1
|
Wang J, Jia X, Song J, Qin Z, Cao M, Chen J. Motor Cortex Activation Patterns in Both Hemispheres Induced by Motor Imagery in Patients With Right- and Left-Sided Cerebral Infarction: An fNIRS Study. Eur J Neurosci 2025; 61:e70079. [PMID: 40170325 PMCID: PMC11962173 DOI: 10.1111/ejn.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 04/03/2025]
Abstract
This study aimed to explore the neuroimaging basis of motor imagery (MI) in stroke rehabilitation, particularly focusing on the brain activation patterns during MI tasks. Additionally, this study may provide insights into clinical rehabilitation strategies. A total of 40 right-handed stroke patients from Zhejiang Rehabilitation Medical Center were assigned to either the right-sided or left-sided cerebral infarction group. They were right-handed and recruited from Zhejiang Rehabilitation Medical Center. A portable near-infrared brain function imaging system was used to detect changes in oxyhemoglobin concentration in the bilateral sensorimotor cortex, premotor cortex, and supplementary motor area during the MI task. Activated channels and intensity changes in brain regions under the MI state were observed and analyzed. In patients with right-sided cerebral infarction, brain activation was left-lateralized during both left- and right-limb MI. Patients with left-sided cerebral infarction exhibited left lateralization during right-limb MI and right lateralization during left-limb MI. Functional near-infrared spectroscopy was utilized to investigate the activation of motor-related brain regions during MI after stroke. These regions of interest were associated with hand motor tasks and were successfully activated during the MI task. Following infarction, the activation of the MI cortex was asymmetric. When imagining movements on the dominant-hand side, MI becomes more vivid and activates bilateral motor cortex areas.
Collapse
Affiliation(s)
- Jialing Wang
- Department of Rehabilitation Assessment and TreatmentThe Affiliated Rehabilitation Hospital of Zhejiang Chinese Medical University (Zhejiang Rehabilitation Medical Center)HangzhouZhejiangChina
| | - Xinyu Jia
- Department of Rehabilitation Assessment and TreatmentThe Affiliated Rehabilitation Hospital of Zhejiang Chinese Medical University (Zhejiang Rehabilitation Medical Center)HangzhouZhejiangChina
| | - Jianfei Song
- Department of Rehabilitation Assessment and TreatmentThe Affiliated Rehabilitation Hospital of Zhejiang Chinese Medical University (Zhejiang Rehabilitation Medical Center)HangzhouZhejiangChina
| | - Zhengyuan Qin
- Department of Rehabilitation Assessment and TreatmentThe Affiliated Rehabilitation Hospital of Zhejiang Chinese Medical University (Zhejiang Rehabilitation Medical Center)HangzhouZhejiangChina
| | - Manting Cao
- Department of RehabilitationThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Jianer Chen
- Department of Rehabilitation Assessment and TreatmentThe Affiliated Rehabilitation Hospital of Zhejiang Chinese Medical University (Zhejiang Rehabilitation Medical Center)HangzhouZhejiangChina
- Department of RehabilitationThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| |
Collapse
|
2
|
Kaur M, Aran KR, Paswan R. A potential role of gut microbiota in stroke: mechanisms, therapeutic strategies and future prospective. Psychopharmacology (Berl) 2024; 241:2409-2430. [PMID: 39463207 DOI: 10.1007/s00213-024-06708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
RATIONALE Neurological conditions like Stroke and Alzheimer's disease (AD) often include inflammatory responses in the nervous system. Stroke, linked to high disability and mortality rates, poses challenges related to organ-related complications. Recent focus on understanding the pathophysiology of ischemic stroke includes aspects like cellular excitotoxicity, oxidative stress, cell death mechanisms, and neuroinflammation. OBJECTIVE The objective of this paper is to summarize and explore the pathophysiology of ischemic stroke, elucidates the gut-brain axis mechanism, and discusses recent clinical trials, shedding light on novel treatments and future possibilities. RESULTS Changes in gut architecture and microbiota contribute to dementia by enhancing intestinal permeability, activating the immune system, elevating proinflammatory mediators, altering blood-brain barrier (BBB) permeability, and ultimately leading to neurodegenerative diseases (NDDs). The gut-brain axis's potential role in disease pathophysiology offers new avenues for cell-based regenerative medicine in treating neurological conditions. CONCLUSION In conclusion, the gut microbiome significantly impacts stroke prognosis by highlighting the role of the gut-brain axis in ischemic stroke mechanisms. This insight suggests potential therapeutic strategies for improving outcomes.
Collapse
Affiliation(s)
- Manpreet Kaur
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Raju Paswan
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
3
|
Fernanda Silva G, Campos LF, de Aquino Miranda JM, Guirro Zuliani F, de Souza Fonseca BH, de Araújo AET, de Melo PF, Suzuki LG, Aniceto LP, Bazan R, Sande de Souza LAP, Luvizutto GJ. Repetitive peripheral sensory stimulation for motor recovery after stroke: a scoping review. Top Stroke Rehabil 2024; 31:723-737. [PMID: 38452790 DOI: 10.1080/10749357.2024.2322890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/10/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND PURPOSE Enhancing afferent information from the paretic limb can improve post-stroke motor recovery. However, uncertainties exist regarding varied sensory peripheral neuromodulation protocols and their specific impacts. This study outlines the use of repetitive peripheral sensory stimulation (RPSS) and repetitive magnetic stimulation (rPMS) in individuals with stroke. METHODS This scoping review was conducted according to the JBI Evidence Synthesis guidelines. We searched studies published until June 2023 on several databases using a three-step analysis and categorization of the studies: pre-analysis, exploration of the material, and data processing. RESULTS We identified 916 studies, 52 of which were included (N = 1,125 participants). Approximately 53.84% of the participants were in the chronic phase, displaying moderate-to-severe functional impairment. Thirty-two studies used RPSS often combining it with task-oriented training, while 20 used rPMS as a standalone intervention. The RPSS primarily targeted the median and ulnar nerves, stimulating for an average of 92.78 min at an intensity that induced paresthesia. RPMS targeted the upper and lower limb paretic muscles, employing a 20 Hz frequency in most studies. The mean stimulation time was 12.74 min, with an intensity of 70% of the maximal stimulator output. Among the 114 variables analyzed in the 52 studies, 88 (77.20%) were in the "s,b" domain, with 26 (22.8%) falling under the "d" domain of the ICF. DISCUSSION AND CONCLUSION Sensory peripheral neuromodulation protocols hold the potential for enhancing post-stroke motor recovery, yet optimal outcomes were obtained when integrated with intensive or task-oriented motor training.
Collapse
Affiliation(s)
| | | | | | - Flávia Guirro Zuliani
- Department of Applied Physical Therapy, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | | | | | - Luiz Gustavo Suzuki
- Physical Therapy Division, Hospital de Base do Distrito Federal, Brasília, Brazil
| | - Luiz Paulo Aniceto
- Department of Applied Physical Therapy, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Rodrigo Bazan
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, Botucatu, São Paulo, Brazil
| | | | - Gustavo José Luvizutto
- Department of Applied Physical Therapy, Federal University of Triângulo Mineiro, Uberaba, Brazil
| |
Collapse
|
4
|
Faralli A, Fucà E, Lazzaro G, Menghini D, Vicari S, Costanzo F. Transcranial Direct Current Stimulation in neurogenetic syndromes: new treatment perspectives for Down syndrome? Front Cell Neurosci 2024; 18:1328963. [PMID: 38456063 PMCID: PMC10917937 DOI: 10.3389/fncel.2024.1328963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
This perspective review aims to explore the potential neurobiological mechanisms involved in the application of transcranial Direct Current Stimulation (tDCS) for Down syndrome (DS), the leading cause of genetically-based intellectual disability. The neural mechanisms underlying tDCS interventions in genetic disorders, typically characterized by cognitive deficits, are grounded in the concept of brain plasticity. We initially present the neurobiological and functional effects elicited by tDCS applications in enhancing neuroplasticity and in regulating the excitatory/inhibitory balance, both associated with cognitive improvement in the general population. The review begins with evidence on tDCS applications in five neurogenetic disorders, including Rett, Prader-Willi, Phelan-McDermid, and Neurofibromatosis 1 syndromes, as well as DS. Available evidence supports tDCS as a potential intervention tool and underscores the importance of advancing neurobiological research into the mechanisms of tDCS action in these conditions. We then discuss the potential of tDCS as a promising non-invasive strategy to mitigate deficits in plasticity and promote fine-tuning of the excitatory/inhibitory balance in DS, exploring implications for cognitive treatment perspectives in this population.
Collapse
Affiliation(s)
- Alessio Faralli
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Elisa Fucà
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
- Life Sciences and Public Health Department, Catholic University of Sacred Heart, Rome, Italy
| | - Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| |
Collapse
|
5
|
Guan X, Wei D, Liang Z, Xie L, Wang Y, Huang Z, Wu J, Pang T. FDCA Attenuates Neuroinflammation and Brain Injury after Cerebral Ischemic Stroke. ACS Chem Neurosci 2023; 14:3839-3854. [PMID: 37768739 DOI: 10.1021/acschemneuro.3c00456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Ischemic stroke is a deleterious cerebrovascular disease with few therapeutic options, and its functional recovery is highly associated with the integrity of the blood-brain barrier and neuroinflammation. The Rho-associated coiled-coil containing protein kinase (ROCK) inhibitor fasudil (F) and the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate (DCA) have been demonstrated to exhibit neuroprotection in a series of neurological disorders. Hence, we synthesized and biologically examined the new salt fasudil dichloroacetate (FDCA) and validated that FDCA was eligible for attenuating ischemic volume and neurological deficits in the rat transient middle cerebral artery occlusion (tMCAO) model. Additionally, FDCA exerted superior effects than fasudil and dichloroacetate alone or in combination in reducing cerebral ischemic injury. Particularly, FDCA could maintain the blood-brain barrier (BBB) integrity by inhibiting matrix metalloproteinase 9 (MMP-9) protein expression and the degradation of zonula occludens (ZO-1) and Occludin protein. Meanwhile, FDCA could mitigate the neuroinflammation induced by microglia. The in vivo and in vitro experiments further demonstrated that FDCA disrupted the phosphorylations of myosin phosphatase target subunit 1 (MYPT1), mitogen-activated protein kinase (MAPK) cascade, including p38 and c-Jun N-terminal kinase (JNK), and pyruvate dehydrogenase (PDH) and limited excessive lactic acid metabolites, resulting in inhibition of BBB disruption and neuroinflammation. In addition, FDCA potently mitigated inflammatory response in human monocytes isolated from ischemic stroke patients, which provides the possibilities of a clinical translation perspective. Overall, these findings provided a therapeutic potential for FDCA as a candidate agent for ischemic stroke and other neurological diseases associated with BBB disruption and neuroinflammation.
Collapse
Affiliation(s)
- Xin Guan
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dasha Wei
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhuangzhuang Liang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Luyang Xie
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yifang Wang
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P. R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jin Wu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P. R. China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
6
|
LI M, YAN Y, DENG S, WANG Y, FU Y, SHI L, YANG J, ZHANG C. Contralateral needling at the foot of unaffected side combining with rehabilitation treatment for motor dysfunction of hand after ischemic stroke: study protocol for a randomized controlled pilot trial. J TRADIT CHIN MED 2023; 43:1034-1039. [PMID: 37679992 PMCID: PMC10465831 DOI: 10.19852/j.cnki.jtcm.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/05/2022] [Indexed: 09/09/2023]
Abstract
This pilot study is to assess the feasibility and the effect of a combination therapy of rehabilitation treatment and contralateral needling, which is manipulated at the foot of the unaffected side, for the recovery of the paretic hand post-stroke. This prospective pilot clinical trial will recruit 72 stroke patients with paretic hands and a disease course of 14 to 90 d. Patients will be randomized into two groups: the control group will receive conventional Xingnao Kaiqiao acupuncture and basic treatment for the stroke; based on the control group, the observation group will receive the contralateral needling at the foot of the unaffected side combined with the rehabilitation movement of the paretic hand. 12 sessions will be administrated for 2 weeks. The primary outcome, Fugl-Meyer Assessment, and the secondary outcomes, the handgrip strength, the range of motion, the modified Barthel index, and the Brunnstrom recovery stages, will be measured the recovery of the hand motor function during the 2 weeks' intervention. This study aims to investigate the instant effect of contralateral needling at the foot of the unaffected side combined with the rehabilitation treatment movement for patients with the paretic hand of Poststroke motor dysfunction and provide the previous evidence for the future large sample studies.
