF inhibition can be a smart therapeutic strategy because it is extremely specific and less toxic than cytotoxic therapy. To establish better inhibition of VEGF than the current inhibitors, present study approach is by molecular docking, virtual screening to illustrate the inhibitor with superior affinity against VEGF to have a cautious pharma profile. To retrieve the best established and high-affinity high affinity molecule, Molegro Virtual Docker software was executed. The high-affinity scoring compounds were subjected to further similarity search to retrieve the drugs with similar properties from pubchem database. The completion of virtual screening reveals that PubChem compound SCHEMBL1250485 (PubChem CID: 66965667) has the highest affinity. The study of the drug-likeness was verified using OSIRIS Property Explorer software which supported the virtual screened result. Further ADMET study and drug comparative study strongly prove the superiority of the new established inhibitor with lesser rerank score and toxicity. Overall, the new inhibitor has higher potential to stop the expression of VEGF in glioblastoma and positively can be further analysed through In vitro studies.
Collapse
Affiliation(s)
- Mohini Yadav
- In silico Research Laboratory, Eminent Biosciences, Indore - 452 010, Madhya Pradesh, India. ,
| | - Ravina Khandelwal
- In silico Research Laboratory, Eminent Biosciences, Indore - 452 010, Madhya Pradesh, India. ,
| | - Urvy Mudgal
- In silico Research Laboratory, Eminent Biosciences, Indore - 452 010, Madhya Pradesh, India. ,
| | - Sivaraj Srinitha
- In silico Research Laboratory, Eminent Biosciences, Indore - 452 010, Madhya Pradesh, India. ,
| | - Natasha Khandekar
- In silico Research Laboratory, Eminent Biosciences, Indore - 452 010, Madhya Pradesh, India. ,
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Indore - 452 010, Madhya Pradesh, India. ,
- Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd., Indore-452010, Madhya Pradesh, India
| | - Sugunakar Vuree
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Division of Research and Development, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India
| |
Collapse
|
5
|
Nadeem Abbas M, Kausar S, Wang F, Zhao Y, Cui H. Advances in Targeting the Epidermal Growth Factor Receptor Pathway by Synthetic Products and Its Regulation by Epigenetic Modulators As a Therapy for Glioblastoma. Cells 2019; 8:cells8040350. [PMID: 31013819 PMCID: PMC6523687 DOI: 10.3390/cells8040350] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Glioma is the most common primary tumor of the nervous system, and approximately 50% of patients exhibit the most aggressive form of the cancer, glioblastoma. The biological function of epidermal growth factor receptor (EGFR) in tumorigenesis and progression has been established in various types of cancers, since it is overexpressed, mutated, or dysregulated. Its overexpression has been shown to be associated with enhanced metastatic potential in glioblastoma, with EGFR at the top of a downstream signaling cascade that controls basic functional properties of glioblastoma cells such as survival, cell proliferation, and migration. Thus, EGFR is considered as an important therapeutic target in glioblastoma. Many anti-EGFR therapies have been investigated both in vivo and in vitro, making their way to clinical studies. However, in clinical trials, the potential efficacy of anti-EGFR therapies is low, primarily because of chemoresistance. Currently, a range of epigenetic drugs including histone deacetylase (HDAC) inhibitors, DNA methylation and histone inhibitors, microRNA, and different types of EGFR inhibitor molecules are being actively investigated in glioblastoma patients as therapeutic strategies. Here, we describe recent knowledge on the signaling pathways mediated by EGFR/EGFR variant III (EGFRvIII) with regard to current therapeutic strategies to target EGFR/EGFRvIII amplified glioblastoma.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| | - Yongju Zhao
- College of Animal and Technology, Southwest University, Chongqing 400715, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Paolillo M, Boselli C, Schinelli S. Glioblastoma under Siege: An Overview of Current Therapeutic Strategies. Brain Sci 2018; 8:brainsci8010015. [PMID: 29337870 PMCID: PMC5789346 DOI: 10.3390/brainsci8010015] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 01/22/2023] Open
Abstract
Glioblastoma is known to be one of the most lethal and untreatable human tumors. Surgery and radiotherapy in combination with classical alkylating agents such as temozolomide offer little hope to escape a poor prognosis. For these reasons, enormous efforts are currently devoted to refine in vivo and in vitro models with the specific goal of finding new molecular aberrant pathways, suitable to be targeted by a variety of therapeutic approaches, including novel pharmaceutical formulations and immunotherapy strategies. In this review, we will first discuss current molecular classification based on genomic and transcriptomic criteria. Also, the state of the art in current clinical practice for glioblastoma therapy in the light of the recent molecular classification, together with ongoing phases II and III clinical trials, will be described. Finally, new pharmaceutical formulations such as nanoparticles and viral vectors, together with new strategies entailing the use of monoclonal antibodies, vaccines and immunotherapy agents, such as checkpoint inhibitors, will also be discussed.
