1
|
Salem MB, Mohammed DM, Hammam OA, Elzallat M. Mitigation of intrahepatic cholestasis induced by 17α-ethinylestradiol via nanoformulation of Silybum marianum L. BMC Complement Med Ther 2024; 24:51. [PMID: 38263002 PMCID: PMC10804614 DOI: 10.1186/s12906-024-04351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/13/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Cholestasis is an important predisposing factor for hepatocyte damage, liver fibrosis, primary biliary cirrhosis, and even liver failure. Silybum marianum L. (SM) plant is used in teas or eaten in some countries due to its antioxidant and hepatoprotective properties. Because of its low and poor oral bioavailability, so we improve the therapeutic activity of Silybum marianum L. extract (SM) by studying the potential effects of nanoformulation of Silybum marianium L. extract (nano-SM) on 17α-ethinylestradiol (EE)-induced intrahepatic cholestasis. METHODS Thirty female Sprague-Dawley rats were divided into 5 groups (6 rats/group). Group I: Rats were received the treatment vehicle and served as normal group. Group II:Rats were injected daily with EE (10 mg/kg) for five successive days. Group III-V: Rats were injected daily with EE (10 mg/kg) and treated with either Ursodeoxycholic acid (UDCA) (40 mg/kg), SM (100 mg/kg) and nano-SM (100 mg/kg) orally once/day throughout the trialfor five successive days, respectively. RESULTS Nano-SM greatly dampened the increase in serum levels of total and direct bilirubin, alanine aminotransaminase, aspartate aminotransaminase, and alkaline phosphatase caused by EE. Furthermore, nano-SM increased the hepatic contents of reduced glutathione (GSH) and catalase (CAT) and also upregulated the relative hepatic gene expressions of Rho-kinase (ROCK-1), myosin light chain kinase (MLCK), and myosin phosphatase target subunit (MYPT1) compared to the EE-induced group. Administration of nano-SM reduced hepatic lipid peroxidation and downregulated the relative hepatic expressions of the nuclear factor-kappa B (NF-ҡB) and interleukin-1β (IL-1β). In addition, nano-SM improved the histopathological changes induced by EE. CONCLUSION Nano-SM possessed a superior effect over SM, which can be considered an effective protective modality against EE-induced cholestatic liver injury through its antioxidant, anti-inflammatory activities, and enhancing bile acid (BA) efflux.
Collapse
Affiliation(s)
- Maha B Salem
- Pharmacology Department, Theodor Bilharz Research Institute, P.O. box 30, Warrak El-Hadar, Giza, 12411, Imbaba, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Olfat A Hammam
- Pathology Department, Theodor Bilharz Research Institute, P.O. box 30, Warrak El-Hadar, Giza, 12411, Imbaba, Egypt
| | - Mohamed Elzallat
- Immunology Department, Theodor Bilharz Research Institute, P.O. box 30, Warrak El-Hadar, Giza, 12411, Imbaba, Egypt
| |
Collapse
|
2
|
Abdalla ZA, Abtar AN, Kareem AA, Ahmed ZA, Aziz TA. Study of the effect of bezafibrate with ginkgo biloba extracts in an animal model of hepatotoxicity induced by doxorubicin. Biochem Biophys Rep 2023; 36:101582. [PMID: 38059266 PMCID: PMC10696391 DOI: 10.1016/j.bbrep.2023.101582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023] Open
Abstract
This study aimed to evaluate the hepatoprotective effect of combining bezafibrate with ginkgo biloba in doxorubicin-induced hepatotoxicity in rats. Thirty Wister albino rats were allocated into five groups: The negative control group, the positive control group, both received 1 ml of D.W, bezafibrate group received (100 mg/kg), ginkgo biloba group received (60 mg/kg) and the fifth group received bezafibrate + ginkgo biloba. All the treatments were for 14 days along with doxorubicin on days 11-14 except for the negative control. Blood samples were used for the measurement of ALT, AST, ALP, total protein, total bilirubin, albumin, globulin, GSH, catalase, and IL-6. Liver tissue was sent for histopathological examination. The combination of ginkgo biloba and bezafibrate significantly decreased AST, ALP, AST/ALT ratio, albumin/globulin ratio, and IL-6 with significant elevations of catalase, and GSH. The combination group produced more hepatoprotection. This could be attributed to the additive anti-inflammatory and antioxidant effects of the combination.