Collapse
Affiliation(s)
- Menghan LI
- 1 Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Yan YAN
- 2 Department of Acupuncture, Zhejiang Chinese Medical University Affiliated Third Hospital, Hangzhou 310012, China
| | - Shizhe DENG
- 1 Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Yu WANG
- 1 Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Yu FU
- 1 Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Lei SHI
- 1 Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Jin YANG
- 1 Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Chunhong ZHANG
- 1 Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| |
Collapse
|
7
|
Ge P, Duan H, Tao C, Niu S, Hu Y, Duan R, Shen A, Sun Y, Sun W. TMAO Promotes NLRP3 Inflammasome Activation of Microglia Aggravating Neurological Injury in Ischemic Stroke Through FTO/IGF2BP2. J Inflamm Res 2023; 16:3699-3714. [PMID: 37663757 PMCID: PMC10473438 DOI: 10.2147/jir.s399480] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/19/2023] [Indexed: 09/05/2023] Open
Abstract
Objective Stroke is a kind of cerebrovascular disease with high mortality. TMAO has been shown to aggravate stroke outcomes, but its mechanism remains unclear. Materials and Methods Mice were fed with 0.12% TMAO for 16 weeks. Then, mice were made into MCAO/R models. Neurological score, infarct volume, neuronal damage and markers associated with inflammation were assessed. Since microglia played a crucial role in ischemic stroke, microglia of MCAO/R mice were isolated for high-throughput sequencing to identify the most differentially expressed gene following TMAO treatment. Afterward, the downstream pathways of TMAO were investigated using primary microglia. Results TMAO promoted the release of inflammatory cytokines in the brain of MCAO/R mice and promoted the activation of OGD/R microglial inflammasome, thereby exacerbating ischemic stroke outcomes. FTO/IGF2BP2 inhibited NLRP3 inflammasome activation in OGD/R microglia by downregulating the m6A level of NLRP3. TMAO can inhibit the expression of FTO and IGF2BP2, thus promoting the activation of NLRP3 inflammasome in OGD/R microglia. In conclusion, these results demonstrated that TMAO promotes NLRP3 inflammasome activation of microglia aggravating neurological injury in ischemic stroke through FTO/IGF2BP2. Conclusion Our results demonstrated that TMAO promotes NLRP3 inflammasome activation of microglia aggravating neurological injury in ischemic stroke through FTO/IGF2BP2. These findings explained the molecular mechanism of TMAO aggravating ischemic stroke in detail and provided molecular mechanism for clinical treatment.
Collapse
Affiliation(s)
- Pengxin Ge
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, People’s Republic of China
| | - Huijie Duan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Chunrong Tao
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| | - Sensen Niu
- Digestive System Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Yiran Hu
- Department of Scientific Research, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People’s Republic of China
| | - Aizong Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| | - Yancai Sun
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, People’s Republic of China
| | - Wen Sun
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| |
Collapse
|
8
|
Zhang K, Wang H, Wang X, Xiong X, Tong S, Sun C, Zhu B, Xu Y, Fan M, Sun L, Guo X. Neuroimaging prognostic factors for treatment response to motor imagery training after stroke. Cereb Cortex 2023; 33:9504-9513. [PMID: 37376787 DOI: 10.1093/cercor/bhad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The efficacy of motor imagery training for motor recovery is well acknowledged, but with substantial inter-individual variability in stroke patients. To help optimize motor imagery training therapy plans and screen suitable patients, this study aimed to explore neuroimaging biomarkers explaining variability in treatment response. Thirty-nine stroke patients were randomized to a motor imagery training group (n = 22, received a combination of conventional rehabilitation therapy and motor imagery training) and a control group (n = 17, received conventional rehabilitation therapy and health education) for 4 weeks of interventions. Their demography and clinical information, brain lesion from structural MRI, spontaneous brain activity and connectivity from rest fMRI, and sensorimotor brain activation from passive motor task fMRI were acquired to identify prognostic factors. We found that the variability of outcomes from sole conventional rehabilitation therapy could be explained by the reserved sensorimotor neural function, whereas the variability of outcomes from motor imagery training + conventional rehabilitation therapy was related to the spontaneous activity in the ipsilesional inferior parietal lobule and the local connectivity in the contralesional supplementary motor area. The results suggest that additional motor imagery training treatment is also efficient for severe patients with damaged sensorimotor neural function, but might be more effective for patients with impaired motor planning and reserved motor imagery.
Collapse
Affiliation(s)
- Kexu Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hewei Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200240, China
| | - Xu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Xiong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changhui Sun
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200240, China
| | - Bing Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200240, China
| | - Yiming Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200240, China
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China
| | - Limin Sun
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200240, China
| | - Xiaoli Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Zhou HY, Huai YP, Jin X, Yan P, Tang XJ, Wang JY, Shi N, Niu M, Meng ZX, Wang X. An enriched environment reduces hippocampal inflammatory response and improves cognitive function in a mouse model of stroke. Neural Regen Res 2022; 17:2497-2503. [PMID: 35535902 PMCID: PMC9120675 DOI: 10.4103/1673-5374.338999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
An enriched environment is used as a behavioral intervention therapy that applies sensory, motor, and social stimulation, and has been used in basic and clinical research of various neurological diseases. In this study, we established mouse models of photothrombotic stroke and, 24 hours later, raised them in a standard, enriched, or isolated environment for 4 weeks. Compared with the mice raised in a standard environment, the cognitive function of mice raised in an enriched environment was better and the pathological damage in the hippocampal CA1 region was remarkably alleviated. Furthermore, protein expression levels of tumor necrosis factor receptor-associated factor 6, nuclear factor κB p65, interleukin-6, and tumor necrosis factor α, and the mRNA expression level of tumor necrosis factor receptor-associated factor 6 were greatly lower, while the expression level of miR-146a-5p was higher. Compared with the mice raised in a standard environment, changes in these indices in mice raised in an isolated environment were opposite to mice raised in an enriched environment. These findings suggest that different living environments affect the hippocampal inflammatory response and cognitive function in a mouse model of stroke. An enriched environment can improve cognitive function following stroke through up-regulation of miR-146a-5p expression and a reduction in the inflammatory response.
Collapse
Affiliation(s)
- Hong-Yu Zhou
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University (Clinical Medical College, Yangzhou University), Yangzhou, Jiangsu Province, China
| | - Ya-Ping Huai
- Department of Rehabilitation Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong Province, China
| | - Xing Jin
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University (Clinical Medical College, Yangzhou University), Yangzhou, Jiangsu Province, China
| | - Ping Yan
- School of Nursing, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xiao-Jia Tang
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University (Clinical Medical College, Yangzhou University), Yangzhou, Jiangsu Province, China
| | - Jun-Ya Wang
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University (Clinical Medical College, Yangzhou University), Yangzhou, Jiangsu Province, China
| | - Nan Shi
- School of Nursing, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Meng Niu
- Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhao-Xiang Meng
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University (Clinical Medical College, Yangzhou University), Yangzhou, Jiangsu Province, China
| | - Xin Wang
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University (Clinical Medical College, Yangzhou University), Yangzhou, Jiangsu Province, China
| |
Collapse
|
10
|
Le Franc S, Herrera Altamira G, Guillen M, Butet S, Fleck S, Lécuyer A, Bougrain L, Bonan I. Toward an Adapted Neurofeedback for Post-stroke Motor Rehabilitation: State of the Art and Perspectives. Front Hum Neurosci 2022; 16:917909. [PMID: 35911589 PMCID: PMC9332194 DOI: 10.3389/fnhum.2022.917909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
Stroke is a severe health issue, and motor recovery after stroke remains an important challenge in the rehabilitation field. Neurofeedback (NFB), as part of a brain–computer interface, is a technique for modulating brain activity using on-line feedback that has proved to be useful in motor rehabilitation for the chronic stroke population in addition to traditional therapies. Nevertheless, its use and applications in the field still leave unresolved questions. The brain pathophysiological mechanisms after stroke remain partly unknown, and the possibilities for intervention on these mechanisms to promote cerebral plasticity are limited in clinical practice. In NFB motor rehabilitation, the aim is to adapt the therapy to the patient’s clinical context using brain imaging, considering the time after stroke, the localization of brain lesions, and their clinical impact, while taking into account currently used biomarkers and technical limitations. These modern techniques also allow a better understanding of the physiopathology and neuroplasticity of the brain after stroke. We conducted a narrative literature review of studies using NFB for post-stroke motor rehabilitation. The main goal was to decompose all the elements that can be modified in NFB therapies, which can lead to their adaptation according to the patient’s context and according to the current technological limits. Adaptation and individualization of care could derive from this analysis to better meet the patients’ needs. We focused on and highlighted the various clinical and technological components considering the most recent experiments. The second goal was to propose general recommendations and enhance the limits and perspectives to improve our general knowledge in the field and allow clinical applications. We highlighted the multidisciplinary approach of this work by combining engineering abilities and medical experience. Engineering development is essential for the available technological tools and aims to increase neuroscience knowledge in the NFB topic. This technological development was born out of the real clinical need to provide complementary therapeutic solutions to a public health problem, considering the actual clinical context of the post-stroke patient and the practical limits resulting from it.
Collapse
Affiliation(s)
- Salomé Le Franc
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Hybrid Team, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
- *Correspondence: Salomé Le Franc,
| | | | - Maud Guillen
- Hybrid Team, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
- Neurology Unit, University Hospital of Rennes, Rennes, France
| | - Simon Butet
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Empenn Unit U1228, Inserm, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| | - Stéphanie Fleck
- Université de Lorraine, CNRS, LORIA, Nancy, France
- EA7312 Laboratoire de Psychologie Ergonomique et Sociale pour l’Expérience Utilisateurs (PERSEUS), Metz, France
| | - Anatole Lécuyer
- Hybrid Team, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| | | | - Isabelle Bonan
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Empenn Unit U1228, Inserm, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| |
Collapse
|
11
|
Nguyen VT, Lu YH, Wu CW, Sung PS, Lin CCK, Lin PY, Wang SMS, Chen FY, Chen JJJ. Evaluating Interhemispheric Synchronization and Cortical Activity in Acute Stroke Patients Using Optical Hemodynamic Oscillations. J Neural Eng 2022; 19. [PMID: 35617937 DOI: 10.1088/1741-2552/ac73b4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE An understanding of functional interhemispheric asymmetry in ischemic stroke patients is a crucial factor in the designs of efficient programs for post-stroke rehabilitation. This study evaluates interhemispheric synchronization and cortical activities in acute stroke patients with various degrees of severity and at different post-stroke stages. APPROACH Twenty-three patients were recruited to participate in the experiments, including resting-state and speed finger-tapping tasks at week-1 and week-3 post-stroke. Multichannel near-infrared spectroscopy (NIRS) was used to measure the changes in hemodynamics in the bilateral prefrontal cortex (PFC), the supplementary motor area (SMA), and the sensorimotor cortex (SMC). The interhemispheric correlation coefficient (IHCC) measuring the synchronized activities in time and the wavelet phase coherence (WPCO) measuring the phasic activity in time-frequency were used to reflect the symmetry between the two hemispheres within a region. The changes in oxyhemoglobin during the finger-tapping tasks were used to present cortical activation. MAIN RESULTS IHCC and WPCO values in the severe-stroke were significantly lower than those in the minor-stroke at low frequency intervals during week-3 post-stroke. Cortical activation in all regions in the affected hemisphere was significantly lower than that in the unaffected hemisphere in the moderate-severe stroke measured in week-1, however, the SMC activation on the affected hemisphere was significantly enhanced in week-3 post-stroke. SIGNIFICANCE In this study, non-invasive NIRS was used to observe dynamic synchronization in the resting-state based on the IHCC and WPCO results as well as hemodynamic changes in a motor task in acute stroke patients. The findings suggest that NIRS could be used as a tool for early stroke assessment and evaluation of the efficacy of post-stroke rehabilitation.
Collapse
Affiliation(s)
- Van Truong Nguyen
- Department of Biomedical Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan, Tainan, 70101, TAIWAN
| | - Yi-Hsuan Lu
- Department of Biomedical Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan, Tainan, 70101, TAIWAN
| | - Chun-Wei Wu
- School of Biomedical Engineering, Taipei Medical University College of Biomedical Engineering, 250 Wu-Hsing Street, Taipei city, Taiwan 11031, Taipei, 11031, TAIWAN
| | - Pi-Shan Sung
- Department of Neurology, National Cheng Kung University Hospital, No.138,Sheng Li Road,Tainan, Taiwan 704, R.O.C, Tainan, 70403, TAIWAN
| | - Chou-Ching K Lin
- Department of Neurology, National Cheng Kung University, Medical Centre, National Cheng Kung University, Tainan, Taiwan 701, tainan, 70103, TAIWAN
| | - Pei-Yi Lin
- Pediatrics, Boston Children's Hospital, Harvard U, 300 Longwood Ave., Boston, Massachusetts, 02115, UNITED STATES
| | - Shun-Min Samuel Wang
- Department of Biomedical Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan, Tainan, 70101, TAIWAN
| | - Fu-Yu Chen
- Department of Biomedical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City, Taoyuan City, 32023, TAIWAN
| | - Jia-Jin Jason Chen
- Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan 70101, ROC, Tainan, 70101, TAIWAN
| |
Collapse
|
12
|
Jalalvandi M, Riyahi Alam N, Sharini H, Hashemi H, Nadimi M. Brain Cortical Activation during Imagining of the Wrist Movement Using Functional Near-Infrared Spectroscopy (fNIRS). J Biomed Phys Eng 2021; 11:583-594. [PMID: 34722403 PMCID: PMC8546162 DOI: 10.31661/jbpe.v0i0.1051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/29/2018] [Indexed: 12/04/2022]
Abstract
Background: fNIRS is a useful tool designed to record the changes in the density of blood’s oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) molecules during brain activity.
