1
|
Mondal S, Shrivastava P, Mehra R. Computing pathogenicity of mutations in human cytochrome P450 superfamily. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141078. [PMID: 40349948 DOI: 10.1016/j.bbapap.2025.141078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/22/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Cytochrome P450 (CYPs) are crucial heme-containing enzymes that metabolize drugs and endogenous compounds. In humans, 57 CYP isoforms have been identified, with over 200 mutations linked to severe disorders. Our comprehensive computational study assessed the reason for the pathogenicity of mutations by comparing pathogenic and non-pathogenic variants. We analyzed 25,94,151 mutations across 26 CYP structures using structure- and sequence-based methods, revealing a meaningful stability pattern: non-pathogenic > all > pathogenic mutation datasets. Notably, pathogenic mutations were predominantly buried within CYP structures, indicating a higher potential for pathogenesis. We identified three key amino acid properties affected by mutations: Gibbs free energy, isoelectric point, and volume. Furthermore, diseased mutations significantly reduced positive residue content, particularly due to arginine mutations, which directly influenced the isoelectric point. Our findings indicate a greater likelihood of pathogenic mutations occurring at conserved sites, disrupting CYP function. A higher frequency of pathogenic mutations was observed in heme sites, primarily involving arginine, which may interfere with arginine-heme interactions. Molecular docking revealed a differential binding of heme in wild-type and pathogenic CYPs. This study provides a foundational analysis of mutation effects across multiple CYPs. It models the chemical basis of CYP-related pathogenicity, facilitating the development of a semi-quantitative disease prediction model.
Collapse
Affiliation(s)
- Somnath Mondal
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg 491002, Chhattisgarh, India
| | - Pranchal Shrivastava
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg 491002, Chhattisgarh, India
| | - Rukmankesh Mehra
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg 491002, Chhattisgarh, India; Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Durg 491002, Chhattisgarh, India.
| |
Collapse
|
2
|
Liu H, Liu F, Wei Z, Liu P, Liu Q, Chen L, Hou X. Identification and functional characterization of compound heterozygous CYP11B1 gene mutations. Endocrine 2024; 84:253-264. [PMID: 38285409 DOI: 10.1007/s12020-023-03614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/10/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE 11β-Hydroxylase deficiency (11β-OHD) is the second leading cause of congenital adrenal hyperplasia (CAH), a rare autosomal recessive disease caused by mutations in the CYP11B1 gene. We previously reported the case of a male Chinese patient with typical 11β-OHD symptoms. Sanger sequencing revealed that the patient carried a splice-site mutation, c.595+1G>A in the CYP11B1 gene. His mother and sister harbored the heterozygous mutation, c.595+1G>A. Paradoxically, Sanger sequencing did not detect any abnormality in the CYP11B1 gene of his father and brother. Therefore, in this study, we aimed to further explore the exact genetic etiology of 11β-OHD in this pedigree and analyze the functional consequence of the c.595+1G>A mutation. METHODS Gemomic DNA was extracted from the peripheral blood leukocytes of the family members and normal control individuals, followed by quantitative real-time polymerase chain reaction (qPCR) to detect the copy number of the target CYP11B1 gene fragment. Mutation analysis was also performed via whole-exome sequencing (WES) followed by Sanger sequencing validation. In vitro minigene assay was also performed to investigate the impact of the c.595+1G>A mutation on pre-mRNA splicing. RESULTS qPCR results suggested a heterozygous deletion encompassing position c.595+1 along with flanking exonic and intronic sequences in the CYP11B1 gene of the patient and his father. WES followed by Sanger sequencing verified that the patient carried compound heterozygous mutations in the CYP11B1 gene, including a novel 2840-bp deletion (c.395+661_c.1121+180del) and c.595+1G>A, while his father carried the heterozygous c.395+661_c.1121+180del mutation. No other novel CYP11B1 mutations were found in the rest of the family members. Furthermore, minigene assay revealed that the c.595+1G>A mutation resulted in a 70-bp deletion of exon 3 in the mRNA, and this altered the reading frame at amino acid 176 and created a premature stop codon at amino acid 197. CONCLUSION We identified a novel 2840-bp-sized large deletion and confirmed that the c.595+1G>A mutation disrupts normal pre-mRNA splicing. Either mutation could significantly alter the reading frame and abolish CYP11B1 enzyme activity. Therefore, our findings widen the mutation spectrum of CYP11B1 and provide an accurate diagnosis of 11β-OHD at a molecular genetic level.