Collapse
Affiliation(s)
- Zhwan Azad Abdalla
- Department of Clinical Pharmacy, College of Pharmacy, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
| | - Asoo Nihad Abtar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
| | - Ahmed Azad Kareem
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
| | - Zheen Aorahman Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
| | - Tavga Ahmed Aziz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
| |
Collapse
|
3
|
Ma Y, Wang M, Guo S, Li T, Liu X, Zhao L. The serum acylcarnitines profile in epileptic children treated with valproic acid and the protective roles of peroxisome proliferator-activated receptor a activation in valproic acid-induced liver injury. Front Pharmacol 2022; 13:1048728. [PMID: 36425583 PMCID: PMC9681037 DOI: 10.3389/fphar.2022.1048728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/25/2022] [Indexed: 09/04/2023] Open
Abstract
Valproic acid (VPA) is widely used as a major drug in the treatment of epilepsy. Despite the undisputed pharmacological importance and effectiveness of VPA, its potential hepatotoxicity is still a major concern. Being a simple fatty acid, the hepatotoxicity induced by VPA has long been considered to be due primarily to its interference with fatty acid β-oxidation (β-FAO). The aim of this study was to investigate the biomarkers for VPA-induced abnormal liver function in epileptic children and to determine potential mechanisms of its liver injury. Targeted metabolomics analysis of acylcarnitines (ACs) was performed in children's serum. Metabolomic analysis revealed that VPA -induced abnormal liver function resulted in the accumulation of serum long-chain acylcarnitines (LCACs), and the reduced expression of β-FAO relevant genes (Carnitine palmitoyltrans-ferase (CPT)1, CPT2 and Long-chain acyl-CoA dehydrogenase (LCAD)), indicating the disruption of β-FAO. As direct peroxisome proliferator-activated receptor a (PPARα)- regulated genes, CPT1A, CPT2 and LCAD were up-regulated after treatment with PPARα agonist, fenofibrate (Feno), indicating the improvement of β-FAO. Feno significantly ameliorated the accumulation of various lipids in the plasma of VPA-induced hepatotoxic mice by activating PPARα, significantly reduced the plasma ACs concentration, and attenuated VPA-induced hepatic steatosis. Enhanced oxidative stress and induced by VPA exposure were significantly recovered using Feno treatment. In conclusion, this study indicates VPA-induced β-FAO disruption might lead to liver injury, and a significant Feno protective effect against VPA -induced hepatotoxicity through reversing fatty acid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Carrion AF, Lindor KD, Levy C. Safety of fibrates in cholestatic liver diseases. Liver Int 2021; 41:1335-1343. [PMID: 33751787 DOI: 10.1111/liv.14871] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Off-label use of fibrates in patients with cholestatic liver diseases results in improved biochemical parameters and pruritus; however, their safety in this population has been a concern. This study summarizes safety data for fibrates when used for treatment of cholestatic liver diseases. METHODS A systematic review of published studies evaluating the use of fibrates for treatment of primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) was performed. Electronic databases were searched up to December 2019 for published studies evaluating treatment outcomes associated to fibrates for these 2 diseases. RESULTS A total of 37 studies were identified, including 31 for PBC and 6 for PSC, with a total of 1107 unique patients treated with fibrates ± ursodeoxycholic acid (UDCA). Most studies evaluated fenofibrate and bezafibrate, and only 1 study evaluated pemafibrate. There were no studies evaluating gemfibrozil or clofibrate. The most commonly reported adverse events (AEs) were gastrointestinal and musculoskeletal. Elevations of aminotransferases and serum creatinine were reported more commonly in patients treated with UDCA plus fibrates versus UDCA monotherapy. CONCLUSIONS Fibrates appear to be safe and well tolerated in patients with PBC, with a low frequency of AEs. There are scarce data about the safety of these agents for treatment of PSC.