This method has made it possible to evaluate the hemodynamic changes of the brain during neuronal activity in a completely non-aggressive manner. Objective: The present study has been designed to investigate and evaluate the brain cortex activities during imagining of the execution of wrist motor tasks by comparing fMRI and fNIRS imaging methods. Material and Methods: This novel observational Optical Imaging study aims to investigate the brain motor cortex activity during imagining of the right wrist motor tasks
in vertical and horizontal directions. To perform the study, ten healthy young right-handed volunteers were asked to think about right-hand movements in different
directions according to the designed movement patterns. The required data were collected in two wavelengths, including 845 and 763 nanometers using a 48 channeled fNIRS machine. Results: Analysis of the obtained data showed the brain activity patterns during imagining of the execution of a movement are formed in various points of the motor
cortex in terms of location. Moreover, depending on the direction of the movement, activity plans have distinguishable patterns. The results showed contralateral M1 was
mainly activated during imagining of the motor cortex (p<0.05). Conclusion: The results of our study showed that in brain imaging, it is possible to distinguish between patterns of activities during wrist motion in different directions
using the recorded signals obtained through near-infrared Spectroscopy. The findings of this study can be useful in further studies related to movement control and BCI.
Collapse
Affiliation(s)
- Maziar Jalalvandi
- MSc, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nader Riyahi Alam
- PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- PhD, Medical Pharmaceutical Sciences Research Centre (MPRC), The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Sharini
- PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Hasan Hashemi
- MD, Department of Radiology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- MD, Advanced Diagnostic and Interventional Radiology Research Centre (ADIR), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohadeseh Nadimi
- MSc Student, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
13
|
Sun P, Ma F, Xu Y, Zhou C, Stetler RA, Yin KJ. Genetic deletion of endothelial microRNA-15a/16-1 promotes cerebral angiogenesis and neurological recovery in ischemic stroke through Src signaling pathway. J Cereb Blood Flow Metab 2021; 41:2725-2742. [PMID: 33910400 PMCID: PMC8504951 DOI: 10.1177/0271678x211010351] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cerebral angiogenesis is tightly controlled by specific microRNAs (miRs), including the miR-15a/16-1 cluster. Recently, we reported that endothelium-specific conditional knockout of the miR-15a/16-1 cluster (EC-miR-15a/16-1 cKO) promotes post-stroke angiogenesis and improves long-term neurological recovery by increasing protein levels of VEGFA, FGF2, and their respective receptors VEGFR2 and FGFR1. Herein, we further investigated the underlying signaling mechanism of these pro-angiogenic factors after ischemic stroke using a selective Src family inhibitor AZD0530. EC-miR-15a/16-1 cKO and age- and sex-matched wild-type littermate (WT) mice were subjected to 1 h middle cerebral artery occlusion (MCAO) and 28d reperfusion. AZD0530 was administered daily by oral gavage to both genotypes of mice 3-21d after MCAO. Compared to WT, AZD0530 administration exacerbated spatial cognitive impairments and brain atrophy in EC-miR-15a/16-1 cKO mice following MCAO. AZD0530 also attenuated long-term recovery of blood flow and inhibited the formation of new microvessels, including functional vessels with blood circulation, in the penumbra of stroked cKO mice. Moreover, AZD0530 blocked the Src signaling pathway by downregulating phospho-Src and its downstream mediators (p-Stat3, p-Akt, p-FAK, p-p44/42 MAPK, p-p38 MAPK) in post-ischemic brains. Collectively, our data demonstrated that endothelium-targeted deletion of the miR-15a/16-1 cluster promotes post-stroke angiogenesis and improves long-term neurological recovery via activating Src signaling pathway.
Collapse
Affiliation(s)
- Ping Sun
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Feifei Ma
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yang Xu
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chao Zhou
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - R Anne Stetler
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Chen SC, Yang LY, Adeel M, Lai CH, Peng CW. Transcranial electrostimulation with special waveforms enhances upper-limb motor function in patients with chronic stroke: a pilot randomized controlled trial. J Neuroeng Rehabil 2021; 18:106. [PMID: 34193179 PMCID: PMC8244182 DOI: 10.1186/s12984-021-00901-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/23/2021] [Indexed: 12/04/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) and intermittent theta burst stimulation (iTBS) were both demonstrated to have therapeutic potentials to rapidly induce neuroplastic effects in various rehabilitation training regimens. Recently, we developed a novel transcranial electrostimulation device that can flexibly output an electrical current with combined tDCS and iTBS waveforms. However, limited studies have determined the therapeutic effects of this special waveform combination on clinical rehabilitation. Herein, we investigated brain stimulation effects of tDCS-iTBS on upper-limb motor function in chronic stroke patients. Methods Twenty-four subjects with a chronic stroke were randomly assigned to a real non-invasive brain stimulation (NIBS; who received the real tDCS + iTBS output) group or a sham NIBS (who received sham tDCS + iTBS output) group. All subjects underwent 18 treatment sessions of 1 h of a conventional rehabilitation program (3 days a week for 6 weeks), where a 20-min NIBS intervention was simultaneously applied during conventional rehabilitation. Outcome measures were assessed before and immediately after the intervention period: Fugl-Meyer Assessment-Upper Extremity (FMA-UE), Jebsen-Taylor Hand Function Test (JTT), and Finger-to-Nose Test (FNT). Results Both groups showed improvements in FMA-UE, JTT, and FNT scores after the 6-week rehabilitation program. Notably, the real NIBS group had greater improvements in the JTT (p = 0. 016) and FNT (p = 0. 037) scores than the sham NIBS group, as determined by the Mann–Whitney rank-sum test. Conclusions Patients who underwent the combined ipsilesional tDCS-iTBS stimulation with conventional rehabilitation exhibited greater impacts than did patients who underwent sham stimulation-conventional rehabilitation in statistically significant clinical responses of the total JTT time and FNT after the stroke. Preliminary results of upper-limb functional recovery suggest that tDCS-iTBS combined with a conventional rehabilitation intervention may be a promising strategy to enhance therapeutic benefits in future clinical settings. Trial registration: ClinicalTrials.gov Identifier: NCT04369235. Registered on 30 April 2020.
Collapse
Affiliation(s)
- Shih-Ching Chen
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ling-Yu Yang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Muhammad Adeel
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chien-Hung Lai
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan. .,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan. .,School of Gerontology Health Management, College of Nursing, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
| |
Collapse
|
15
|
Tekeoglu Tosun A, Ipek Y, Razak Ozdincler A, Saip S. The efficiency of mirror therapy on drop foot in Multiple Sclerosis Patients. Acta Neurol Scand 2021; 143:545-553. [PMID: 33270229 DOI: 10.1111/ane.13385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Although the effectiveness of mirror therapy (MT) has been proved in stroke persons, there is no scientific evidence about the results in people with multiple sclerosis. The aim was to investigate whether adding MT to exercise training and neuromuscular electrical stimulation (NMES) has any effect on clinical measurements, mobility, and functionality in people with multiple sclerosis (MS). METHODS Ambulatory people with MS, with unilateral drop foot, were included. MT group (n = 13) applied bilateral ankle exercise program with mirror following NMES for 3 days a week at hospital and exercise program for 2 days a week at home. Control group (n = 13) performed same treatment without mirror box (6 weeks). The later 6 weeks both groups performed only exercise program. Clinical measurements included proprioception, muscle tone of plantar flexor muscles (MAS), muscle strength of dorsiflexor, ankle angular velocity, and range of motion (ROM) of ankle. Functionality (Functional Independence Measurement-FIM), mobility (Rivermead Mobility Index-RMI), ambulation (Functional Ambulation Scale-FAS), duration of stair climb test, and 25-foot walking velocity were assessed at the beginning, in 6th and 12th weeks. RESULTS More positive improvements were obtained in MT group than control group in terms of range of motion (0.012), muscle strength (0.008), proprioception (0.001), 25 feet walking duration (0.015), step test duration (0.001), FAS (0.005), RMI (0.001), and FIM (0.001) after 6 weeks treatment. It was seen that this improvement maintained to 12th week on all clinical and functional measurements (p < .05). CONCLUSION The trial revealed that adding MT to exercise training and NMES has more beneficial effects on clinical measurements, mobility, and functionality in people with multiple sclerosis with unilateral drop foot.
Collapse
Affiliation(s)
- Anıl Tekeoglu Tosun
- Division of Physiotherapy and Rehabilitation Faculty of Health Sciences Fenerbahce University Istanbul Turkey
| | - Yeldan Ipek
- Division of Physiotherapy and Rehabilitation Faculty of Health Sciences Istanbul University‐Cerrahpasa Istanbul Turkey
| | - Arzu Razak Ozdincler
- Division of Physiotherapy and Rehabilitation Faculty of Health Sciences Biruni University Istanbul Turkey
| | - Sabahattin Saip
- Department of Neurology Medical School of Cerrahpasa Istanbul University‐Cerrahpasa Istanbul Turkey
| |
Collapse
|
16
|
Formica C, De Salvo S, Corallo F, Alagna A, Logiudice AL, Todaro A, Bramanti P, Marino S. Role of neurorehabilitative treatment using transcranial magnetic stimulation in disorders of consciousness. J Int Med Res 2021; 49:300060520976472. [PMID: 33535855 PMCID: PMC7869152 DOI: 10.1177/0300060520976472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
Disorders of consciousness (DOC) result from brain injuries that cause functional changes in vigilance, awareness and behaviour. It is important to correctly diagnose DOC so that the most appropriate rehabilitation treatments can be initiated. Several studies in DOC patients have demonstrated that repetitive transcranial magnetic stimulation (rTMS) has an important role to play in the recovery of consciousness as highlighted by monitoring clinical scale scores. Although studies indicate that rTMS can be used to aid recovery, it is not combined with other rehabilitative cognitive treatments. As of December 2018, there have been no studies published that combined DOC cognitive rehabilitation with TMS. This current review describes the use of rTMS as a form of non-invasive brain stimulation, as distinct from its use as a tool to investigate residual cortical activity, in terms of its possible therapeutic effects including cognitive rehabilitation. Literature searches were undertaken to identify all relevant studies. The available evidence suggests that rTMS may have an important role to play in in monitoring brain function during recovery and making other intensive rehabilitation treatments more effective, such as sensorial stimulations and cognitive training in patients after a severe acquired brain injury. Further research is required to establish the usefulness of rTMS treatment in DOC rehabilitation.
Collapse
Affiliation(s)
- Caterina Formica
- IRCCS Centro Neurolesi “Bonino Pulejo”, Messina, Italy
- Biomedical Department of Internal Medicine and Medical
Specialties, University of Palermo, Palermo, Italy
| | | | | | | | | | | | | | - Silvia Marino
- IRCCS Centro Neurolesi “Bonino Pulejo”, Messina, Italy
| |
Collapse
|
17
|
Nagano H, Said CM, James L, Begg RK. Feasibility of Using Foot-Ground Clearance Biofeedback Training in Treadmill Walking for Post-Stroke Gait Rehabilitation. Brain Sci 2020; 10:brainsci10120978. [PMID: 33322082 PMCID: PMC7764443 DOI: 10.3390/brainsci10120978] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/25/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
Hemiplegic stroke often impairs gait and increases falls risk during rehabilitation. Tripping is the leading cause of falls, but the risk can be reduced by increasing vertical swing foot clearance, particularly at the mid-swing phase event, minimum foot clearance (MFC). Based on previous reports, real-time biofeedback training may increase MFC. Six post-stroke individuals undertook eight biofeedback training sessions over a month, in which an infrared marker attached to the front part of the shoe was tracked in real-time, showing vertical swing foot motion on a monitor installed in front of the subject during treadmill walking. A target increased MFC range was determined, and participants were instructed to control their MFC within the safe range. Gait assessment was conducted three times: Baseline, Post-training and one month from the final biofeedback training session. In addition to MFC, step length, step width, double support time and foot contact angle were measured. After biofeedback training, increased MFC with a trend of reduced step-to-step variability was observed. Correlation analysis revealed that MFC height of the unaffected limb had interlinks with step length and ankle angle. In contrast, for the affected limb, step width variability and MFC height were positively correlated. The current pilot-study suggested that biofeedback gait training may reduce tripping falls for post-stroke individuals.
Collapse
Affiliation(s)
- Hanatsu Nagano
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia; (L.J.); (R.K.B.)