Collapse
Affiliation(s)
- Mayra Paolillo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Sergio Schinelli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
7
|
Jovčevska I, Zupanec N, Urlep Ž, Vranič A, Matos B, Stokin CL, Muyldermans S, Myers MP, Buzdin AA, Petrov I, Komel R. Differentially expressed proteins in glioblastoma multiforme identified with a nanobody-based anti-proteome approach and confirmed by OncoFinder as possible tumor-class predictive biomarker candidates. Oncotarget 2017; 8:44141-44158. [PMID: 28498803 PMCID: PMC5546469 DOI: 10.18632/oncotarget.17390] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme is the most frequent primary malignancy of the central nervous system. Despite remarkable progress towards an understanding of tumor biology, there is no efficient treatment and patient outcome remains poor. Here, we present a unique anti-proteomic approach for selection of nanobodies specific for overexpressed glioblastoma proteins. A phage-displayed nanobody library was enriched in protein extracts from NCH644 and NCH421K glioblastoma cell lines. Differential ELISA screenings revealed seven nanobodies that target the following antigens: the ACTB/NUCL complex, VIM, NAP1L1, TUFM, DPYSL2, CRMP1, and ALYREF. Western blots showed highest protein up-regulation for ALYREF, CRMP1, and VIM. Moreover, bioinformatic analysis with the OncoFinder software against the complete "Cancer Genome Atlas" brain tumor gene expression dataset suggests the involvement of different proteins in the WNT and ATM pathways, and in Aurora B, Sem3A, and E-cadherin signaling. We demonstrate the potential use of NAP1L1, NUCL, CRMP1, ACTB, and VIM for differentiation between glioblastoma and lower grade gliomas, with DPYSL2 as a promising "glioma versus reference" biomarker. A small scale validation study confirmed significant changes in mRNA expression levels of VIM, DPYSL2, ACTB and TRIM28. This work helps to fill the information gap in this field by defining novel differences in biochemical profiles between gliomas and reference samples. Thus, selected genes can be used to distinguish glioblastoma from lower grade gliomas, and from reference samples. These findings should be valuable for glioblastoma patients once they are validated on a larger sample size.
Collapse
Affiliation(s)
- Ivana Jovčevska
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neja Zupanec
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Žiga Urlep
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Vranič
- Department of Neurosurgery, Foundation Rothschild, Paris, France
| | - Boštjan Matos
- Department of Neurosurgery, University Clinical Center, Ljubljana, Slovenia
| | | | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Michael P. Myers
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Anton A. Buzdin
- First Oncology Research and Advisory Center, Moscow, Russia
- National Research Center ‘Kurchatov Institute’, Center of Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, Russia
| | - Ivan Petrov
- Center for Biogerontology and Regenerative Medicine, IC Skolkovo, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Radovan Komel
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Recombinant Immunotoxin Therapy of Glioblastoma: Smart Design, Key Findings, and Specific Challenges. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7929286. [PMID: 28752098 PMCID: PMC5511670 DOI: 10.1155/2017/7929286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/29/2017] [Indexed: 12/23/2022]
Abstract
Recombinant immunotoxins (RITs) refer to a group of recombinant protein-based therapeutics, which consists of two components: an antibody variable fragment or a specific ligand that allows RITs to bind specifically to target cells and an engineered toxin fragment that kills the target cells upon internalization. To date, over 1,000 RITs have been generated and significant success has been achieved in the therapy of hematological malignancies. However, the immunogenicity and off-target toxicities of RITs remain as significant barriers for their application to solid tumor therapy. A group of RITs have also been generated for the treatment of glioblastoma multiforme, and some have demonstrated evidence of tumor response and an acceptable profile of toxicity and safety in early clinical trials. Different from other solid tumors, how to efficiently deliver the RITs to intracranial tumors is more critical and needs to be solved urgently. In this article, we first review the design and expression of RITs, then summarize the key findings in the preclinical and clinical development of RIT therapy of glioblastoma multiforme, and lastly discuss the specific issues that still remain to forward RIT therapy to clinical practice.
