1
|
Pro- and anti-inflammatory bioactive lipids imbalance contributes to the pathobiology of autoimmune diseases. Eur J Clin Nutr 2022:10.1038/s41430-022-01173-8. [PMID: 35701524 DOI: 10.1038/s41430-022-01173-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022]
Abstract
Autoimmune diseases are driven by TH17 cells that secrete pro-inflammatory cytokines, especially IL-17. Under normal physiological conditions, autoreactive T cells are suppressed by TGF-β and IL-10 secreted by microglia and dendritic cells. When this balance is upset due to injury, infection and other causes, leukocyte recruitment and macrophage activation occurs resulting in secretion of pro-inflammatory IL-6, TNF-α, IL-17 and PGE2, LTs (leukotrienes) accompanied by a deficiency of anti-inflammatory LXA4, resolvins, protecting, and maresins. PGE2 facilitates TH1 cell differentiation and promotes immune-mediated inflammation through TH17 expansion. There is evidence to suggest that autoimmune diseases can be suppressed by anti-inflammatory bioactive lipids LXA4, resolvins, protecting, and maresins. These results imply that systemic and/or local application of LXA4, resolvins, protecting, and maresins and administration of their precursors AA/EPA/DHA could form a potential therapeutic approach in the prevention and treatment of autoimmune diseases.
Collapse
|
2
|
15-Deoxy-∆- 12,14-Prostaglandin J2 (15d-PGJ2), an Endogenous Ligand of PPAR- γ: Function and Mechanism. PPAR Res 2019; 2019:7242030. [PMID: 31467514 PMCID: PMC6699332 DOI: 10.1155/2019/7242030] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/14/2019] [Indexed: 02/06/2023] Open
Abstract
15-Deoxy-∆-12,14-prostaglandin J2 (15d-PGJ2), a natural peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, has been explored in some detail over the last 20 years. By triggering the PPAR-γ signalling pathway, it plays many roles and exerts antitumour, anti-inflammatory, antioxidation, antifibrosis, and antiangiogenesis effects. Although many synthetic PPAR-γ receptor agonists have been developed, as an endogenous product of PPAR-γ receptors, 15d-PGJ2 has beneficial characteristics including rapid expression and the ability to contribute to a natural defence mechanism. In this review, we discuss the latest advances in our knowledge of the biological role of 15d-PGJ2 mediated through PPAR-γ. It is important to understand its structure, synthesis, and functional mechanisms to develop preventive agents and limit the progression of associated diseases.
Collapse
|
3
|
Das CR, Tiwari D, Dongre A, Khan MA, Husain SA, Sarma A, Bose S, Bose PD. Deregulated TNF-Alpha Levels Along with HPV Genotype 16 Infection Are Associated with Pathogenesis of Cervical Neoplasia in Northeast Indian Patients. Viral Immunol 2018; 31:282-291. [DOI: 10.1089/vim.2017.0151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Chandana Ray Das
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
- Department of Obstetrics & Gynecology, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Diptika Tiwari
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, India
| | - Anita Dongre
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | | | - Anirudha Sarma
- Department of Biotechnology, Pandu College, Guwahati, Assam, India
| | - Sujoy Bose
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Purabi Deka Bose
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, India
| |
Collapse
|
4
|
Shen Z, Ma Y, Ji Z, Hao Y, Yan X, Zhong Y, Tang X, Ren W. Arachidonic acid induces macrophage cell cycle arrest through the JNK signaling pathway. Lipids Health Dis 2018; 17:26. [PMID: 29426338 PMCID: PMC5807765 DOI: 10.1186/s12944-018-0673-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 02/05/2018] [Indexed: 01/14/2023] Open
Abstract
Background Arachidonic acid (AA) has potent pro-apoptotic effects on cancer cells at a low concentration and on macrophages at a very high concentration. However, the effects of AA on the macrophage cell cycle and related signaling pathways have not been fully investigated. Herein we aim to observe the effect of AA on macrophages cell cycle. Results AA exposure reduced the viability and number of macrophages in a dose- and time-dependent manner. The reduction in RAW264.7 cell viability was not caused by apoptosis, as indicated by caspase-3 and activated caspase-3 detection. Further research illustrated that AA exposure induced RAW264.7 cell cycle arrested at S phase, and some cell cycle-regulated proteins were altered accordingly. Moreover, JNK signaling was stimulated by AA, and the stimulation was partially reversed by a JNK signaling inhibitor in accordance with cell cycle-related factors. In addition, nuclear and total Foxo1/3a and phosphorylated Foxo1/3a were elevated by AA in a dose- and time-dependent manner, and this elevation was suppressed by the JNK signaling inhibitor. Conclusion Our study demonstrated that AA inhibits macrophage viability by inducing S phase cell cycle arrest. The JNK signaling pathway and the downstream FoxO transcription factors are involved in AA-induced RAW264.7 cell cycle arrest. Electronic supplementary material The online version of this article (10.1186/s12944-018-0673-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ziying Shen
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Yunqing Ma
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Zhonghao Ji
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Yang Hao
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Xuan Yan
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Yuan Zhong
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Xiaochun Tang
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Wenzhi Ren
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China.