Collapse
Affiliation(s)
- He Liu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong, 250117, China
- Department of Endocrinology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Fuqiang Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Zichun Wei
- Department of Endocrinology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Pan Liu
- Department of Endocrinology, Tai'an City Central Hospital, 29 Longtan Road, Tai'an, Shandong, 271000, China
| | - Qiao Liu
- MOE Key Laboratory of Experimental Teratology, Department of Genetics, Shandong University School of Basic Medical Sciences, 44 Wenhuaxi Road, Lixia District, Jinan, Shandong, 250012, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Wei C, Zhang Z, Sang M, Dai H, Yang T, Sun M. Compound heterozygosity of a novel Q73X mutation and a known R141X mutation in CYP11B1 resulting in 11β-hydroxylase deficiency in a Chinese boy with congenital adrenal hyperplasia. J Steroid Biochem Mol Biol 2021; 211:105882. [PMID: 33785438 DOI: 10.1016/j.jsbmb.2021.105882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Steroid 11β-hydroxylase deficiency (11β-OHD), which is caused by mutations of the CYP11B1 gene, is the second leading cause of congenital adrenal hyperplasia (CAH), an autosomal recessive inherited disorder. Here, we report a case of classic 11β-OHD in a Chinese boy characterized by hypertension, penile enlargement, skin pigmentation, and acne. Molecular analysis of CYP11B1 revealed that the patient was compound heterozygous for a c.217C > T (p.Q73X) mutation in exon 1 and a c.421C > T (p.R141X) mutation in exon 3. His parents carried the novel c.217C > T (p.Q73X) mutation and the prevalent c.421C > T (p.R141X) mutation. Furthermore, we identified a novel 217-bp substitution mutation (Q73X) in CYP11B1 that generates a truncated protein without biological activity, which is likely to be pathogenic. Pursuant to the phenotype of the proband and his family, the Q73X mutation is inferred to exacerbate the disease burden of the R141X mutation, a known pathogenic variant. To further explore this possibility, selecting the x-ray structure of human CYP11B2 as a template, we built three-dimensional homologous models of the normal and mutant proteins. In the mutant model, a change from a helix to terminal structure in amino acids 73 and 141 occurred that affected the binding capacity of CYP11B1 with heme and impaired 11β-hydroxylase activity. Taken together, our findings expand the spectrum of known mutations leading to 11β-OHD and provide evidence to study genotype-phenotype concordance, confirm early diagnosis and treatment of 11β-OHD, and prevent most complications.
Collapse
Affiliation(s)
- Chenmin Wei
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Zichen Zhang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Miaomiao Sang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Hao Dai
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Min Sun
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
4
|
Merakou C, Fylaktou I, Sertedaki A, Dracopoulou M, Voutetakis A, Efthymiadou A, Christoforidis A, Dacou-Voutetakis C, Chrysis D, Kanaka-Gantenbein C. Molecular Analysis of the CYP11B2 Gene in 62 Patients with Hypoaldosteronism Due to Aldosterone Synthase Deficiency. J Clin Endocrinol Metab 2021; 106:e182-e191. [PMID: 33098647 DOI: 10.1210/clinem/dgaa765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Indexed: 02/11/2023]
Abstract
CONTEXT Isolated congenital hypoaldosteronism presents in early infancy with symptoms including vomiting, severe dehydration, salt wasting, and failure to thrive. The main causes of this rare autosomal recessive disorder is pathogenic variants of the CYP11B2 gene leading to aldosterone synthase deficiency. OBJECTIVE To investigate the presence of CYP11B2 pathogenic variants in a cohort of patients with a clinical, biochemical, and hormonal profile suggestive of aldosterone synthase deficiency. DESIGN Clinical and molecular study. SETTING Tertiary academic Children's Hospital, Center for Rare Pediatric Endocrine Diseases. PATIENTS AND METHODS Sixty-two patients (56 unrelated patients and 6 siblings), with hypoaldosteronism and their parents, underwent CYP11B2 gene sequencing after its selective amplification against the highly homologous CYP11B1 gene. In silico analysis of the identified novel variants was carried out to evaluate protein stability and potential pathogenicity. RESULTS CYP11B2 gene sequencing revealed that 62 patients carried a total of 12 different pathogenic CYP11B2 gene variants, 6 of which are novel. Importantly, 96% of the 56 patients carried the previously reported p.T185I variant either in homozygosity or in compound heterozygosity with another variant. The 6 novel variants detected were: p.M1I, p.V129M, p.R141Q, p.A165T, p.R448C, and the donor splice site variant of intron 8, c.1398 + 1G > A. CONCLUSION Molecular diagnosis was achieved in 62 patients with aldosterone synthase deficiency, the largest cohort thus far reported. Six novel genetic variants were identified as possibly pathogenic, extending the spectrum of reported molecular defects of the CYP11B2 gene.