Collapse
Affiliation(s)
- Andres F Carrion
- Division of Gastroenterology and Hepatology, University of Miami, Miami, FL, USA
| | - Keith D Lindor
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ, USA
- Office of University Provost, Arizona State University, Phoenix, AZ, USA
| | - Cynthia Levy
- Division of Gastroenterology and Hepatology, University of Miami, Miami, FL, USA
| |
Collapse
|
5
|
Gijbels E, Pieters A, De Muynck K, Vinken M, Devisscher L. Rodent models of cholestatic liver disease: A practical guide for translational research. Liver Int 2021; 41:656-682. [PMID: 33486884 PMCID: PMC8048655 DOI: 10.1111/liv.14800] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Cholestatic liver disease denotes any situation associated with impaired bile flow concomitant with a noxious bile acid accumulation in the liver and/or systemic circulation. Cholestatic liver disease can be subdivided into different types according to its clinical phenotype, such as biliary atresia, drug-induced cholestasis, gallstone liver disease, intrahepatic cholestasis of pregnancy, primary biliary cholangitis and primary sclerosing cholangitis. Considerable effort has been devoted to elucidating underlying mechanisms of cholestatic liver injuries and explore novel therapeutic and diagnostic strategies using animal models. Animal models employed according to their appropriate applicability domain herein play a crucial role. This review provides an overview of currently available in vivo animal models, fit-for-purpose in modelling different types of cholestatic liver diseases. Moreover, a practical guide and workflow is provided which can be used for translational research purposes, including all advantages and disadvantages of currently available in vivo animal models.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium,Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Alanah Pieters
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Kevin De Muynck
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium,Hepatology Research UnitInternal Medicine and PaediatricsLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Lindsey Devisscher
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| |
Collapse
|
6
|
Wadie W, Mohamed AH, Masoud MA, Rizk HA, Sayed HM. Protective impact of lycopene on ethinylestradiol-induced cholestasis in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:447-455. [PMID: 33034714 DOI: 10.1007/s00210-020-01980-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Protection against cholestasis and its consequences are considered an essential issue to improve the quality of a patient's life and reduce the number of death every year from liver diseases. Lycopene, a natural carotenoid, has antioxidant scavenger capacity and inhibits inflammation in many experimental models. The present study aimed to elucidate the potential protective effects of lycopene, in comparison to silymarin, in a rat model of cholestatic liver. Animals were daily injected with 17α-ethinylestradiol (EE; 5 mg/kg) for 18 successive days. Silymarin (100 mg/kg) and lycopene (10 mg/kg) were orally administered once per day through the experimental period. Lycopene significantly decreased the EE-induced rise in the serum levels of total bile acid and total bilirubin as well as the activities of alanine aminotransaminase, aspartate aminotransaminase, alkaline phosphatase, and gamma-glutamyl transaminase. Moreover, lycopene reduced the hepatic levels of thiobarbituric acid reactive substances and tumor necrosis factor-α as well as the hepatic activity of myeloperoxidase that were markedly elevated by EE. Lycopene increased the hepatic levels of total protein and albumin and reduced glutathione. In addition, lycopene improved the hepatic histopathological changes induced by EE. These protective effects of lycopene were comparable to that of silymarin. In conclusion, lycopene was effective in protecting against estrogen-induced cholestatic liver injury through its antioxidant and anti-inflammatory activities. Therefore, lycopene might be a potentially effective drug for protection against cholestasis in susceptible women during pregnancy, administration of oral contraceptives, or postmenopausal replacement therapy.