- Correspondence:
| | - Catherine M. Said
- Physiotherapy, Melbourne School of Health Sciences, The University of Melbourne, Melbourne, VIC 3053, Australia;
- Physiotherapy Department, Western Health, St. Albans, VIC 3021, Australia
- Australian Institute for Musculoskeletal Science, St. Albans, VIC 3021, Australia
- Physiotherapy Department, Austin Health, Heidelberg, VIC 3084, Australia
| | - Lisa James
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia; (L.J.); (R.K.B.)
| | - Rezaul K. Begg
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia; (L.J.); (R.K.B.)
| |
Collapse
|
18
|
Xue J, Ren F, Sun X, Yin M, Wu J, Ma C, Gao Z. A Multifrequency Brain Network-Based Deep Learning Framework for Motor Imagery Decoding. Neural Plast 2020; 2020:8863223. [PMID: 33505456 PMCID: PMC7787825 DOI: 10.1155/2020/8863223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Motor imagery (MI) is an important part of brain-computer interface (BCI) research, which could decode the subject's intention and help remodel the neural system of stroke patients. Therefore, accurate decoding of electroencephalography- (EEG-) based motion imagination has received a lot of attention, especially in the research of rehabilitation training. We propose a novel multifrequency brain network-based deep learning framework for motor imagery decoding. Firstly, a multifrequency brain network is constructed from the multichannel MI-related EEG signals, and each layer corresponds to a specific brain frequency band. The structure of the multifrequency brain network matches the activity profile of the brain properly, which combines the information of channel and multifrequency. The filter bank common spatial pattern (FBCSP) algorithm filters the MI-based EEG signals in the spatial domain to extract features. Further, a multilayer convolutional network model is designed to distinguish different MI tasks accurately, which allows extracting and exploiting the topology in the multifrequency brain network. We use the public BCI competition IV dataset 2a and the public BCI competition III dataset IIIa to evaluate our framework and get state-of-the-art results in the first dataset, i.e., the average accuracy is 83.83% and the value of kappa is 0.784 for the BCI competition IV dataset 2a, and the accuracy is 89.45% and the value of kappa is 0.859 for the BCI competition III dataset IIIa. All these results demonstrate that our framework can classify different MI tasks from multichannel EEG signals effectively and show great potential in the study of remodelling the neural system of stroke patients.
Collapse
Affiliation(s)
- Juntao Xue
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| | - Feiyue Ren
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| | - Xinlin Sun
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| | - Miaomiao Yin
- Department of Neurorehabilitation and Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin 300350, China
| | - Jialing Wu
- Department of Neurorehabilitation and Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin 300350, China
| | - Chao Ma
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| | - Zhongke Gao
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
19
|
Cao J, Tu Y, Wilson G, Orr SP, Kong J. Characterizing the analgesic effects of real and imagined acupuncture using functional and structure MRI. Neuroimage 2020; 221:117176. [PMID: 32682992 DOI: 10.1016/j.neuroimage.2020.117176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/14/2020] [Indexed: 01/25/2023] Open
Abstract
Acupuncture and imagery interventions for pain management have a long history. The present study comparatively investigated whether acupuncture and video-guided acupuncture imagery treatment (VGAIT, watching a video of acupuncture on the participant's own body while imagining it being applied) could modulate brain regional connectivity to produce analgesic effects. The study also examined whether pre-intervention brain functional and structural features could be used to predict the magnitude of analgesic effects. Twenty-four healthy participants were recruited and received four different interventions (real acupuncture, sham acupuncture, VGAIT, and VGAIT control) in random order using a cross-over design. Pain thresholds and magnetic resonance imaging (MRI) data were collected before and after each intervention. We first compared the modulatory effects of real acupuncture and VGAIT on intra- and inter-regional intrinsic brain connectivity and found that real acupuncture decreased regional homogeneity (ReHo) and functional connectivity (FC) in sensorimotor areas, whereas VGAIT increased ReHo in basal ganglia (BG) (i.e., putamen) and FC between the BG subcortical network and default mode network. The altered ReHo and FC were associated with changes in pain threshold after real acupuncture and VGAIT, respectively. A multimodality fusion approach with pre-intervention ReHo and gray matter volume (GMV) as features was used to explore the brain profiles underlying individual variability of pain threshold changes by real acupuncture and VGAIT. Variability in acupuncture responses was associated with ReHo and GMV in BG, whereas VGAIT responses were associated with ReHo and GMV in the anterior insula. These results suggest that, through different pathways, both real acupuncture and VGAIT can modulate brain systems to produce analgesic effects.
Collapse
Affiliation(s)
- Jin Cao
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yiheng Tu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Georgia Wilson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Scott P Orr
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.
| |
Collapse
|
20
|
Burdea GC, Grampurohit N, Kim N, Polistico K, Kadaru A, Pollack S, Oh-Park M, Barrett AM, Kaplan E, Masmela J, Nori P. Feasibility of integrative games and novel therapeutic game controller for telerehabilitation of individuals chronic post-stroke living in the community. Top Stroke Rehabil 2020; 27:321-336. [PMID: 31875775 PMCID: PMC8130884 DOI: 10.1080/10749357.2019.1701178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/30/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Intensive, adaptable and engaging telerehabilitation is needed to enhance recovery and maximize outcomes. Such services may be provided under early supported discharge, or later for chronic populations. A novel virtual reality game-based telerehabilitation system was designed for individuals post-stroke to enhance their bimanual upper extremity motor function, cognition, and wellbeing. OBJECTIVES To evaluate the feasibility of novel therapeutic game controller and telerehabilitation system for home use. METHODS Individuals chronic post-stroke and their caregivers were recruited (n = 8 + 8) for this feasibility study. One was a screen failure and seven completed 4 weeks (20 sessions) of home-based therapy with or without remote monitoring. Standardized clinical outcome measures were taken pre- and post-therapy. Game performance outcomes were sampled at every session, while participant and caregiver subjective evaluations were done weekly. RESULTS There was a 96% rate of compliance to protocol, resulting in an average of 13,000 total arm repetitions/week/participant. Group analysis showed significant (p <.05) improvements in grasp strength (effect size [ES] = 0.15), depression (Beck Depression Inventory II, ES = 0.75), and cognition (Neuropsychological Assessment Battery for Executive Function, ES = 0.46). Among the 49 outcome variables, 36 variables (73.5%) improved significantly (p = .001, binomial sign test). Technology acceptance was very good with system rating by participants at 3.7/5 and by caregivers at 3.5/5. CONCLUSIONS These findings indicate the feasibility and efficacy of the system in providing home-based telerehabilitation. The BrightBrainer system needs to be further evaluated in randomized control trials and with individuals early post-stroke.
Collapse
Affiliation(s)
- Grigore C Burdea
- Corporate Headquarters, Bright Cloud International Corp , Highland Park, NJ, USA
- Department of Electrical and Computer Engineering, Rutgers - The State University of NJ , Piscataway, NJ, USA
| | - Namrata Grampurohit
- Corporate Headquarters, Bright Cloud International Corp , Highland Park, NJ, USA
- Department of Occupational Therapy, Jefferson College of Rehabilitation Sciences , Philadelphia, PA, USA
| | - Nam Kim
- Corporate Headquarters, Bright Cloud International Corp , Highland Park, NJ, USA
| | - Kevin Polistico
- Corporate Headquarters, Bright Cloud International Corp , Highland Park, NJ, USA
| | - Ashwin Kadaru
- Corporate Headquarters, Bright Cloud International Corp , Highland Park, NJ, USA
| | - Simcha Pollack
- The Tobin College of Business, St John's University , Queens, NY, USA
| | - Mooyeon Oh-Park
- Kessler Foundation , West Orange, NJ, USA
- Burke Rehabilitation Hospital , White Plains, NY, USA
| | | | | | | | - Phalgun Nori
- Physical Medicine and Rehabilitation, Kessler Institute for Rehabilitation , West Orange, NJ, USA
| |
Collapse
|
21
|
Schiavo S, Richardson D, Santa Mina D, Buryk-Iggers S, Uehling J, Carroll J, Clarke H, Djaiani C, Gershinsky M, Katznelson R. Hyperbaric oxygen and focused rehabilitation program: a feasibility study in improving upper limb motor function after stroke. Appl Physiol Nutr Metab 2020; 45:1345-1352. [PMID: 32574506 DOI: 10.1139/apnm-2020-0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuroplasticity and recovery after stroke can be enhanced by a rehabilitation program pertinent to upper limb motor function exercise and mental imagery (EMI) as well as hyperbaric oxygen therapy (HBOT). We assessed feasibility and safety of the combined approach utilizing both HBOT and EMI, and to derive preliminary estimates of its efficacy. In this randomized controlled trial, 27 patients with upper extremity hemiparesis at 3-48 months after stroke were randomized to receive either a complementary rehabilitation program of HBOT-EMI (intervention group), or EMI alone (control group). Feasibility and safety were assessed as total session attendance, duration of sessions, attrition rates, missing data, and intervention-related adverse events. Secondary clinical outcomes were assessed with both objective tools and self-reported measures at baseline, 8 weeks (end of treatment), and 12-weeks follow-up. Session attendance, duration, and attrition rate did not differ between the groups; there were no serious adverse events. Compared with baseline, there were significant sustained improvements of objective and subjective outcomes' measures in the intervention group, and a single improvement in an objective measure in the control group. Between-group outcome comparisons were not statistically significant. This study demonstrated that the combination HBOT-EMI was a safe and feasible approach in patients recovering from chronic stroke. There were also trends for improved motor function of the affected upper limb after the treatments. ClinicalTrials.gov registration no.: NCT02666469. Novelty HBOT combined with an upper limb exercise and mental imagery rehabilitation program is feasible and safe in chronic stroke patients. This combined approach showed trends for improved functional recovery.
Collapse
Affiliation(s)
- S Schiavo
- Hyperbaric Medicine Unit, Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - D Richardson
- Stroke Rehabilitation Clinic, Toronto Rehabilitation Institute, Toronto, ON M5G 2C4, Canada
| | - D Santa Mina
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5G 2C1, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto.,Department of Supportive Care, Princess Margaret Cancer Centre Toronto, ON M5G 2C1, Canada
| | - S Buryk-Iggers
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - J Uehling
- Hyperbaric Medicine Unit, Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - J Carroll
- Hyperbaric Medicine Unit, Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - H Clarke
- Hyperbaric Medicine Unit, Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - C Djaiani
- Hyperbaric Medicine Unit, Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - M Gershinsky
- Hyperbaric Medicine Unit, Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - R Katznelson
- Hyperbaric Medicine Unit, Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
22
|
Golab-Janowska M, Paczkowska E, Machalinski B, Kotlega D, Meller A, Safranow K, Wankowicz P, Nowacki P. Elevated Inflammatory Parameter Levels Negatively Impact Populations of Circulating Stem Cells (CD133+), Early Endothelial Progenitor Cells (CD133+/VEGFR2+), and Fibroblast Growth Factor in Stroke Patients. Curr Neurovasc Res 2020; 16:19-26. [PMID: 30706812 DOI: 10.2174/1567202616666190129164906] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endothelial Progenitor Cells (EPCs) are important players in neovascularization, mobilized through signalling by Angiogenic Growth Factors (AGFs) such as Vascular Endothelial Growth Factor (VEGF) and fibroblast growth factor (FGF). In vitro, inflammatory parameters impair the function and influence of EPCs on AGFs. However, this connection is not clear in vivo. To understand the mechanisms of augmented arteriogenesis and angiogenesis in acute ischemic stroke (AIS) patients, we investigated whether circulating stem cells (CD133+), early endothelial progenitor cells (CD133+/VEGFR2+), and endothelial cells (ECs; CD34¯/CD133¯/VEGFR2+) were increasingly mobilized during AIS, and whether there were correlations between EPC levels, growth factor levels and inflammatory parameters. METHODS Data on demographics, classical vascular risk factors, neurological deficit information (assessed using the National Institutes of Health Stroke Scale), and treatment were collected from 43 consecutive AIS patients (group I). Risk factor control patients (group II) included 22 nonstroke subjects matched by age, gender, and traditional vascular risk factors. EPCs were measured by flow cytometry and the populations of circulating stem cells (CD133+), early EPCs (CD133+/VEGFR2+), and ECs (CD34¯/CD133¯/VEGFR2+) were analysed. Correlations between EPC levels and VEGF and FGF vascular growth factor levels as well as the influence of inflammatory parameters on EPCs and AGFs were assessed. RESULTS Patient ages ranged from 54 to 92 years (mean age 75.2 ± 11.3 years). The number of circulating CD34¯/CD133¯/VEGF-R2+ cells was significantly higher in AIS patients than in control patients (p < 0.05). VEGF plasma levels were also significantly higher in AIS patients compared to control patients on day 7 (p < 0.05). FGF plasma levels in patients with AIS were significantly higher than those in the control group on day 3 (p < 0.05). There were no correlations between increased VEGF and FGF levels and the number of CD133+, CD133+/VEGFR2+, or CD34¯/CD133¯/VEGFR2+ cells. Leukocyte levels, FGF plasma levels, and the number of early EPCs were negatively correlated on day 3. High sensitivity C-reactive protein levels and the number of CD133+ and CD133+/VEGFR2+ cells were negatively correlated on day 7. In addition, there was a negative correlation between fibrinogen levels and FGF plasma levels as well as the number of early EPCs (CD133+/VEGFR2+). CONCLUSION AIS patients exhibited increased numbers of early EPCs (CD133+/VEGFR2+) and AGF (VEGF and FGF) levels. A negative correlation between inflammatory parameters and AGFs and EPCs indicated the unfavourable influence of inflammatory factors on EPC differentiation and survival. Moreover, these correlations represented an important mechanism linking inflammation to vascular disease.