Collapse
Affiliation(s)
- Christina Merakou
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Pediatric Endocrine Diseases, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Agia Sophia" Children's Hospital, Athens, Greece
| | - Irene Fylaktou
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Pediatric Endocrine Diseases, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Agia Sophia" Children's Hospital, Athens, Greece
| | - Amalia Sertedaki
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Pediatric Endocrine Diseases, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Agia Sophia" Children's Hospital, Athens, Greece
| | - Maria Dracopoulou
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Pediatric Endocrine Diseases, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Agia Sophia" Children's Hospital, Athens, Greece
| | - Antonis Voutetakis
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Pediatric Endocrine Diseases, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Agia Sophia" Children's Hospital, Athens, Greece
| | - Alexandra Efthymiadou
- Division of Endocrinology and Diabetes, Department of Pediatrics, Medical School, University of Patras, Patras, Greece
| | - Athanasios Christoforidis
- First Pediatric Department, School of Medicine, Faculty of Medical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Catherine Dacou-Voutetakis
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Pediatric Endocrine Diseases, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Agia Sophia" Children's Hospital, Athens, Greece
| | - Dionisios Chrysis
- Division of Endocrinology and Diabetes, Department of Pediatrics, Medical School, University of Patras, Patras, Greece
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Pediatric Endocrine Diseases, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Agia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
5
|
46,XX DSD due to Androgen Excess in Monogenic Disorders of Steroidogenesis: Genetic, Biochemical, and Clinical Features. Int J Mol Sci 2019; 20:ijms20184605. [PMID: 31533357 PMCID: PMC6769793 DOI: 10.3390/ijms20184605] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
The term 'differences of sex development' (DSD) refers to a group of congenital conditions that are associated with atypical development of chromosomal, gonadal, or anatomical sex. Disorders of steroidogenesis comprise autosomal recessive conditions that affect adrenal and gonadal enzymes and are responsible for some conditions of 46,XX DSD where hyperandrogenism interferes with chromosomal and gonadal sex development. Congenital adrenal hyperplasias (CAHs) are disorders of steroidogenesis that mainly involve the adrenals (21-hydroxylase and 11-hydroxylase deficiencies) and sometimes the gonads (3-beta-hydroxysteroidodehydrogenase and P450-oxidoreductase); in contrast, aromatase deficiency mainly involves the steroidogenetic activity of the gonads. This review describes the main genetic, biochemical, and clinical features that apply to the abovementioned conditions. The activities of the steroidogenetic enzymes are modulated by post-translational modifications and cofactors, particularly electron-donating redox partners. The incidences of the rare forms of CAH vary with ethnicity and geography. The elucidation of the precise roles of these enzymes and cofactors has been significantly facilitated by the identification of the genetic bases of rare disorders of steroidogenesis. Understanding steroidogenesis is important to our comprehension of differences in sexual development and other processes that are related to human reproduction and fertility, particularly those that involve androgen excess as consequence of their impairment.