Collapse
Affiliation(s)
- Walaa Wadie
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Aya Hamada Mohamed
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Marwa Ashour Masoud
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Hanan Amin Rizk
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Helmy Moawad Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Affiliation(s)
- Sangeetha Nithiyanandam
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sabina Evan Prince
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
8
|
Zubrzycki A, Wrońska A, Kotulak-Chrząszcz A, Wierzbicki PM, Kmieć Z. Fenofibrate impairs liver function and structure more pronounced in old than young rats. Arch Gerontol Geriatr 2020; 91:104244. [PMID: 32927318 DOI: 10.1016/j.archger.2020.104244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Since old animals are known to accumulate lipids in some organs, we compared effects of fenofibrate (FN) on systemic lipid metabolism, activity of liver marker enzymes and structure in young and old rats. MATERIAL AND METHODS Young and old rats were fed chow supplemented with 0.1 % or 0.5 % FN. After 30 days, intraperitoneal glucose tolerance test (IPGTT) was performed, and blood and liver samples were collected. RESULTS In young rats, 0.1 % FN, but not 0.5 % FN, decreased serum Chol by 74 %, and did not affect TG levels at either doses. In old rats, 0.5 % FN, but not 0.1 % FN, decreased Chol and TG level by 56 % and 49 %, respectively. In young rats, 0.1 % and 0.5 % FN increased serum activity of ALP by 227 % and 260 %, respectively, and did not affect AST and ALT activities. In old rats, only 0.5 % FN increased serum ALP activity by 150 %, respectively. In old rats, neither dose of FN affected serum AST activity, and only 0.5 % FN increased serum ALT activity by 200 %. The histological examination of liver structure revealed that both doses of FN impaired lobular architecture, expansion of bile canaliculi, and degeneration of parenchymal cells with the presence of cells containing fat droplets; administration of FN increased area occupied by collagen fibers. CONCLUSIONS Although 0.5 % FN decreased serum Chol concentration, it increased serum ALP activity and impaired liver structure in both in both age groups of rats. Thus, FN treatment should be under the control of liver function, especially in older patients.
Collapse
Affiliation(s)
- Adrian Zubrzycki
- Department of Histology, Medical University of Gdansk, Gdansk, Poland.
| | - Agata Wrońska
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| | | | | | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
9
|
Ghonem NS, Auclair AM, Hemme CL, Gallucci GM, de la Rosa Rodriguez R, Boyer JL, Assis DN. Fenofibrate Improves Liver Function and Reduces the Toxicity of the Bile Acid Pool in Patients With Primary Biliary Cholangitis and Primary Sclerosing Cholangitis Who Are Partial Responders to Ursodiol. Clin Pharmacol Ther 2020; 108:1213-1223. [PMID: 32480421 DOI: 10.1002/cpt.1930] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
Cholestatic liver diseases result in the hepatic retention of bile acids, causing subsequent liver toxicity. Peroxisome proliferator-activated receptor alpha (PPARα) regulates bile acid metabolism. In this retrospective observational study, we assessed the effects of fenofibrate (a PPARα agonist) therapy on bile acid metabolism when given to patients with primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) who have had an incomplete response to Ursodiol monotherapy. When fenofibrate was added to Ursodiol therapy there was a significant reduction and in some cases normalization of serum alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase abnormalities, as well as pro-inflammatory cytokines. Combination fenofibrate treatment also reduced 7α-hydroxy-4-cholesten-3-one (C4), the bile acid precursor, as well as total, primary, and conjugated bile acids. In addition, principal components analysis and heatmap analysis show that bile acid metabolites trended closer to that of healthy control subjects. These favorable effects of fenofibrate on bile acid metabolism may contribute to its beneficial clinical effects in patients with PBC and PSC experiencing a subtherapeutic response to Ursodiol monotherapy.