| |
Collapse
|
5
|
Chen K, Dai W, Wang F, Xia Y, Li J, Li S, Liu T, Zhang R, Wang J, Lu W, Zhou Y, Yin Q, Zheng Y, Abudumijiti H, Chen R, Lu J, Zhou Y, Guo C. Inhibitive effects of 15-deoxy-Δ(12),(14)-prostaglandin J2 on hepatoma-cell proliferation through reactive oxygen species-mediated apoptosis. Onco Targets Ther 2015; 8:3585-3593. [PMID: 26664142 PMCID: PMC4671813 DOI: 10.2147/ott.s92832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) induces reactive oxygen species (ROS)-mediated apoptosis in many malignant cells, which has not been studied in hepatoma cells. In this study, we investigated whether 15d-PGJ2 induced apoptosis in hepatocellular carcinoma (HCC) associated with ROS. MATERIALS AND METHODS The LM3, SMMC-7721, and Huh-7 HCC cell lines were treated with 15d-PGJ2 (5-40 μM) for 24, 48, and 72 hours. Cholecystokinin 8 was used to detect the cytotoxicity of 15d-PGJ2. Flow cytometry, Hoechst staining, and Western blotting were used to analyze apoptosis. ROS were combined with the fluorescent probe dihydroethidium and then observed by fluorescence microscopy and flow cytometry. Activation of JNK and expression of Akt were detected by Western blotting. RESULTS 15d-PGJ2 inhibited HCC cell proliferation and induced apoptosis in a dose- and time-dependent manner. Apoptosis was mainly induced via an intrinsic pathway and was ROS-dependent, and was alleviated by ROS scavengers. ROS induced JNK activation and Akt downregulation in HCC cells. CONCLUSION 15d-PGJ2 induced ROS in HCC cell lines, and inhibition of cell growth and apoptosis were partly ROS-dependent.
Collapse
Affiliation(s)
- Kan Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Rong Zhang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, First Clinical Medical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jianrong Wang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, First Clinical Medical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Wenxia Lu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, First Clinical Medical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yuqing Zhou
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Qin Yin
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Huerxidan Abudumijiti
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Rongxia Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Zhang J, Wu H, Li P, Zhao Y, Liu M, Tang H. NF-κB-modulated miR-130a targets TNF-α in cervical cancer cells. J Transl Med 2014; 12:155. [PMID: 24885472 PMCID: PMC4084577 DOI: 10.1186/1479-5876-12-155] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 05/20/2014] [Indexed: 02/08/2023] Open
Abstract
Background Nuclear factor-κB (NF-κB) induces a variety of biological processes through transcriptional gene control whose products are components in various signaling pathways. MicroRNAs are a small endogenous non-coding RNAs that regulate gene expression and are involved in tumorigenesis. Using human cervical cancer cell lines, this study aimed to investigate whether NF-κB could regulate miR-130a expression and the functions and targets of miR-130a. Methods We used the HeLa and C33A cervical cancer cell lines that were transfected with NF-κB or miR-130a overexpression plasmids to evaluate their effects on cell growth. We utilized bioinformatics, a fluorescent reporter assay, qRT-PCR and Western blotting to identify downstream target genes. Results In HeLa and C33A cells, NF-κB and miR-130a overexpression promoted cell growth, but genetic knockdowns suppressed growth. TNF-α was identified as a target of miR-130a by binding in a 3’-untranslated region (3’UTR) EGFP reporter assay and by Western blot analysis. Furthermore, low TNF-α concentrations stimulated NF-κB activity and then induced miR-130a expression, and TNF-α overexpression rescued the effects of miR-130a on cervical cancer cells. Conclusions Our findings indicate that TNF-α can activate NF-κB activity, which can reduce miR-130a expression, and that miR-130a targets and downregulates TNF-α expression. Hence, we shed light on the negative feedback regulation of NF-κB/miR-130a/TNF-α/NF-κB in cervical cancer and may provide insight into the carcinogenesis of cervical cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Tang
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, No, 22 Qi-Xiang-Tai Road, Tianjin 300070, China.
| |
Collapse
|