Collapse
|
6
|
Wang D, Wang J, Tong T, Yang Q. Non-classical 11β-hydroxylase deficiency caused by compound heterozygous mutations: a case study and literature review. J Ovarian Res 2018; 11:82. [PMID: 30223866 PMCID: PMC6139905 DOI: 10.1186/s13048-018-0450-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 11β-hydroxylase deficiency (11OHD) is extremely rare, and reports of non-classical 11OHD are even rarer. Non-classical 11OHD usually presents as premature adrenarche, hyperandrogenism, menstrual disorders, and hypertension. Because the symptoms of non-classical 11OHD are mild, delayed diagnosis or misdiagnosis as polycystic ovary syndrome or primary hypertension is common. CASE PRESENTATION This paper introduces a case of a young female patient presenting hypertension and menstrual disorders. Laboratory examination revealed increased androgen levels, mild adrenal hyperplasia, mild left ventricular hypertrophy, and mild sclerosis of the lower limb arteries. 11OHD was confirmed by genetic testing, and the patient was found to carry compound heterozygous mutations in CYP11B1 (c.583 T > C and c.1358G > A). The mutation Y195H is located in exon 3 and has not been reported previously. In silico studies indicated that this mutation may cause reduced enzymatic activity. After treatment with hydrocortisone and spironolactone, blood pressure was brought under good control, and menstruation returned to normal. We also conducted a retrospective review of previously reported cases in the literature (over 170 cases since 1991). CONCLUSIONS Early diagnosis of non-classical 11OHD is difficult because its symptoms are mild. The possibility of this disease should be considered in patients with early-onset hypertension, menstrual disorders, and hyperandrogenism to provide early treatment and prevent organ damage due to hypertension and hyperandrogenism. CYP11B1 mutations are known to be race-specific and are concentrated in exons 3 and 8, of which mutations in the former are mostly associated with non-classical 11OHD, whereas mutations in the latter are mostly found in classical 11OHD, characterized by severe loss of enzymatic activity.
Collapse
Affiliation(s)
- Dongdong Wang
- Obstetrics and Gynecology Department of Shengjing hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Jiahui Wang
- Obstetrics and Gynecology Department of Shengjing hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Tong Tong
- Obstetrics and Gynecology Department of Shengjing hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Qing Yang
- Obstetrics and Gynecology Department of Shengjing hospital, China Medical University, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
7
|
Khattab A, Haider S, Kumar A, Dhawan S, Alam D, Romero R, Burns J, Li D, Estatico J, Rahi S, Fatima S, Alzahrani A, Hafez M, Musa N, Razzghy Azar M, Khaloul N, Gribaa M, Saad A, Charfeddine IB, Bilharinho de Mendonça B, Belgorosky A, Dumic K, Dumic M, Aisenberg J, Kandemir N, Alikasifoglu A, Ozon A, Gonc N, Cheng T, Kuhnle-Krahl U, Cappa M, Holterhus PM, Nour MA, Pacaud D, Holtzman A, Li S, Zaidi M, Yuen T, New MI. Clinical, genetic, and structural basis of congenital adrenal hyperplasia due to 11β-hydroxylase deficiency. Proc Natl Acad Sci U S A 2017; 114:E1933-E1940. [PMID: 28228528 PMCID: PMC5347606 DOI: 10.1073/pnas.1621082114] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Congenital adrenal hyperplasia (CAH), resulting from mutations in CYP11B1, a gene encoding 11β-hydroxylase, represents a rare autosomal recessive Mendelian disorder of aberrant sex steroid production. Unlike CAH caused by 21-hydroxylase deficiency, the disease is far more common in the Middle East and North Africa, where consanguinity is common often resulting in identical mutations. Clinically, affected female newborns are profoundly virilized (Prader score of 4/5), and both genders display significantly advanced bone ages and are oftentimes hypertensive. We find that 11-deoxycortisol, not frequently measured, is the most robust biochemical marker for diagnosing 11β-hydroxylase deficiency. Finally, computational modeling of 25 missense mutations of CYP11B1 revealed that specific modifications in the heme-binding (R374W and R448C) or substrate-binding (W116C) site of 11β-hydroxylase, or alterations in its stability (L299P and G267S), may predict severe disease. Thus, we report clinical, genetic, hormonal, and structural effects of CYP11B1 gene mutations in the largest international cohort of 108 patients with steroid 11β-hydroxylase deficiency CAH.