Collapse
Affiliation(s)
- Nisanne S Ghonem
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Adam M Auclair
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Christopher L Hemme
- RI-INBRE Bioinformatics Core, University of Rhode Island, Kingston, Rhode Island, USA
| | - Gina M Gallucci
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | | | - James L Boyer
- Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - David N Assis
- Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Therapeutic action against chronic cholestatic liver injury by low-dose fenofibrate involves anti-chemotaxis via JNK–AP1–CCL2/CXCL2 signaling. Pharmacol Rep 2020; 72:935-944. [DOI: 10.1007/s43440-019-00043-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/16/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
|
11
|
Zhao Q, Zhang T, Xiao X, Huang J, Wang Y, Gonzalez FJ, Li F. Impaired clearance of sunitinib leads to metabolic disorders and hepatotoxicity. Br J Pharmacol 2019; 176:2162-2178. [PMID: 30875096 PMCID: PMC6555861 DOI: 10.1111/bph.14664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/23/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Sunitinib is a small-molecule TK inhibitor associated with hepatotoxicity. The mechanisms of its toxicity are still unclear. EXPERIMENTAL APPROACH In the present study, mice were treated with 60, 150, and 450 mg·kg-1 sunitinib to evaluate sunitinib hepatotoxicity. Sunitinib metabolites and endogenous metabolites in liver, serum, faeces, and urine were analysed using ultra-performance LC electrospray ionization quadrupole time-of-flight MS-based metabolomics. KEY RESULTS Four reactive metabolites and impaired clearance of sunitinib in liver played a dominant role in sunitinib-induced hepatotoxicity. Using a non-targeted metabolomics approach, various metabolic pathways, including mitochondrial fatty acid β-oxidation (β-FAO), bile acids, lipids, amino acids, nucleotides, and tricarboxylic acid cycle intermediates, were disrupted after sunitinib treatment. CONCLUSIONS AND IMPLICATIONS These studies identified significant alterations in mitochondrial β-FAO and bile acid homeostasis. Activation of PPARα and inhibition of xenobiotic metabolism may be of value in attenuating sunitinib hepatotoxicity.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ting Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xue‐Rong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Jian‐Feng Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yan Wang
- Department of PathologyThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMD
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Jiangxi University of Traditional Chinese MedicineNanchangChina
| |
Collapse
|
12
|
Zhao Q, Yang R, Wang J, Hu DD, Li F. PPARα activation protects against cholestatic liver injury. Sci Rep 2017; 7:9967. [PMID: 28855630 PMCID: PMC5577315 DOI: 10.1038/s41598-017-10524-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/10/2017] [Indexed: 12/13/2022] Open
Abstract
Intrahepatic cholestasis induced by drug toxicity, bile salt export pump (BSEP) deficiency, or pregnancy frequently causes cholestatic liver damage, which ultimately may lead to liver fibrosis and cirrhosis. Here, the preventive and therapeutic effects of peroxisome proliferator-activated receptor α (PPARα) signaling activated by fenofibrate was evaluated on cholestatic liver damage. Metabolomic analysis revealed that alpha-naphthyl isothiocyanate (ANIT)-induced intrahepatic cholestasis resulted in the accumulation of serum long-chain acylcarnitines and triglyceride, and the reduced expression of four fatty acid β-oxidation (β-FAO) relevant genes (Cpt1b, Cpt2, Mcad and Hadha), indicating the disruption of β-FAO. The increase of acylcarnitines in hepatic cell resulted in the enhanced expression of anti-oxidative genes glutathione S-transferases (Gsta2 and Gstm3) directly. As direct PPARα-regulated genes, Cpt1b, Cpt2, and Mcad were up-regulated after pretreatment with PPARα agonist, fenofibrate, indicating the improvement of β-FAO. In the end, the disrupted bile acid metabolism in the enterohepatic circulation and the enhanced oxidative stress and inflammation cytokines induced by ANIT exposure were significantly recovered with the improvement of β-FAO using fenofibrate treatment. These findings provide the rationale for the use of PPARα agonists as therapeutic alternatives for cholestatic liver damage.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dan-Dan Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