Collapse
Affiliation(s)
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Boguslaw Machalinski
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Dariusz Kotlega
- Department of Neurology, Pomeranian Medical University, Szczecin, Poland
| | - Agnieszka Meller
- Department of Neurology, Pomeranian Medical University, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Pawel Wankowicz
- Department of Neurology, Pomeranian Medical University, Szczecin, Poland
| | - Przemyslaw Nowacki
- Department of Neurology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
23
|
Lilley E, Andrews MR, Bradbury EJ, Elliott H, Hawkins P, Ichiyama RM, Keeley J, Michael-Titus AT, Moon LDF, Pluchino S, Riddell J, Ryder K, Yip PK. Refining rodent models of spinal cord injury. Exp Neurol 2020; 328:113273. [PMID: 32142803 DOI: 10.1016/j.expneurol.2020.113273] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/16/2023]
Abstract
This report was produced by an Expert Working Group (EWG) consisting of UK-based researchers, veterinarians and regulators of animal experiments with specialist knowledge of the use of animal models of spinal cord injury (SCI). It aims to facilitate the implementation of the Three Rs (Replacement, Reduction and Refinement), with an emphasis on refinement. Specific animal welfare issues were identified and discussed, and practical measures proposed, with the aim of reducing animal use and suffering, reducing experimental variability, and increasing translatability within this critically important research field.
Collapse
Affiliation(s)
- Elliot Lilley
- Research Animals Department, Royal Society for the Prevention of Cruelty to Animals, Wilberforce Way, Southwater, Horsham, West Sussex RH13 9RS, UK.
| | - Melissa R Andrews
- Biological Sciences, University of Southampton, 3059, Life Sciences Bldg 85, Highfield Campus, Southampton SO17 1BJ, UK.
| | - Elizabeth J Bradbury
- King's College London, Regeneration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Guy's Campus, London SE1 1UL, UK.
| | - Heather Elliott
- Animals in Scientific Research Unit, 14th Floor, Lunar House, 40 Wellesley Road, Croydon CR9 2BY, UK.
| | - Penny Hawkins
- Research Animals Department, Royal Society for the Prevention of Cruelty to Animals, Wilberforce Way, Southwater, Horsham, West Sussex RH13 9RS, UK.
| | - Ronaldo M Ichiyama
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK.
| | - Jo Keeley
- University Biomedical Services, University of Cambridge, Greenwich House, Madingley Rise, Madingley Road, Cambridge CB3 0TX, UK.
| | - Adina T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark St, London E1 2AT, UK.
| | - Lawrence D F Moon
- King's College London, Regeneration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Guy's Campus, London SE1 1UL, UK.
| | - Stefano Pluchino
- University Biomedical Services, University of Cambridge, Greenwich House, Madingley Rise, Madingley Road, Cambridge CB3 0TX, UK.
| | - John Riddell
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Kathy Ryder
- Animals in Scientific Research Unit, 14th Floor, Lunar House, 40 Wellesley Road, Croydon CR9 2BY, UK.
| | - Ping K Yip
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark St, London E1 2AT, UK.
| |
Collapse
|
24
|
Kober SE, Grössinger D, Wood G. Effects of Motor Imagery and Visual Neurofeedback on Activation in the Swallowing Network: A Real-Time fMRI Study. Dysphagia 2019; 34:879-895. [PMID: 30771088 PMCID: PMC6825652 DOI: 10.1007/s00455-019-09985-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/25/2019] [Indexed: 12/01/2022]
Abstract
Motor imagery of movements is used as mental strategy in neurofeedback applications to gain voluntary control over activity in motor areas of the brain. In the present functional magnetic resonance imaging (fMRI) study, we first addressed the question whether motor imagery and execution of swallowing activate comparable brain areas, which has been already proven for hand and foot movements. Prior near-infrared spectroscopy (NIRS) studies provide evidence that this is the case in the outer layer of the cortex. With the present fMRI study, we want to expand these prior NIRS findings to the whole brain. Second, we used motor imagery of swallowing as mental strategy during visual neurofeedback to investigate whether one can learn to modulate voluntarily activity in brain regions, which are associated with active swallowing, using real-time fMRI. Eleven healthy adults performed one offline session, in which they executed swallowing movements and imagined swallowing on command during fMRI scanning. Based on this functional localizer task, we identified brain areas active during both tasks and defined individually regions for feedback. During the second session, participants performed two real-time fMRI neurofeedback runs (each run comprised 10 motor imagery trials), in which they should increase voluntarily the activity in the left precentral gyrus by means of motor imagery of swallowing while receiving visual feedback (the visual feedback depicted one's own fMRI signal changes in real-time). Motor execution and imagery of swallowing activated a comparable network of brain areas including the bilateral pre- and postcentral gyrus, inferior frontal gyrus, basal ganglia, insula, SMA, and the cerebellum compared to a resting condition. During neurofeedback training, participants were able to increase the activity in the feedback region (left lateral precentral gyrus) but also in other brain regions, which are generally active during swallowing, compared to the motor imagery offline task. Our results indicate that motor imagery of swallowing is an adequate mental strategy to activate the swallowing network of the whole brain, which might be useful for future treatments of swallowing disorders.
Collapse
Affiliation(s)
- Silvia Erika Kober
- Institute of Psychology, University of Graz, Universitaetsplatz 2/III, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Doris Grössinger
- Institute of Psychology, University of Graz, Universitaetsplatz 2/III, 8010 Graz, Austria
| | - Guilherme Wood
- Institute of Psychology, University of Graz, Universitaetsplatz 2/III, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
25
|
Age-related differences in the within-session trainability of hemodynamic parameters: a near-infrared spectroscopy–based neurofeedback study. Neurobiol Aging 2019; 81:127-137. [DOI: 10.1016/j.neurobiolaging.2019.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 05/02/2019] [Accepted: 05/30/2019] [Indexed: 11/21/2022]
|
26
|
Adult Neurogenesis in the Subventricular Zone and Its Regulation After Ischemic Stroke: Implications for Therapeutic Approaches. Transl Stroke Res 2019; 11:60-79. [DOI: 10.1007/s12975-019-00717-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/13/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
|
27
|
Abstract
Since the inception of the British Neuroscience Association, there have been major advances in our knowledge of the mechanistic basis for stroke-induced brain damage. Identification of the ischaemic cascade led to the development of hundreds of new drugs, many showing efficacy in preclinical (animal-based) studies. None of these drugs has yet translated to a successful stroke treatment, current therapy being limited to thrombolysis/thrombectomy. However, this translational failure has led to significant improvements in the quality of animal-based stroke research, with the refinement of rodent models, introduction of new technologies (e.g. transgenics, in vivo brain imaging) and improvements in study design (e.g. STAIR, ARRIVE and IMPROVE guidelines). This has run in parallel with advances in clinical diagnostic imaging for detection of ischaemic versus haemorrhagic stroke, differentiating penumbra from ischaemic core, and improved clinical trial design. These preclinical and clinical advances represent the foundation for successful translation from the bench to the bedside in the near future.
Collapse
Affiliation(s)
- I. Mhairi Macrae
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Stuart M. Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Stuart M. Allan, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, AV Hill Building, Manchester M13 9PT, UK.
| |
Collapse
|
28
|
Berberine attenuates ischemia-reperfusion injury through inhibiting HMGB1 release and NF-κB nuclear translocation. Acta Pharmacol Sin 2018; 39:1706-1715. [PMID: 30266998 DOI: 10.1038/s41401-018-0160-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inflammatory damage plays an important role in cerebral ischemic pathogenesis and represents a new target for treatment of stroke. Berberine is a natural medicine with multiple beneficial biological activities. In this study, we explored the mechanisms underlying the neuroprotective action of berberine in mice subjected transient middle cerebral artery occlusion (tMCAO). Male mice were administered berberine (25, 50 mg/kg/d, intragastric; i.g.), glycyrrhizin (50 mg/kg/d, intraperitoneal), or berberine (50 mg/kg/d, i.g.) plus glycyrrhizin (50 mg/kg/d, intraperitoneal) for 14 consecutive days before tMCAO. The neurological deficit scores were evaluated at 24 h after tMCAO, and then the mice were killed to obtain the brain samples. We showed that pretreatment with berberine dose-dependently decreased the infarct size, neurological deficits, hispathological changes, brain edema, and inflammatory mediators in serum and ischemic cortical tissue. We revealed that pretreatment with berberine significantly enhanced uptake of 18F-fluorodeoxyglucose of ischemic hemisphere comparing with the vehicle group at 24 h after stroke. Furthermore, pretreatment with berberine dose-dependently suppressed the nuclear-to cytosolic translocation of high-mobility group box1 (HMGB1) protein, the cytosolic-to nuclear translocation of nuclear factor kappa B (NF-κB) and decreased the expression of TLR4 in ischemic cortical tissue. Moreover, co-administration of glycyrrhizin and berberine exerted more potent suppression on the HMGB1/TLR4/NF-κB pathway than berberine or glycyrrhizin administered alone. These results demonstrate that berberine protects the brain from ischemia-reperfusion injury and the mechanism may rely on its anti-inflammatory effects mediated by suppressing the activation of HMGB1/TLR4/NF-κB signaling.
Collapse
|
29
|
Sanchez-Rojas L, Gómez-Pinedo U, Benito-Martin MS, León-Espinosa G, Rascón-Ramirez F, Lendinez C, Martínez-Ramos C, Matías-Guiu J, Pradas MM, Barcia JA. Biohybrids of scaffolding hyaluronic acid biomaterials plus adipose stem cells home local neural stem and endothelial cells: Implications for reconstruction of brain lesions after stroke. J Biomed Mater Res B Appl Biomater 2018; 107:1598-1606. [PMID: 30307108 DOI: 10.1002/jbm.b.34252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/23/2018] [Accepted: 09/08/2018] [Indexed: 12/25/2022]
Abstract
Endogenous neurogenesis in stroke is insufficient to replace the lost brain tissue, largely due to the lack of a proper biological structure to let new cells dwell in the damaged area. We hypothesized that scaffolds made of hyaluronic acid (HA) biomaterials (BM) could provide a suitable environment to home not only new neurons, but also vessels, glia and neurofilaments. Further, the addition of exogenous cells, such as adipose stem cells (ASC) could increase this effect. Athymic mice were randomly assigned to a one of four group: stroke alone, stroke and implantation of BM, stroke and implantation of BM with ASC, and sham operated animals. Stroke model consisted of middle cerebral artery thrombosis with FeCl3 . After 30 days, animals underwent magnetic resonance imaging (MRI) and were sacrificed. Proliferation and neurogenesis increased at the subventricular zone ipsilateral to the ventricle and neuroblasts, glial, and endothelial cells forming capillaries were seen inside the BM. Those effects increased when ASC were added, while there was less inflammatory reaction. Three-dimensional scaffolds made of HA are able to home newly formed neurons, glia, and endothelial cells permitting the growth neurofilaments inside them. The addition of ASC increase these effects and decrease the inflammatory reaction to the implant. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1598-1606, 2019.