Collapse
Affiliation(s)
- Ahmed Khattab
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Shozeb Haider
- School of Pharmacy, University College London, London WC1N 4AX, United Kingdom
| | - Ameet Kumar
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Samarth Dhawan
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Dauood Alam
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Raquel Romero
- School of Pharmacy, University College London, London WC1N 4AX, United Kingdom
| | - James Burns
- School of Pharmacy, University College London, London WC1N 4AX, United Kingdom
| | - Di Li
- School of Pharmacy, University College London, London WC1N 4AX, United Kingdom
| | - Jessica Estatico
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Simran Rahi
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Saleel Fatima
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ali Alzahrani
- King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia
| | - Mona Hafez
- Diabetes, Endocrine, and Metabolism Pediatrics Unit, Department of Pediatrics, Cairo University, 11617 Cairo, Egypt
| | - Noha Musa
- Diabetes, Endocrine, and Metabolism Pediatrics Unit, Department of Pediatrics, Cairo University, 11617 Cairo, Egypt
| | - Maryam Razzghy Azar
- Ali Asghar Children's Hospital, Iran University of Medical Sciences, 10000 Tehran, Iran
| | - Najoua Khaloul
- Laboratory of Human Cytogenetic Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
| | - Moez Gribaa
- Laboratory of Human Cytogenetic Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
| | - Ali Saad
- Laboratory of Human Cytogenetic Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
| | - Ilhem Ben Charfeddine
- Laboratory of Human Cytogenetic Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
| | - Berenice Bilharinho de Mendonça
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory, University of São Paulo, Sao Paulo 05508, Brazil
| | | | - Katja Dumic
- University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Miroslav Dumic
- University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Javier Aisenberg
- Pediatric Endocrinology and Diabetes Medicine, Hackensack University Medical Center, Hackensack, NJ 07601
| | - Nurgun Kandemir
- Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | | | - Alev Ozon
- Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | - Nazli Gonc
- Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | - Tina Cheng
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | | | - Paul-Martin Holterhus
- Department of Pediatrics, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Munier A Nour
- Department of Pediatrics, University of Saskatchewan College of Medicine, Saskatoon, SK, Canada S7N 0W8
| | - Daniele Pacaud
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada T3B 6A8
| | - Assaf Holtzman
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sun Li
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mone Zaidi
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Tony Yuen
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Maria I New
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
8
|
Matallana-Rhoades AM, Corredor-Castro JD, Bonilla-Escobar FJ, Mecias-Cruz BV, Mejia de Beldjena L. Congenital adrenal hyperplasia due to 11-beta-hydroxylase deficiency: description of a new mutation, R384X. Colomb Med (Cali) 2016; 47:172-175. [PMID: 27821898 PMCID: PMC5091277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
CASE DESCRIPTION It is presented the phenotype of a new compound heterozygous mutation of the genes R384X and Q356X encoding the enzyme of 11-beta-hydroxylase. CLINICAL FINDINGS Severe virilization, peripheral hypertension, and early puberty. TREATMENT AND OUTCOME Managed with hormone replacement therapy (corticosteroid) and antihypertensive therapy (beta-blocker), resulting in the control of physical changes and levels of arterial tension. CLINICAL RELEVANCE According to the phenotypic characteristics of the patient, it is inferred that the R384X mutation carries an additional burden on the Q356X mutation, with the latter previously described as a cause of 11-beta-hydroxylase deficiency. The description of a new genotype, as in this case, expands the understanding of the hereditary burden and deciphers the various factors that lead to this pathology as well as the other forms of congenital adrenal hyperplasia (CAH), presenting with a broad spectrum of clinical presentations. This study highlights the importance of a complete description of the patient's CAH genetic profile as well as their parents' genetic profile.