13
|
Dai M, Yang J, Xie M, Lin J, Luo M, Hua H, Xu G, Lin H, Song D, Cheng Y, Guo B, Zhao J, Gonzalez FJ, Liu A. Inhibition of JNK signalling mediates PPARα-dependent protection against intrahepatic cholestasis by fenofibrate. Br J Pharmacol 2017. [PMID: 28646549 DOI: 10.1111/bph.13928] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Fenofibrate, a PPARα agonist, is the most widely prescribed drug for treating hyperlipidaemia. Although fibrate drugs are reported to be beneficial for cholestasis, their underlying mechanism has not been determined. EXPERIMENTAL APPROACH Wild-type mice and Pparα-null mice were pretreated orally with fenofibrate for 3 days, following which α-naphthylisothiocyanate (ANIT) was administered to induce cholestasis. The PPARα agonist WY14643 and JNK inhibitor SP600125 were used to determine the role of PPARα and the JNK pathway, respectively, in cholestatic liver injury. The same fenofibrate regimen was applied to investigate its beneficial effects on sclerosing cholangitis in a DDC-induced cholestatic model. KEY RESULTS Fenofibrate, 25 mg·kg-1 twice a day, totally attenuated ANIT-induced cholestasis and liver injury as indicated by biochemical and histological analyses. This protection occurred in wild-type, but not in Pparα-null, mice. Alterations in bile acid synthesis and transport were found to be an adaptive response rather than a direct effect of fenofibrate. WY14643 attenuated ANIT-induced cholestasis and liver injury coincident with inhibition of JNK signalling. Although SP600125 did not affect cholestasis, it inhibited liver injury in the ANIT model when the dose of fenofibrate used was ineffective. Fenofibrate was also revealed to have a beneficial effect in the sclerosing cholangitis model. CONCLUSIONS AND IMPLICATIONS These data suggest that the protective effects of fenofibrate against cholestasis-induced hepatic injury are dependent on PPARα and fenofibrate dose, and are mediated through inhibition of JNK signalling. This mechanism of fenofibrate protection against intrahepatic cholestasis may offer additional therapeutic opportunities for cholestatic liver diseases.
Collapse
Affiliation(s)
- Manyun Dai
- Medical School of Ningbo University, Ningbo, China
| | - Julin Yang
- Ningbo College of Health Sciences, Ningbo, China
| | - Minzhu Xie
- Medical School of Ningbo University, Ningbo, China
| | - Jiao Lin
- Medical School of Ningbo University, Ningbo, China
| | - Min Luo
- Medical School of Ningbo University, Ningbo, China
| | - Huiying Hua
- Medical School of Ningbo University, Ningbo, China
| | - Gangming Xu
- Medical School of Ningbo University, Ningbo, China
| | - Hante Lin
- Medical School of Ningbo University, Ningbo, China
| | - Danjun Song
- Medical School of Ningbo University, Ningbo, China
| | | | - Bin Guo
- Hunan Normal University, Changsha, China
| | - Jinshun Zhao
- Medical School of Ningbo University, Ningbo, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Aiming Liu
- Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Abstract
Atherosclerosis is a chronic inflammatory disease with deposition of excessive cholesterol in the arterial intima. Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor that can activate or inhibit the expression of many target genes by forming a heterodimer complex with the retinoid X receptor. Activation of PPARα plays an important role in the metabolism of multiple lipids, including high-density lipoprotein, cholesterol, low-density lipoprotein, triglyceride, phospholipid, bile acids, and fatty acids. Increased PPARα activity also mitigates atherosclerosis by blocking macrophage foam cell formation, vascular inflammation, vascular smooth muscle cell proliferation and migration, plaque instability, and thrombogenicity. Clinical use of synthetic PPARα agonist fibrate improved dyslipidemia and attenuated atherosclerosis-related disease risk. This review summarizes PPARα in lipid and lipoprotein metabolism and atherosclerosis, and also highlights its potential therapeutic benefits.