Collapse
Affiliation(s)
- Leyre Sanchez-Rojas
- Laboratorio de Medicina Regenerativa, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Ulises Gómez-Pinedo
- Laboratorio de Medicina Regenerativa, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - María Soledad Benito-Martin
- Laboratorio de Medicina Regenerativa, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Gonzalo León-Espinosa
- Laboratorio de Medicina Regenerativa, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain.,Instituto Cajal, CSIC; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid; Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain
| | - Fernando Rascón-Ramirez
- Servicio de Neurocirugía, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Lendinez
- Laboratorio de Medicina Regenerativa, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politécnica de Valencia, C. de Vera s/n, Valencia, Spain
| | - Jorge Matías-Guiu
- Servicio de Neurología. Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politécnica de Valencia, C. de Vera s/n, Valencia, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Valencia, Spain
| | - Juan A Barcia
- Servicio de Neurocirugía, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
30
|
Derungs A, Schuster-Amft C, Amft O. Longitudinal Walking Analysis in Hemiparetic Patients Using Wearable Motion Sensors: Is There Convergence Between Body Sides? Front Bioeng Biotechnol 2018; 6:57. [PMID: 29904628 PMCID: PMC5990601 DOI: 10.3389/fbioe.2018.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/23/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Longitudinal movement parameter analysis of hemiparetic patients over several months could reveal potential recovery trends and help clinicians adapting therapy strategies to maximize recovery outcome. Wearable sensors offer potential for day-long movement recordings in realistic rehabilitation settings including activities of daily living, e.g., walking. The measurement of walking-related movement parameters of affected and non-affected body sides are of interest to determine mobility and investigate recovery trends. Methods: By comparing movement of both body sides, recovery trends across the rehabilitation duration were investigated. We derived and validated selected walking segments from free-living, day-long movement by using rules that do not require data-based training or data annotations. Automatic stride segmentation using peak detection was applied to walking segments. Movement parameters during walking were extracted, including stride count, stride duration, cadence, and sway. Finally, linear regression models over each movement parameter were derived to forecast the moment of convergence between body sides. Convergence points were expressed as duration and investigated in a patient observation study. Results: Convergence was analyzed in walking-related movement parameters in an outpatient study including totally 102 full-day recordings of inertial movement data from 11 hemiparetic patients. The recordings were performed over several months in a day-care centre. Validation of the walking extraction method from sensor data yielded sensitivities up to 80 % and specificity above 94 % on average. Comparison of automatically and manually derived movement parameters showed average relative errors below 6 % between affected and non-affected body sides. Movement parameter variability within and across patients was observed and confirmed by case reports, reflecting individual patient behavior. Conclusion: Convergence points were proposed as intuitive metric, which could facilitate training personalization for patients according to their individual needs. Our continuous movement parameter extraction and analysis, was feasible for realistic, day-long recordings without annotations. Visualizations of movement parameter trends and convergence points indicated that individual habits and patient therapies were reflected in walking and mobility. Context information of clinical case reports supported trend and convergence interpretation. Inconsistent convergence point estimation suggested individually varying deficiencies. Long-term recovery monitoring using convergence points could support patient-specific training strategies in future remote rehabilitation.
Collapse
Affiliation(s)
- Adrian Derungs
- Chair of eHealth and mHealth, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Corina Schuster-Amft
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland.,Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, Burgdorf, Switzerland.,Department of Sport, Exericse and Health, University of Basel, Basel, Switzerland
| | - Oliver Amft
- Chair of eHealth and mHealth, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
31
|
Zettin M, Leopizzi M, Galetto V. How does language change after an intensive treatment on imitation? Neuropsychol Rehabil 2018; 29:1332-1358. [DOI: 10.1080/09602011.2017.1406861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Marina Zettin
- Department of Psychology, Centro Puzzle, Torino, Italy
- Brain Imaging Group, University of Turin, Torino, Italy
| | | | - Valentina Galetto
- Department of Psychology, Centro Puzzle, Torino, Italy
- Brain Imaging Group, University of Turin, Torino, Italy
| |
Collapse
|
32
|
Huchon L, Badet L, Roy AC, Finos L, Gazarian A, Revol P, Bernardon L, Rossetti Y, Morelon E, Rode G, Farnè A. Grasping objects by former amputees: The visuo-motor control of allografted hands. Restor Neurol Neurosci 2018; 34:615-33. [PMID: 26890093 DOI: 10.3233/rnn-150502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Hand allograft has recently emerged as a therapeutic option for upper limb amputees. Functional neuroimaging studies have progressively revealed sensorimotor cortices plasticity following both amputation and transplantation. The purpose of our study was to assess and characterize the functional recovery of the visuo-motor control of prehension in bilateral hand transplanted patients. METHODS Using kinematics recordings, we characterized the performance of prehension with or without visual feed-back for object of different position and size, in five bilateral hand allograft recipients and age-matched control subjects. Both hands were assessed, separately. RESULTS Despite an overall slower execution, allografted patients succeeded in grasping for more than 90% of the trials. They exhibited a preserved hand grip scaling according to object size, and preserved prehension performances when tested without visual feedback. These findings highlight the allograft recipients' abilities to produce an effective motor program, and a good proprioceptive-dependent online control. Nevertheless, the maximum grip aperture was reduced and delayed, the coupling between Transport and Grasp components was altered, and the final phase of the movement was lengthened. CONCLUSION Hand allotransplantation can offer recipients a good recovery of the visuo-motor control of prehension, with slight impairments likely attributable to peripheral neuro-orthopedic limitations.
Collapse
Affiliation(s)
- Laure Huchon
- ImpAct Team, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France.,Physical and Rehabilitation Medicine Department, Mouvement Handicap, Henry Gabrielle Hospital, Hospices Civils de Lyon, Lyon, France.,Claude Bernard Lyon 1 University, Lyon, France
| | - Lionel Badet
- Claude Bernard Lyon 1 University, Lyon, France.,Transplantation Surgery Department, Edouart Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | | | - Livio Finos
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - Aram Gazarian
- Orthopaedic Surgery Department, Clinique du Parc Lyon, Lyon, France
| | - Patrice Revol
- ImpAct Team, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France.,Physical and Rehabilitation Medicine Department, Mouvement Handicap, Henry Gabrielle Hospital, Hospices Civils de Lyon, Lyon, France.,Claude Bernard Lyon 1 University, Lyon, France
| | | | - Yves Rossetti
- ImpAct Team, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France.,Physical and Rehabilitation Medicine Department, Mouvement Handicap, Henry Gabrielle Hospital, Hospices Civils de Lyon, Lyon, France.,Claude Bernard Lyon 1 University, Lyon, France
| | - Emmanuel Morelon
- Claude Bernard Lyon 1 University, Lyon, France.,Nephrology and Immunology Department, Edouart Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Gilles Rode
- ImpAct Team, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France.,Physical and Rehabilitation Medicine Department, Mouvement Handicap, Henry Gabrielle Hospital, Hospices Civils de Lyon, Lyon, France.,Claude Bernard Lyon 1 University, Lyon, France
| | - Alessandro Farnè
- ImpAct Team, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France.,Claude Bernard Lyon 1 University, Lyon, France
| |
Collapse
|
33
|
Galetto V, Sacco K. Neuroplastic Changes Induced by Cognitive Rehabilitation in Traumatic Brain Injury: A Review. Neurorehabil Neural Repair 2017; 31:800-813. [DOI: 10.1177/1545968317723748] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background. Cognitive deficits are among the most disabling consequences of traumatic brain injury (TBI), leading to long-term outcomes and interfering with the individual’s recovery. One of the most effective ways to reduce the impact of cognitive disturbance in everyday life is cognitive rehabilitation, which is based on the principles of brain neuroplasticity and restoration. Although there are many studies in the literature focusing on the effectiveness of cognitive interventions in reducing cognitive deficits following TBI, only a few of them focus on neural modifications induced by cognitive treatment. The use of neuroimaging or neurophysiological measures to evaluate brain changes induced by cognitive rehabilitation may have relevant clinical implications, since they could add individualized elements to cognitive assessment. Nevertheless, there are no review studies in the literature investigating neuroplastic changes induced by cognitive training in TBI individuals. Objective. Due to lack of data, the goal of this article is to review what is currently known on the cerebral modifications following rehabilitation programs in chronic TBI. Methods. Studies investigating both the functional and structural neural modifications induced by cognitive training in TBI subjects were identified from the results of database searches. Forty-five published articles were initially selected. Of these, 34 were excluded because they did not meet the inclusion criteria. Results. Eleven studies were found that focused solely on the functional and neurophysiological changes induced by cognitive rehabilitation. Conclusions. Outcomes showed that cerebral activation may be significantly modified by cognitive rehabilitation, in spite of the severity of the injury.
Collapse
Affiliation(s)
- Valentina Galetto
- Imaging and Cerebral Plasticity Research Group, Department of Psychology, University of Turin, Turin, Italy
- Centro Puzzle, Turin, Italy
| | - Katiuscia Sacco
- Imaging and Cerebral Plasticity Research Group, Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin, University of Turin, Turin, Italy
| |
Collapse
|
34
|
Oh DS, Choi JD. The effect of motor imagery training for trunk movements on trunk muscle control and proprioception in stroke patients. J Phys Ther Sci 2017; 29:1224-1228. [PMID: 28744053 PMCID: PMC5509597 DOI: 10.1589/jpts.29.1224] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/27/2017] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The present study was conducted to evaluate the effect of motor imagery
training for trunk movements on trunk muscle control and proprioception in stroke
patients. [Subjects and Methods] A total of 12 study subjects were randomly assigned to
the experimental group (a motor imagery training group) and the control group (a
neurodevelopmental treatment, NDT) group. The two groups were treated five times (30
minutes each time) per week for 4 weeks. The experimental group underwent imagery training
for 10 minutes and trunk control centered NDT for 20 minutes and the control group
underwent only trunk control centered NDT for 30 minutes. The trunk muscle activity and
the position sense of the subjects were evaluated before and after the intervention.
[Results] The two groups showed significant improvements in muscle activity after the
intervention. Only the experimental group showed significant improvements in
proprioception. The experimental group showed significant improvements in the variations
of muscle activity and proprioception compared to the control group. [Conclusion] Motor
imagery training for trunk movements can be effectively used to improve trunk muscle
activity and proprioception in stroke patients.
Collapse
Affiliation(s)
- Dong-Sik Oh
- Department of Physical Therapy, Hanseo University, Republic of Korea
| | - Jong-Duk Choi
- Department of Physical Therapy, College of Health and Medical Science, Daejeon University, Republic of Korea
| |
Collapse
|
35
|
Chen L, Li C, Zhai J, Wang A, Song Q, Liu Y, Ma R, Han L, Ndasauka Y, Li X, Li H, Zhang X. Altered Resting-State Signals in Patients with Acute Stroke In or Under the Thalamus. Neurosci Bull 2016; 32:585-590. [PMID: 27664033 PMCID: PMC5563835 DOI: 10.1007/s12264-016-0064-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 06/25/2016] [Indexed: 11/24/2022] Open
Abstract
Previous studies have suggested that cortical functional reorganization is associated with motor recovery after stroke and that normal afferent sensory information is very important in that process. In this study, we selected patients who had a stroke in or under the thalamus, with potentially impaired afferent sensory information and analyzed the differences between these patients and healthy controls at three levels: brain regions, the functional connectivity between brain areas, and the whole-brain functional network. Compared with healthy controls, regional homogeneities in the left middle temporal gyrus decreased and functional connectivity between the left middle temporal gyrus and the stroke area increased in the patients. However, there was no significant change in the whole-brain functional network. By focusing on stroke located in or under the thalamus, our study contributes to wider inquiries into understanding and treating stroke.
Collapse
Affiliation(s)
- Lijun Chen
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Chuanfu Li
- Department of Medical Iconography, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Jian Zhai
- Department of Medical Iconography, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China.
| | - Anqin Wang
- Department of Medical Iconography, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Qin Song
- Department of Medical Iconography, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Ying Liu
- Department of Medical Iconography, Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Ru Ma
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Long Han
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Yamikani Ndasauka
- School of Humanities and Social Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoming Li
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Hai Li
- Center of Medical Physics and Technology, Hefei Science Center, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiaochu Zhang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China.
- School of Humanities and Social Science, University of Science and Technology of China, Hefei, 230026, China.
- Center of Medical Physics and Technology, Hefei Science Center, Chinese Academy of Sciences, Hefei, 230031, China.
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
36
|
Scale-Dependent Signal Identification in Low-Dimensional Subspace: Motor Imagery Task Classification. Neural Plast 2016; 2016:7431012. [PMID: 27891256 PMCID: PMC5112353 DOI: 10.1155/2016/7431012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/06/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022] Open
Abstract
Motor imagery electroencephalography (EEG) has been successfully used in locomotor rehabilitation programs. While the noise-assisted multivariate empirical mode decomposition (NA-MEMD) algorithm has been utilized to extract task-specific frequency bands from all channels in the same scale as the intrinsic mode functions (IMFs), identifying and extracting the specific IMFs that contain significant information remain difficult. In this paper, a novel method has been developed to identify the information-bearing components in a low-dimensional subspace without prior knowledge. Our method trains a Gaussian mixture model (GMM) of the composite data, which is comprised of the IMFs from both the original signal and noise, by employing kernel spectral regression to reduce the dimension of the composite data. The informative IMFs are then discriminated using a GMM clustering algorithm, the common spatial pattern (CSP) approach is exploited to extract the task-related features from the reconstructed signals, and a support vector machine (SVM) is applied to the extracted features to recognize the classes of EEG signals during different motor imagery tasks. The effectiveness of the proposed method has been verified by both computer simulations and motor imagery EEG datasets.