Collapse
|
9
|
Ellwanger K, Reusch U, Fucek I, Knackmuss S, Weichel M, Gantke T, Molkenthin V, Zhukovsky EA, Tesar M, Treder M. Highly Specific and Effective Targeting of EGFRvIII-Positive Tumors with TandAb Antibodies. Front Oncol 2017; 7:100. [PMID: 28596941 PMCID: PMC5442391 DOI: 10.3389/fonc.2017.00100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022] Open
Abstract
To harness the cytotoxic capacity of immune cells for the treatment of solid tumors, we developed tetravalent, bispecific tandem diabody (TandAb) antibodies that recognize EGFRvIII, the deletion variant III of the epidermal growth factor receptor (EGFR), and CD3 on T-cells, thereby directing immune cells to eliminate EGFRvIII-positive tumor cells. Using phage display, we identified scFv antibodies selectively binding to EGFRvIII. These highly EGFRvIII-specific, fully human scFv were substantially improved by affinity maturation, achieving KDs in the picomolar range, and were used to construct a set of bispecific EGFRvIII-targeting TandAbs with a broad range of binding and cytotoxic properties. These antibodies exhibited an exquisite specificity for a distinguished epitope in the N-terminal portion of EGFRvIII, as shown on recombinant antigen in Western Blot, SPR, and ELISA, as well as on antigen-expressing cells in FACS assays, and did not bind to the wild-type EGFR. High-affinity EGFRvIII/CD3 TandAbs were most potent in killing assays, displaying cytotoxicity toward EGFRvIII-expressing CHO, F98 glioma, or human DK-MG cells with EC50 values in the range of 1-10 pM in vitro. They also demonstrated dose-dependent growth control in vivo in an EGFRvIII-positive subcutaneous xenograft tumor model. Together with the tumor-exclusive expression of EGFRvIII, the EGFRvIII/CD3 TandAbs' high specificity and strictly target-dependent activation with no off-target activity provide an opportunity to target tumor cells and spare normal tissues, thereby reducing the side effects associated with other anti-EGFR therapies. In summary, EGFRvIII/CD3 TandAbs are highly attractive therapeutic antibody candidates for selective immunotherapy of EGFRvIII-positive tumors.
Collapse
|
10
|
Farber SH, Elsamadicy AA, Atik AF, Suryadevara CM, Chongsathidkiet P, Fecci PE, Sampson JH. The Safety of available immunotherapy for the treatment of glioblastoma. Expert Opin Drug Saf 2017; 16:277-287. [PMID: 27989218 DOI: 10.1080/14740338.2017.1273898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Current standard of care involves maximal surgical resection combined with adjuvant chemoradiation. Growing support exists for a role of immunotherapy in treating these tumors with the goal of targeted cytotoxicity. Here we review data on the safety for current immunotherapies being tested in GBM. Areas covered: Safety data from published clinical trials, including ongoing clinical trials were reviewed. Immunotherapeutic classes currently under investigation in GBM include various vaccination strategies, adoptive T cell immunotherapy, immune checkpoint blockade, monoclonal antibodies, and cytokine therapies. Trials include children, adolescents, and adults with either primary or recurrent GBM. Expert opinion: Based on the reviewed clinical trials, the current immunotherapies targeting GBM are safe and well-tolerated with minimal toxicities which should be noted. However, the gains in patient survival have been modest. A safe and well-tolerated combinatory immunotherapeutic approach may be essential for optimal efficacy towards GBM.
Collapse
Affiliation(s)
- S Harrison Farber
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA
| | - Aladine A Elsamadicy
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA
| | - Ahmet Fatih Atik
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA
| | - Carter M Suryadevara
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA.,c Department of Pathology , Duke University Medical Center , Durham , NC , USA
| | - Pakawat Chongsathidkiet
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA.,c Department of Pathology , Duke University Medical Center , Durham , NC , USA
| | - Peter E Fecci
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA.,c Department of Pathology , Duke University Medical Center , Durham , NC , USA
| | - John H Sampson
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA.,c Department of Pathology , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
11
|
Hicks MJ, Chiuchiolo MJ, Ballon D, Dyke JP, Aronowitz E, Funato K, Tabar V, Havlicek D, Fan F, Sondhi D, Kaminsky SM, Crystal RG. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma. PLoS One 2016; 11:e0162978. [PMID: 27711187 PMCID: PMC5053413 DOI: 10.1371/journal.pone.0162978] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM.