Collapse
|
15
|
Poupon R. Liver alkaline phosphatase: a missing link between choleresis and biliary inflammation. Hepatology 2015; 61:2080-90. [PMID: 25603770 DOI: 10.1002/hep.27715] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023]
Abstract
Several lines of evidence show that serum alkaline phosphatase (AP) is not only a signpost of cholestasis but also a surrogate marker of the severity of primary biliary cirrhosis and primary sclerosing cholangitis. In the present opinion article, we review and discuss the putative role of liver AP in health and in cholestatic diseases. In inflammatory cholestatic conditions, loss of activity of liver AP (resulting from its relocation from canaliculi and the acidic milieu) might promote hyper-adenosine triphosphate-bilia, lipopolysaccharide overload, and subsequent exacerbation and perpetuation of inflammation. Drugs that can restore the polarity of hepatocytes and canalicular export of bile acids or act as bile alkalinity modifiers are predicted to exert anti-inflammatory effects and to benefit both primary biliary cirrhosis and primary sclerosing cholangitis. Oral administration of intestinal AP could be a valid therapeutic intervention that deserves further study under experimental conditions as well as in human diseases. Overall, the key role of the liver microenvironment that might shape the different facets of the inflammatory processes in fibrosing cholangiopathies is highlighted.
Collapse
Affiliation(s)
- Raoul Poupon
- UPMC University of Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hépatologie, Paris, France
| |
Collapse
|
16
|
Zhang Y, Li S, He L, Wang F, Chen K, Li J, Liu T, Zheng Y, Wang J, Lu W, Zhou Y, Yin Q, Xia Y, Zhou Y, Lu J, Guo C. Combination therapy of fenofibrate and ursodeoxycholic acid in patients with primary biliary cirrhosis who respond incompletely to UDCA monotherapy: a meta-analysis. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2757-66. [PMID: 26045661 PMCID: PMC4448927 DOI: 10.2147/dddt.s79837] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Although the effectiveness of treatment with ursodeoxycholic acid (UDCA) and fenofibrate for primary biliary cirrhosis (PBC) has been suggested by small trials, a systematic review to summarize the evidence has not yet been carried out. Methods A meta-analysis of all long-term randomized controlled trials comparing the combination of UDCA and fenofibrate with UDCA monotherapy was performed via electronic searches. Results Six trials, which included 84 patients, were assessed. Combination therapy with UDCA and fenofibrate was more effective than UDCA monotherapy in improving alkaline phosphatase (mean difference [MD]: −90.44 IU/L; 95% confidence interval [CI]: −119.95 to −60.92; P<0.00001), gamma-glutamyl transferase (MD: −61.58 IU/L; 95% CI: −122.80 to −0.35; P=0.05), immunoglobulin M (MD: −38.45 mg/dL; 95% CI: −64.38 to −12.51; P=0.004), and triglycerides (MD: −0.41 mg/dL; 95% CI: −0.82 to −0.01; P=0.05). However, their effects on pruritus (odds ratio [OR]: 0.39; 95% CI: 0.09–1.78; P=0.23), total bilirubin (MD: −0.05 mg/dL; 95% CI: −0.21 to 0.12; P=0.58), and alanine aminotransferase (MD: −3.31 IU/L; 95% CI: −14.60 to 7.97; P=0.56) did not differ significantly. This meta-analysis revealed no significant differences in the incidence of adverse events (OR: 0.21; 95% CI: 0.03–1.25; P=0.09) between patients treated with combination therapy and those treated with monotherapy. Conclusion In this meta-analysis, combination therapy with UDCA and fenofibrate was more effective in reducing alkaline phosphatase than UDCA monotherapy, but it did not improve clinical symptoms. There did not appear to be an increase in adverse events with combination therapy.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China ; Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lei He
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jianrong Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China ; The First Clinical Medical College of Nanjing Medical University, Nanjing, People's Republic of China