Collapse
|
37
|
Zhang J, Zou H, Zhang Q, Wang L, Lei J, Wang Y, Ouyang J, Zhang Y, Zhao H. Effects of Xiaoshuan enteric-coated capsule on neurovascular functions assessed by quantitative multiparametric MRI in a rat model of permanent cerebral ischemia. Altern Ther Health Med 2016; 16:198. [PMID: 27391841 PMCID: PMC4938911 DOI: 10.1186/s12906-016-1184-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/14/2016] [Indexed: 02/06/2023]
Abstract
Background Buyang Huanwu Decoction (BYHWD) is a Traditional Chinese Medicine (TCM) formula for treating stroke-induced disability. Xiaoshuan enteric-coated capsule (XSECC), derived from the formula BYHWD, is a drug approved by the China Food and Drug Administration (CFDA) for stroke management. To further investigate the potential protective effects of XSECC on neurovascular functions, we endeavour to monitor the neurovascular functions using multimodal magnetic resonance imaging (MRI) and evaluated histopathological changes of neurovascular unit (NVU) after stroke. Methods Ischemic stroke was induced by permanent middle cerebral artery occlusion (pMCAO). XSECC (420 mg/kg) was orally administered 2 h after stroke and daily thereafter. T2-weighted imaging (T2WI), T2 relaxometry mapping and diffusion tensor imaging (DTI) were used to measure cerebral infarct volume, edema and white matter fiber integrity, respectively. Neurochemical metabolite levels were monitored by 1H-magnetic resonance spectroscopy (1H-MRS). Arterial spin labeling (ASL) – cerebral blood flow (CBF) measurements and structural magnetic resonance angiography (MRA) images provided real-time and dynamic information about vascular hemodynamic dysfunction on the 3rd, 7th and 14th days after pMCAO. At the last imaging time point, immunohistochemistry, immunofluorescence as well as transmission electron microscopy (TEM) were used to test the microscopic and ultrastructural changes of NVU. Results T2WI, T2 relaxometry mapping and Fractional anisotropy (FA) in DTI showed that XSECC significantly reduced cerebral infarct volume, relieved edema and alleviated nerve fiber injuries, respectively. 1H-MRS provided information about improvement of neuronal/glial metabolism after XSECC treatment. Moreover, ASL – CBF measurements combined with MRA showed that XSECC significantly increased CBF and vascular signal strength and alleviated ischemia-induced morphological changes of arteries in ischemic hemisphere within 14 days after stroke. In addition, neuron specific nuclear protein (NeuN), glial fibrillary acidic protein (GFAP), CD34 staining and TEM detection indicated that XSECC not only ameliorated neuronal injury, but also reduced endothelial damage and inhibited astrocyte proliferation. Conclusions Our results suggested that XSECC has multi-target neurovascular protective effects on ischemic stroke, which may be closely correlated with the improvement of cerebral blood supply and neuronal/glial metabolism.
Collapse
|
38
|
Miltner WHR. Plasticity and Reorganization in the Rehabilitation of Stroke. ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY 2016. [DOI: 10.1027/2151-2604/a000243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract. This paper outlines some actual developments in the behavioral treatment and rehabilitation of stroke and other brain injuries in post-acute and chronic conditions of brain lesion. It points to a number of processes that demonstrate the enormous plasticity and reorganization capacity of the human brain following brain lesion. It also highlights a series of behavioral and neuroscientific studies that indicate that successful behavioral rehabilitation is paralleled by plastic changes of brain structures and by cortical reorganization and that the amount of such plastic changes is obviously significantly determining the overall outcome of rehabilitation.
Collapse
Affiliation(s)
- Wolfgang H. R. Miltner
- Department of Biological and Clinical Psychology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
39
|
Kumar VK, Chakrapani M, Kedambadi R. Motor Imagery Training on Muscle Strength and Gait Performance in Ambulant Stroke Subjects-A Randomized Clinical Trial. J Clin Diagn Res 2016; 10:YC01-4. [PMID: 27134985 DOI: 10.7860/jcdr/2016/16254.7358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/31/2015] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The ultimate goal of physiotherapy in stroke rehabilitation is focused towards physical independence and to restore their functional ability during activities of daily living (ADLs). Motor imagery (MI) is an active process during which a specific action is reproduced within working memory without any actual movements. MI training enhances motor learning, neural reorganization and cortical activation in stroke. The efficacy of MI training involving lower extremity mobility tasks need to be assessed. AIM To evaluate the effects of combining motor imagery with physical practice in paretic Lower Extremity Muscles Strength and Gait Performance in Ambulant Stroke subjects. MATERIALS AND METHODS A Randomized Clinical Trial was conducted in Department of Physical Therapy, Tertiary Care Hospitals, Mangalore, India which includes 40 hemi paretic subjects (>3 months post-stroke) who were ambulant with good imagery ability in both KVIQ-20 ≥ 60 and Time dependent MI screening test were recruited and randomly allocated into task-oriented training group (n=20) and task-oriented training group plus MI group (n=20). Subjects in both groups underwent task orientated training for lower extremity 45-60 minutes, 4 days per week for 3 weeks. In addition, the experimental group received 30 minutes of audio-based lower extremity mobility tasks for MI practice. Isometric muscle strength of Hip, Knee and Ankle using a hand-held dynamometer and self-selected 10 m gait speed were assessed before and after 3 weeks of intervention. RESULTS Both the groups had found a significant change for all the outcome measures following 3 weeks of interventions with p <.05. The experimental group had shown a significant improvement in paretic hip muscles (both flexors and extensors), knee extensors and ankle dorsiflexors and gait speed compare to control group with p < .05 between group analyses. CONCLUSION Additional task specific MI training improves paretic muscle strength and gait performance in ambulant stroke patients.
Collapse
Affiliation(s)
- Vijaya K Kumar
- Associate Professor, Department of Physiotherapy, Kasturba Medical College , Mangalore, Manipal University, Karnataka, India
| | - M Chakrapani
- Associate, Dean and Professor, Department of Medicine, Kasturba Medical College, Mangalore , Manipal University, Karnataka, India
| | - Rakshith Kedambadi
- Associate Professor and Incharge, Department of Neurology, Kasturba Medical College , Mangalore, Manipal University, Karnataka, India
| |
Collapse
|
40
|
Zou H, Long J, Zhang Q, Zhao H, Bian B, Wang Y, Zhang J, Zhao H, Wang L. Induced cortical neurogenesis after focal cerebral ischemia--Three active components from Huang-Lian-Jie-Du Decoction. JOURNAL OF ETHNOPHARMACOLOGY 2016; 178:115-124. [PMID: 26657578 DOI: 10.1016/j.jep.2015.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 07/28/2015] [Accepted: 12/02/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Lian-Jie-Du-Decoction (HLJDD) is a Traditional Chinese Medicine (TCM) clinical prescription noted for its neuroprotective effects. The total alkaloids, flavonoids, and iridoids are the main active components of HLJDD. In the present study we explored the possible effects of the total alkaloids, flavonoids, and iridoids from HLJDD on behavioral recovery and cortical neurogenesis after stroke. METHODS The stroke model was induced by permanent middle cerebral artery occlusion (pMACO). The total alkaloids (44 mg/kg), flavonoids (50 mg/kg), and iridoids (80 mg/kg) from HLJDD were orally administered for 2h after stroke and daily thereafter. Neurological function was assessed and then rats were sacrificed 7 days after pMACO. Following repeated intraperitoneal injections of the cell proliferation - specific marker 5-bromodeoxyuridine (BrdU) after stroke induction, precursor cell proliferation and differentiation was monitored by immunofluorescent staining. The levels of relevant proteins were determined by western blotting and the mRNA expressions were assessed by quantitative real time-polymerase chain reaction (qRT-PCR). RESULTS Total alkaloids, flavonoids and iridoids from HLJDD showed improved functional outcome after brain ischemia. The total alkaloids and iridoids increased number of BrdU-positive cells and enhanced neuronal differentiation in the cortex. Alkaloids-enhanced neurogenesis might be associated with increased VEGF, Ang-1, and Ang-2 protein expression. And the neuroproliferative effect of alkaloids was partially correlated with increased phosphorylation of AKT, and GSK-3β. Flavonoids treatment was found to promote differentiation of cortical precursor cells into neuronal but not glial cells, which may be at least attributable to the regulation of AKT, GSK-3β mRNA and Ang-1 protein levels. CONCLUSIONS Total alkaloids, iridoids and flavonoids from HLJDD promoted functional recovery likely via enhancing cortical neurogenesis and thus have potential as a treatment for ischemic brain injury.
Collapse
Affiliation(s)
- Haiyan Zou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing 100069, China
| | - Jianfei Long
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing 100069, China; Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qiuxia Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing 100069, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yali Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing 100069, China
| | - Jian Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing 100069, China.
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing 100069, China.
| |
Collapse
|
41
|
Kober SE, Gressenberger B, Kurzmann J, Neuper C, Wood G. Voluntary Modulation of Hemodynamic Responses in Swallowing Related Motor Areas: A Near-Infrared Spectroscopy-Based Neurofeedback Study. PLoS One 2015; 10:e0143314. [PMID: 26575032 PMCID: PMC4648579 DOI: 10.1371/journal.pone.0143314] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/03/2015] [Indexed: 11/28/2022] Open
Abstract
In the present study, we show for the first time that motor imagery of swallowing, which is defined as the mental imagination of a specific motor act without overt movements by muscular activity, can be successfully used as mental strategy in a neurofeedback training paradigm. Furthermore, we demonstrate its effects on cortical correlates of swallowing function. Therefore, N = 20 healthy young adults were trained to voluntarily increase their hemodynamic response in swallowing related brain areas as assessed with near-infrared spectroscopy (NIRS). During seven training sessions, participants received either feedback of concentration changes in oxygenated hemoglobin (oxy-Hb group, N = 10) or deoxygenated hemoglobin (deoxy-Hb group, N = 10) over the inferior frontal gyrus (IFG) during motor imagery of swallowing. Before and after the training, we assessed cortical activation patterns during motor execution and imagery of swallowing. The deoxy-Hb group was able to voluntarily increase deoxy-Hb over the IFG during imagery of swallowing. Furthermore, swallowing related cortical activation patterns were more pronounced during motor execution and imagery after the training compared to the pre-test, indicating cortical reorganization due to neurofeedback training. The oxy-Hb group could neither control oxy-Hb during neurofeedback training nor showed any cortical changes. Hence, successful modulation of deoxy-Hb over swallowing related brain areas led to cortical reorganization and might be useful for future treatments of swallowing dysfunction.
Collapse
Affiliation(s)
- Silvia Erika Kober
- Department of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- * E-mail:
| | | | | | - Christa Neuper
- Department of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Laboratory of Brain-Computer Interfaces, Institute for Knowledge Discovery, Graz University of Technology, Graz, Austria
| | - Guilherme Wood
- Department of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
42
|
Jestrović I, Coyle JL, Sejdić E. Decoding human swallowing via electroencephalography: a state-of-the-art review. J Neural Eng 2015; 12:051001. [PMID: 26372528 PMCID: PMC4596245 DOI: 10.1088/1741-2560/12/5/051001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Swallowing and swallowing disorders have garnered continuing interest over the past several decades. Electroencephalography (EEG) is an inexpensive and non-invasive procedure with very high temporal resolution which enables analysis of short and fast swallowing events, as well as an analysis of the organizational and behavioral aspects of cortical motor preparation, swallowing execution and swallowing regulation. EEG is a powerful technique which can be used alone or in combination with other techniques for monitoring swallowing, detection of swallowing motor imagery for diagnostic or biofeedback purposes, or to modulate and measure the effects of swallowing rehabilitation. This paper provides a review of the existing literature which has deployed EEG in the investigation of oropharyngeal swallowing, smell, taste and texture related to swallowing, cortical pre-motor activation in swallowing, and swallowing motor imagery detection. Furthermore, this paper provides a brief review of the different modalities of brain imaging techniques used to study swallowing brain activities, as well as the EEG components of interest for studies on swallowing and on swallowing motor imagery. Lastly, this paper provides directions for future swallowing investigations using EEG.
Collapse
Affiliation(s)
- Iva Jestrović
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - James L. Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
43
|
Jendelová P, Kubinová Š, Sandvig I, Erceg S, Sandvig A, Syková E. Current developments in cell- and biomaterial-based approaches for stroke repair. Expert Opin Biol Ther 2015; 16:43-56. [DOI: 10.1517/14712598.2016.1094457] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Dos Santos LRA, Carregosa AA, Masruha MR, Dos Santos PA, Da Silveira Coêlho ML, Ferraz DD, Da Silva Ribeiro NM. The Use of Nintendo Wii in the Rehabilitation of Poststroke Patients: A Systematic Review. J Stroke Cerebrovasc Dis 2015; 24:2298-305. [PMID: 26303792 DOI: 10.1016/j.jstrokecerebrovasdis.2015.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/06/2015] [Accepted: 06/12/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To evaluate the effectiveness of the video game console Nintendo Wii (NW) in motor function, balance, and functional independence in the treatment of poststroke patients and to identify which games are commonly used in therapy. METHODS Randomized controlled trials were researched in MEDLINE, Cochrane Library, PEDro, CAPES Periodic, BIREME, and LILACS databases, covering publications up to March 31, 2014. The assessment of methodological quality was performed using the PEDro Scale as reference. RESULTS The 5 studies included for analysis showed that NW can provide an improvement of motor function of the individual, but the data are unclear when it comes to the balance and functional independence. CONCLUSIONS It was concluded that there is little evidence to ensure the effectiveness and support the inclusion of the treatment with NW in patients with sequelae caused by a stroke; however, some of the studies analyzed suggest that NW can provide improvement in motor function.