Collapse
Affiliation(s)
- Martin J Hicks
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Maria J Chiuchiolo
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Douglas Ballon
- Department of Radiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Jonathan P Dyke
- Department of Radiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Eric Aronowitz
- Department of Radiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Kosuke Funato
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Institute, New York, NY, United States of America
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Institute, New York, NY, United States of America
| | - David Havlicek
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Fan Fan
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
12
|
Hammarström LGJ, Harmel RK, Granath M, Ringom R, Gravenfors Y, Färnegårdh K, Svensson PH, Wennman D, Lundin G, Roddis Y, Kitambi SS, Bernlind A, Lehmann F, Ernfors P. The Oncolytic Efficacy and in Vivo Pharmacokinetics of [2-(4-Chlorophenyl)quinolin-4-yl](piperidine-2-yl)methanol (Vacquinol-1) Are Governed by Distinct Stereochemical Features. J Med Chem 2016; 59:8577-92. [PMID: 27607569 DOI: 10.1021/acs.jmedchem.6b01009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma remains an incurable brain cancer. Drugs developed in the past 20 years have not improved the prognosis for patients, necessitating the development of new treatments. We have previously reported the therapeutic potential of the quinoline methanol Vacquinol-1 (1) that targets glioblastoma cells and induces cell death by catastrophic vacuolization. Compound 1 is a mixture of four stereoisomers due to the two adjacent stereogenic centers in the molecule, complicating further development in the preclinical setting. This work describes the isolation and characterization of the individual isomers of 1 and shows that these display stereospecific pharmacokinetic and pharmacodynamic features. In addition, we present a stereoselective synthesis of the active isomers, providing a basis for further development of this compound series into a novel experimental therapeutic for glioblastoma.
Collapse
Affiliation(s)
| | | | - Mikael Granath
- OnTargetChemistry AB , Virdings Allé 18, SE-754 50 Uppsala, Sweden
| | - Rune Ringom
- OnTargetChemistry AB , Virdings Allé 18, SE-754 50 Uppsala, Sweden
| | - Ylva Gravenfors
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University , Box 1030, SE-171 21 Solna, Sweden
| | - Katarina Färnegårdh
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University , Box 1030, SE-171 21 Solna, Sweden
| | - Per H Svensson
- SP Process Development , Forskargatan 20J, SE-151 36 Södertälje, Sweden
| | - David Wennman
- SP Process Development , Forskargatan 20J, SE-151 36 Södertälje, Sweden
| | - Göran Lundin
- SP Process Development , Forskargatan 20J, SE-151 36 Södertälje, Sweden
| | - Ylva Roddis
- SP Process Development , Forskargatan 20J, SE-151 36 Södertälje, Sweden
| | | | | | - Fredrik Lehmann
- OnTargetChemistry AB , Virdings Allé 18, SE-754 50 Uppsala, Sweden
| | | |
Collapse
|
13
|
WNT signaling in glioblastoma and therapeutic opportunities. J Transl Med 2016; 96:137-50. [PMID: 26641068 DOI: 10.1038/labinvest.2015.140] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/19/2015] [Accepted: 10/06/2015] [Indexed: 12/20/2022] Open
Abstract
WNTs and their downstream effectors regulate proliferation, death, and migration and cell fate decision. Deregulation of WNT signaling is associated with various cancers including GBM, which is the most malignant primary brain cancer. In this review, we will summarize the experimental evidence supporting oncogenic roles of WNT signaling in GBM and discuss current progress in the targeting of WNT signaling as an anti-cancer approach. In particular, we will focus on (1) genetic and epigenetic alterations that lead to aberrant WNT pathway activation in GBM, (2) WNT-mediated control of GBM stem cell maintenance and invasion, and (3) cross-talk between WNT and other signaling pathways in GBM. We will then review the discovery of agents that can inhibit WNT signaling in preclinical models and the current status of human clinical trials.