| | - Wenxia Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China ; The First Clinical Medical College of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuqing Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China ; The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qin Yin
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China ; The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Zhang Y, Chen K, Dai W, Xia Y, Wang F, Shen M, Cheng P, Wang C, Yang J, Zhu R, Zhang H, Li J, Zheng Y, Wang J, Lu J, Zhou Y, Guo C. Combination therapy of bezafibrate and ursodeoxycholic acid for primary biliary cirrhosis: A meta-analysis. Hepatol Res 2015; 45:48-58. [PMID: 24934524 DOI: 10.1111/hepr.12373] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/25/2014] [Accepted: 06/11/2014] [Indexed: 12/22/2022]
Abstract
The aim of this study was to assess the efficiency and safety of combination therapy of ursodeoxycholic acid (UDCA) and bezafibrate for primary biliary cirrhosis. A meta-analysis of all long-term randomized controlled trials comparing the combination of UDCA and bezafibrate with UDCA monotherapy was performed via electronic searches. Seven trials, which included 177 patients, were assessed. Combination therapy with UDCA and bezafibrate was more effective than UDCA monotherapy in improving liver biochemistry, alkaline phosphatase (mean difference [MD], -146.15 IU/L; 95% confidence interval [CI], -193.58 to -98.72; P < 0.00001), γ-glutamyltransferase (MD, -20.64 IU/L; 95% CI, -30.86 to -10.43; P < 0.0001), immunoglobulin M (MD, -90.96 mg/dL; 95% CI, -137.36 to -44.56; P = 0.0001) and triglycerides (MD, -15.49 mg/dL; 95% CI, -30.25 to -0.74; P = 0.04). However, their effects on pruritus (odds ratio [OR], 0.82; 95% CI, 0.30-2.24; P = 0.70) and alanine aminotransferase (MD, -8.41 IU/L; 95% CI, -22.57 to 5.75; P = 0.24) did not differ significantly. This meta-analysis revealed no significant differences in the incidence of all-cause mortality (OR, 0.72; 95% CI, 0.10-5.49; P = 0.75) and adverse events (OR, 0.35; 95% CI, 0.07-1.84; P = 0.22) between patients treated with combination therapy and those treated with monotherapy. In this meta-analysis, combination therapy with UDCA and bezafibrate was more effective than UDCA monotherapy. Combination therapy improved liver biochemistry, but did not improve clinical symptoms, incidence of death or adverse events more effectively than monotherapy.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Molecular mechanisms of fenofibrate-induced metabolic catastrophe and glioblastoma cell death. Mol Cell Biol 2014; 35:182-98. [PMID: 25332241 DOI: 10.1128/mcb.00562-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fenofibrate (FF) is a common lipid-lowering drug and a potent agonist of the peroxisome proliferator-activated receptor alpha (PPARα). FF and several other agonists of PPARα have interesting anticancer properties, and our recent studies demonstrate that FF is very effective against tumor cells of neuroectodermal origin. In spite of these promising anticancer effects, the molecular mechanism(s) of FF-induced tumor cell toxicity remains to be elucidated. Here we report a novel PPARα-independent mechanism explaining FF's cytotoxicity in vitro and in an intracranial mouse model of glioblastoma. The mechanism involves accumulation of FF in the mitochondrial fraction, followed by immediate impairment of mitochondrial respiration at the level of complex I of the electron transport chain. This mitochondrial action sensitizes tested glioblastoma cells to the PPARα-dependent metabolic switch from glycolysis to fatty acid β-oxidation. As a consequence, prolonged exposure to FF depletes intracellular ATP, activates the AMP-activated protein kinase-mammalian target of rapamycin-autophagy pathway, and results in extensive tumor cell death. Interestingly, autophagy activators attenuate and autophagy inhibitors enhance FF-induced glioblastoma cytotoxicity. Our results explain the molecular basis of FF-induced glioblastoma cytotoxicity and reveal a new supplemental therapeutic approach in which intracranial infusion of FF could selectively trigger metabolic catastrophe in glioblastoma cells.
Collapse
|