Collapse
Affiliation(s)
| | - Adriani Andrade Carregosa
- Institute of Health Sciences, Federal University of Bahia (Universidade Federal da Bahia-UFBA), Bahia, Brazil
| | - Marcelo Rodrigues Masruha
- Department of Neurology/Neurosurgery, Federal University of São Paulo (Universidade Federal de São Paulo-UNIFESP), São Paulo, Brazil
| | - Pietro Araújo Dos Santos
- Institute of Health Sciences, Federal University of Bahia (Universidade Federal da Bahia-UFBA), Bahia, Brazil
| | | | - Daniel Dominguez Ferraz
- Institute of Health Sciences, Federal University of Bahia (Universidade Federal da Bahia-UFBA), Bahia, Brazil
| | | |
Collapse
|
45
|
Kober SE, Bauernfeind G, Woller C, Sampl M, Grieshofer P, Neuper C, Wood G. Hemodynamic Signal Changes Accompanying Execution and Imagery of Swallowing in Patients with Dysphagia: A Multiple Single-Case Near-Infrared Spectroscopy Study. Front Neurol 2015. [PMID: 26217298 PMCID: PMC4491622 DOI: 10.3389/fneur.2015.00151] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In the present multiple case study, we examined hemodynamic changes in the brain in response to motor execution (ME) and motor imagery (MI) of swallowing in dysphagia patients compared to healthy matched controls using near-infrared spectroscopy (NIRS). Two stroke patients with cerebral lesions in the right hemisphere, two stroke patients with lesions in the brainstem, and two neurologically healthy control subjects actively swallowed saliva (ME) and mentally imagined to swallow saliva (MI) in a randomized order while changes in concentration of oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) were assessed. In line with recent findings in healthy young adults, MI and ME of swallowing led to the strongest NIRS signal change in the inferior frontal gyrus in stroke patients as well as in healthy elderly. We found differences in the topographical distribution and time course of the hemodynamic response in dependence on lesion location. Dysphagia patients with lesions in the brainstem showed bilateral hemodynamic signal changes in the inferior frontal gyrus during active swallowing comparable to healthy controls. In contrast, dysphagia patients with cerebral lesions in the right hemisphere showed more unilateral activation patterns during swallowing. Furthermore, patients with cerebral lesions showed a prolonged time course of the hemodynamic response during MI and ME of swallowing compared to healthy controls and patients with brainstem lesions. Brain activation patterns associated with ME and MI of swallowing were largely comparable, especially for changes in deoxy-Hb. Hence, the present results provide new evidence regarding timing and topographical distribution of the hemodynamic response during ME and MI of swallowing in dysphagia patients and may have practical impact on future dysphagia treatment.
Collapse
Affiliation(s)
- Silvia Erika Kober
- Department of Psychology, University of Graz , Graz , Austria ; BioTechMed Graz , Graz , Austria
| | - Günther Bauernfeind
- BioTechMed Graz , Graz , Austria ; Laboratory of Brain-Computer Interfaces, Institute for Knowledge Discovery, Graz University of Technology , Graz , Austria
| | - Carina Woller
- Klinik Judendorf-Straßengel , Gratwein-Straßengel , Austria
| | | | | | - Christa Neuper
- Department of Psychology, University of Graz , Graz , Austria ; BioTechMed Graz , Graz , Austria ; Laboratory of Brain-Computer Interfaces, Institute for Knowledge Discovery, Graz University of Technology , Graz , Austria
| | - Guilherme Wood
- Department of Psychology, University of Graz , Graz , Austria ; BioTechMed Graz , Graz , Austria
| |
Collapse
|
46
|
Kim DH, Seo YK, Thambi T, Moon GJ, Son JP, Li G, Park JH, Lee JH, Kim HH, Lee DS, Bang OY. Enhancing neurogenesis and angiogenesis with target delivery of stromal cell derived factor-1α using a dual ionic pH-sensitive copolymer. Biomaterials 2015; 61:115-25. [PMID: 26001076 DOI: 10.1016/j.biomaterials.2015.05.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/03/2015] [Accepted: 05/14/2015] [Indexed: 12/20/2022]
Abstract
In this study, we hypothesized that the delivery of molecules that regulate the microenvironment after a cerebral infarction can influence regeneration potential after a stroke. Stromal cell-derived factor-1α (SDF-1α) is a chemoattractant molecule that plays a pivotal role in recruiting endothelial progenitor cells (EPCs) to the infarct region after stroke. Increased SDF-1α expression leads to increased EPCs homing at the infarct region and induces neurogenesis, angiogenesis, neuroprotection, and stem cell homing. Thus, we evaluated the effects of targeted delivery of SDF-1α using a pH-sensitive polymer poly (urethane amino sulfamethazine) (PUASM), a synthetic macromolecule with potential for targeted drug delivery in acidic conditions, to enhance therapeutic neurogenesis and angiogenesis in a rat model of permanent middle cerebral artery occlusion. A dual ionic pH-sensitive copolymer PUASM-based random copolymer was designed and synthesized for the controlled release of SDF-1α in stroke. Owing to the unique characteristics of PUASM, it exhibited a dual ionic pH-sensitive property in an aqueous solution. At pH 8.5, the copolymer exhibited a negative charge and was water soluble. Interestingly, when the pH decreased to 7.4, PUASM could form a micelle and encapsulate protein effectively via the ionic interaction between a negatively charged polymer and a positively charged protein. At pH 5.5, the ionization of tertiary amines led to the disassembly of the micellar structure and released the protein rapidly. Then, we investigated the effect of systemic administration of SDF-1α-loaded pH-sensitive polymeric micelles in a stroke induced rat model. An enzyme-linked immunosorbent assay showed increased expression of SDF-1α in the ischemic region, indicating that the pH-sensitive micelles effectively delivered SDF-1α into the ischemic region. In order to observe the biodistribution of SDF-1α in the ischemic region, it was labeled with the near-infrared dye, Cy5.5. Optical imaging showed that the Cy5.5 signal increased in the infarct region 24 h after administration. Immunohistochemistry data showed that targeted delivery of SDF-1α enhanced neurogenesis and angiogenesis, but did not influence cell survival or inflammation. These observations suggest that SDF-1α-loaded pH-sensitive polymeric micelles can be used as pH-triggered targeting agents and can effectively modify the microenvironment to increase innate neurorestorative processes.
Collapse
Affiliation(s)
- Dong Hee Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Young Kyu Seo
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Gyeong Joon Moon
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Jung Pyo Son
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Guangri Li
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Hee Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea; Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Center for Molecular and Cellular Imaging, Samsung Biomechanical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea; Samsung Biomechanical Research Institute, Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Oh Young Bang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea; Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea; Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Verma R, Friedler BD, Harris NM, McCullough LD. Pair housing reverses post-stroke depressive behavior in mice. Behav Brain Res 2014; 269:155-63. [PMID: 24793492 DOI: 10.1016/j.bbr.2014.04.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/21/2014] [Accepted: 04/25/2014] [Indexed: 01/07/2023]
Abstract
Social isolation (SI) has been linked epidemiologically to high rates of morbidity and mortality following stroke. In contrast, strong social support enhances recovery and lowers stroke recurrence. However, the mechanism by which social support influences stroke recovery has not been adequately explored. The goal of this study was to examine the effect of post-stroke pair housing and SI on behavioral phenotypes and chronic functional recovery in mice. Young male mice were paired for 14 days before a 60 min transient middle cerebral artery occlusion (MCAO) or sham surgery and assigned to various housing environments immediately after stroke. Post-stroke mice paired with either a sham or stroke partner showed significantly higher (P<0.05) sociability after MCAO than isolated littermates. Sociability deficits worsened over time in isolated animals. Pair-housed mice showed restored sucrose consumption (P<0.05) and reduced immobility in the tail suspension test compared to isolated cohorts. Pair-housed stroked mice demonstrated significantly reduced cerebral atrophy after 6 weeks (17.5 ± 1.5% in PH versus 40.8 ± 1.3% in SI; P<0.001). Surprisingly, total brain arginase-1, a marker of a M2 "alternatively activated" myeloid cells was higher in isolated mice. However, a more detailed assessment of cellular expression showed a significant increase in the number of microglia that co-labeled with arginase-1 in the peri-infarct region in PH stroke mice compared to SI mice. Pair housing enhances sociability and reduces avolitional and anhedonic behavior. Pair housing reduced serum IL-6 and enhanced peri-infarct microglia arginase-1 expression. Social interaction reduces post-stroke depression and improves functional recovery.
Collapse
Affiliation(s)
- Rajkumar Verma
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Brett D Friedler
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Nia M Harris
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Louise D McCullough
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA; Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
48
|
Di Rienzo F, Collet C, Hoyek N, Guillot A. Impact of Neurologic Deficits on Motor Imagery: A Systematic Review of Clinical Evaluations. Neuropsychol Rev 2014; 24:116-47. [DOI: 10.1007/s11065-014-9257-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/02/2014] [Indexed: 12/16/2022]
|
49
|
Kober SE, Wood G. Changes in hemodynamic signals accompanying motor imagery and motor execution of swallowing: a near-infrared spectroscopy study. Neuroimage 2014; 93 Pt 1:1-10. [PMID: 24576696 DOI: 10.1016/j.neuroimage.2014.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/21/2014] [Accepted: 02/16/2014] [Indexed: 01/25/2023] Open
Abstract
In the present study we investigated hemodynamic changes in the brain in response to motor execution (ME) and motor imagery (MI) of swallowing using near-infrared spectroscopy (NIRS). Previous studies provide evidence that ME and MI of limb movements lead to comparable brain activation patterns indicating the potential value of MI for motor rehabilitation. In this context, identifying brain correlates of MI of swallowing may be potentially useful for the treatment of dysphagia. Fourteen healthy participants actively swallowed water (ME) and mentally imagined to swallow water (MI) in a randomized order while changes in concentration of oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) were assessed. MI and ME led to the strongest NIRS signal changes in the inferior frontal gyrus. During and after ME, oxy-Hb significantly increased, with a maximum peak around 15s after task onset. In contrast, oxy-Hb decreased during MI compared to a rest period probably because of motor inhibition mechanisms. Changes in deoxy-Hb were largely comparable between MI and ME, especially when participants used a kinesthetic motor imagery strategy during MI compared to no specific strategy. Hence, the present study provides new evidence concerning timing and topographical distribution of the hemodynamic response during ME and MI of swallowing.
Collapse
Affiliation(s)
- S E Kober
- Department of Psychology, University of Graz, Graz, Austria.
| | - G Wood
- Department of Psychology, University of Graz, Graz, Austria.
| |
Collapse
|
50
|
Livingston-Thomas JM, McGuire EP, Doucette TA, Tasker RA. Voluntary forced use of the impaired limb following stroke facilitates functional recovery in the rat. Behav Brain Res 2013; 261:210-9. [PMID: 24388978 DOI: 10.1016/j.bbr.2013.12.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/29/2013] [Accepted: 12/11/2013] [Indexed: 12/22/2022]
Abstract
Constraint induced movement therapy (CIMT), which forces use of the impaired arm following stroke, improves functional recovery. The mechanisms underlying recovery are not well understood, necessitating further investigation into how rehabilitation may affect neuroplasticity using animal models. Animal motivation and stress make modelling CIMT in animals challenging. We have shown that following focal ischemia, voluntary forced use therapy using pet activity balls could engage the impaired forelimb and result in a modest acceleration in recovery. In this study, we investigated the effects of a more intensive appetitively motivated regimen that included task specific reaching exercises. Adult male Sprague Dawley rats were subjected to focal unilateral stroke using intracerebral injections of endothelin-1 or sham surgery. Three days later, stroke animals were assigned to daily rehabilitation or control therapy. Rehabilitation consisted of 30 min of generalized movement sessions in activity balls, followed by 30 min of voluntary task-specific movement using reaching boxes. Rats were tested weekly to measure forelimb deficit and recovery. After 30 days, animals were euthanized and tissue was examined for infarct volume, brain derived neurotrophic factor expression, and the presence of new neurons using doublecortin immunohistochemistry. Rehabilitation resulted in a significant acceleration of forelimb recovery in several tests, and a significant increase in the number of doublecortin-expressing cells. Furthermore, while the proportion of cells expressing BDNF in the peri-infarct region did not change, there was a shift in the cellular origin of expressed BDNF, resulting in significantly more non-neuronal, non-astrocytic BDNF, presumed to be of microglial origin.
Collapse
Affiliation(s)
- Jessica M Livingston-Thomas
- Departments of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, C1A4P3, Canada
| | - Emily P McGuire
- Departments of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, C1A4P3, Canada
| | - Tracy A Doucette
- Departments of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, C1A4P3, Canada
| | - R Andrew Tasker
- Departments of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, C1A4P3, Canada.
| |
Collapse
|