Collapse
|
14
|
Jovčevska I, Zupanec N, Kočevar N, Cesselli D, Podergajs N, Stokin CL, Myers MP, Muyldermans S, Ghassabeh GH, Motaln H, Ruaro ME, Bourkoula E, Turnšek TL, Komel R. TRIM28 and β-actin identified via nanobody-based reverse proteomics approach as possible human glioblastoma biomarkers. PLoS One 2014; 9:e113688. [PMID: 25419715 PMCID: PMC4242679 DOI: 10.1371/journal.pone.0113688] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/27/2014] [Indexed: 01/23/2023] Open
Abstract
Malignant gliomas are among the rarest brain tumours, and they have the worst prognosis. Grade IV astrocytoma, known as glioblastoma multiforme (GBM), is a highly lethal disease where the standard therapies of surgery, followed by radiation and chemotherapy, cannot significantly prolong the life expectancy of the patients. Tumour recurrence shows more aggressive form compared to the primary tumour, and results in patient survival from 12 to 15 months only. Although still controversial, the cancer stem cell hypothesis postulates that cancer stem cells are responsible for early relapse of the disease after surgical intervention due to their high resistance to therapy. Alternative strategies for GBM therapy are thus urgently needed. Nanobodies are single-domain antigen-binding fragments of heavy-chain antibodies, and together with classical antibodies, they are part of the camelid immune system. Nanobodies are small and stable, and they share a high degree of sequence identity to the human heavy chain variable domain, and these characteristics offer them advantages over classical antibodies or antibody fragments. We first immunised an alpaca with a human GBM stem-like cell line prepared from primary GBM cultures. Next, a nanobody library was constructed in a phage-display vector. Using nanobody phage-display technology, we selected specific GBM stem-like cell binders through a number of affinity selections, using whole cell protein extracts and membrane protein-enriched extracts from eight different GBM patients, and membrane protein-enriched extracts from two established GBM stem-like cell lines (NCH644 and NCH421K cells). After the enrichment, periplasmic extract ELISA was used to screen for specific clones. These nanobody clones were recloned into the pHEN6 vector, expressed in Escherichia coli WK6, and purified using immobilised metal affinity chromatography and size-exclusion chromatography. Specific nanobody:antigen pairs were obtained and mass spectrometry analysis revealed two proteins, TRIM28 and β-actin, that were up-regulated in the GBM stem-like cells compared to the controls.
Collapse
Affiliation(s)
- Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neja Zupanec
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Kočevar
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Daniela Cesselli
- Department of Medical and Biological Sciences (DSMB), University of Udine, Udine, Italy
| | - Neža Podergajs
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology (NIB), Ljubljana, Slovenia
| | - Clara Limbaeck Stokin
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Michael P. Myers
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Structural Biology Research Center, VIB, Brussels, Belgium
| | - Gholamreza Hassanzadeh Ghassabeh
- Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Nanobody Service Facility, VIB, Brussels, Belgium
| | - Helena Motaln
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology (NIB), Ljubljana, Slovenia
| | | | - Evgenia Bourkoula
- Department of Medical and Biological Sciences (DSMB), University of Udine, Udine, Italy
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology (NIB), Ljubljana, Slovenia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
15
|
Agile delivery of protein therapeutics to CNS. J Control Release 2014; 190:637-63. [PMID: 24956489 DOI: 10.1016/j.jconrel.2014.06.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022]
Abstract
A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics.
Collapse
|
16
|
Ge J, Li L, Jin Q, Liu YC, Zhao L, Song HH. Functional IRGM polymorphism is associated with language impairment in glioma and upregulates cytokine expressions. Tumour Biol 2014; 35:8343-8. [PMID: 24859836 DOI: 10.1007/s13277-014-2091-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/12/2014] [Indexed: 11/30/2022] Open
Abstract
Immunity-related GTPase family M protein (IRGM) is a human protein recently highlighted for its contribution to autophagy upon infections. Evidences have shown that IRGM may also play critical roles in the pathogenesis of cancer. However, correlation between IRGM and glioma remains unclear. In the current study, we investigated two IRGM genetic polymorphisms, rs10065172C/T and rs13361189T/C, in glioma and their effects on cytokine expression. Data showed that prevalences of rs13361189TC genotype were significantly increased in glioma patients than in healthy controls (odds ratio (OR) = 1.53, 95 % confidence interval (CI) 1.05-2.24, P = 0.028), and frequency of polymorphic rs13361189CC genotype was further elevated (OR = 2.43, 95 % CI 1.43-4.14, P = 0.001). Interestingly, rs13361189TC and CC genotypes revealed a strong association with language impairment in glioma patients (OR = 2.16, P = 0.023; OR = 3.71, P = 0.001, respectively). When analyzing these two polymorphisms with related cytokine expression, we observed that subjects carrying rs13361189CC genotype had higher serum level of interferon-gamma (IFN-γ) than those with wild-type TT genotype (P < 0.01). In addition, subjects with rs13361189TC and CC genotypes presented elevated serum level of interleukin 4 (IL-4) than those with TT genotype. These data indicate a potential role of IRGM in the development of glioma probably by affecting IFN-γ and IL-4.
Collapse
Affiliation(s)
- Jing Ge
- College of Humanities and Law, North China University of Technology, Beijing, 100144, China
| | | | | | | | | | | |
Collapse
|