Collapse
Affiliation(s)
| | | | | | | | - Liliana Mejia de Beldjena
- Fundación Clínica Valle del Lili, Cali, Colombia, Fundación Clínica Infantil Club Noel, Cali, Colombia
| |
Collapse
|
9
|
Marakaki C, Papadopoulou A, Karapanou O, Papadimitriou DT, Kleanthous K, Papadimitriou A. A Greek girl with 11β-hydroxylase deficiency due to compound heterozygosity for two novel mutations in CYP11B1 gene. Endocrinol Diabetes Metab Case Rep 2015; 2015:150074. [PMID: 26525354 PMCID: PMC4626658 DOI: 10.1530/edm-15-0074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/07/2015] [Indexed: 11/27/2022] Open
Abstract
11β-hydroxylase deficiency (11β-OHD), an autosomal recessive inherited disorder, accounts for 5–8% of congenital adrenal hyperplasia. In Greece, no cases of 11β-OHD have been described so far. The patient presented at the age of 13 months with mild virilization of external genitalia and pubic hair development since the age of 3 months. Hormonal profile showed elevated 11-deoxycortisol, adrenal androgens and ACTH levels. ACTH stimulation test was compatible with 11β-OHD. DNA of the proband and her parents was isolated and genotyped for CYP11B1 gene coding cytochrome P450c11. The girl was found to be compound heterozygous for two CYP11B1 novel mutations, p.Ala386Glu (exon 7), inherited from the father and p.Leu471Argin (exon 9) from the mother. Hydrocortisone supplementation therapy was initiated. Four years after presentation she remains normotensive, her growth pattern is normal and the bone age remains advanced despite adequate suppression of adrenal androgens.
Collapse
Affiliation(s)
- Chrisanthi Marakaki
- Third Department of Pediatrics , Attikon University Hospital , Rimini 1 Haidari, Athens, 12462 , Greece
| | - Anna Papadopoulou
- Third Department of Pediatrics , Attikon University Hospital , Rimini 1 Haidari, Athens, 12462 , Greece
| | - Olga Karapanou
- Third Department of Pediatrics , Attikon University Hospital , Rimini 1 Haidari, Athens, 12462 , Greece
| | - Dimitrios T Papadimitriou
- Third Department of Pediatrics , Attikon University Hospital , Rimini 1 Haidari, Athens, 12462 , Greece
| | - Kleanthis Kleanthous
- Third Department of Pediatrics , Attikon University Hospital , Rimini 1 Haidari, Athens, 12462 , Greece
| | - Anastasios Papadimitriou
- Third Department of Pediatrics , Attikon University Hospital , Rimini 1 Haidari, Athens, 12462 , Greece
| |
Collapse
|
10
|
Xu L, Xia W, Wu X, Wang X, Zhao L, Nie M. Chimeric CYP11B2/CYP11B1 causing 11β-hydroxylase deficiency in Chinese patients with congenital adrenal hyperplasia. Steroids 2015; 101:51-5. [PMID: 26066897 DOI: 10.1016/j.steroids.2015.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022]
Abstract
CYP11B1 and CYP11B2 are highly homologous genes that can form chimera following unequal crossing-over during meiosis. A chimeric CYP11B1/CYP11B2 gene causes glucocorticoid-remediable aldosteronism (GRA), while the rare CYP11B2/CYP11B1 chimeric gene leads to 11β-hydroxylase deficiency (11-OHD). The aim of the study was to find the underlying genetic causes of three distinct Chinese pedigrees with 11-OHD. The family history, clinical data, laboratory findings and alterations in the CYP11B1 gene sequence were analyzed in all patients. We found that patient 1 and patient 2 harbored novel homozygotic chimeric CYP11B2/CYP11B1 genes consisting of the promoter, exons 1-6 of CYP11B2, and exons 7-9 of CYP11B1. Patient 3 had compound heterozygotic mutation with one allele containing the promoter and exons 1-6 of CYP11B2 and exons 7-9 of CYP11B1, and the other allele comprising novel, previously undescribed p.W56X (c.168G>A) mutation in exon 1 of CYP11B1. The breakpoints to form Chimeric CYP11B2/CYP11B1 were not the same for the three patients. Rare chimeric CYP11B2/CYP11B1 gene mutations are the underlying cause of disease in three patients with 11-OHD. We hypothesize that the lack expression of CYP11B1 under the control of the CYP11B2 promoter in zona fasciculata may contribute to a cortisol defect as well as the resultant 11-OHD.
Collapse
Affiliation(s)
- Lingling Xu
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Endocrinology, Ministry of Health, Beijing, China
| | - Weibo Xia
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Endocrinology, Ministry of Health, Beijing, China
| | - Xueyan Wu
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Endocrinology, Ministry of Health, Beijing, China
| | - Xiaojing Wang
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Endocrinology, Ministry of Health, Beijing, China
| | - Lili Zhao
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Endocrinology, Ministry of Health, Beijing, China
| | - Min Nie
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Endocrinology, Ministry of Health, Beijing, China.
| |
Collapse
|