1
|
Marianelli C, Leonori A, Stecco R, Giannantoni C. Detection of a Mixed-Strain Infection with Drug- and Multidrug-Resistant Mycobacterium avium Subspecies hominissuis in a Dog with Generalized Lymphadenomegaly. Antibiotics (Basel) 2025; 14:416. [PMID: 40298584 PMCID: PMC12024035 DOI: 10.3390/antibiotics14040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Background Members of the Mycobacterium avium complex (MAC) have been documented to cause severe and disseminated infections in dogs, although such cases are sporadically reported. In this study, a comprehensive account of a rare case of generalised lymphadenomegaly caused by a mixed-strain infection with drug- and multidrug-resistant Mycobacterium avium subspecies hominissuis (Mah) in a Maremma sheepdog is presented. Methods Laboratory investigations, as well as the monitoring of the clinical signs displayed by the animal, were conducted throughout the course of a two-year drug therapy (based on rifampicin, azithromycin, and ciprofloxacin) and a two-year post-treatment follow-up period, until the death of the dog. Laboratory examinations included both solid and broth cultures from fine-needle aspiration samples of lymph nodes, molecular typing by 8-locus MIRUVNTR analysis and SNPs typing of five genetic regions (gyrB, rpsA, 3'hsp65, ITS and rpoB), and drug susceptibility testing towards seven antimycobacterial drugs. Results The results indicated the presence of two distinct genotypes of Mah, which exhibited different phenotypic characteristics, such as different drug susceptibility profiles and growth abilities in broth and solid media, suggesting a mixed-strain infection. Resistances to ethambutol alone, to ethambutol and clarithromycin, and to ethambutol, clarithromycin, rifampicin, and doxycycline were detected over the study. Conclusions Although the Mah strains isolated during the course of therapy showed sensitivity to the regiment, the complete eradication of the infection was never achieved. It has been hypothesised that the presence of drug-resistant and multidrug-resistant Mah strains in the animal may have been established at the onset of the infection or soon thereafter. The exposure to therapy has been suggested as a potential factor that could have favoured the growth of resistant strains, thereby rendering the therapy ineffective. The implications that the distinct phenotypic and genotypic profiles of Mah described here may have had for disease dynamics and control are discussed.
Collapse
Affiliation(s)
- Cinzia Marianelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Angelo Leonori
- Ambulatorio Veterinario Leonori, 02032 Fara in Sabina, Italy; (A.L.); (R.S.)
| | - Romana Stecco
- Ambulatorio Veterinario Leonori, 02032 Fara in Sabina, Italy; (A.L.); (R.S.)
| | | |
Collapse
|
2
|
Ferrara G, Moje N, Rossi A, Pagnini U, Iovane G, Montagnaro S. Exposure to three zoonotic pathogens in the pig population of Southern Italy. Acta Trop 2025; 264:107607. [PMID: 40164402 DOI: 10.1016/j.actatropica.2025.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Pigs represent a reservoir of infectious diseases that can be transmitted to humans through feeding or close contact. The aim of this study was to evaluate the seroprevalence of three zoonotic pathogens (Brucella suis, Mycobacterium avium, and Paslahepevirus balayani, also called hepatitis E virus) in the swine population in the Campania region, Southern Italy. A total of 370 animals from 31 farms were sampled and tested with specific commercial ELISAs. Antibodies against hepatitis E virus were detected in 41.4 % of the animals and in almost all the farms (83.8 %). Mycobacterium avium and Brucella suis were less widespread (seroprevalences of 3.5 % and 0 % at the individual level, 32.3 % and 0 % at the farm level, respectively). The univariate analysis of risk factors showed that sex (males), location (Naples), age (growers and finishers), farm size, and system (intensive) were related to higher hepatitis E virus prevalences. We also found higher seroprevalences in pigs belonging to districts where bovines were the main ruminant species. This variable and age were confirmed as risk factors also in multivariate analysis. The data obtained highlighted how pigs are HEV reservoirs also in southern Italy and that pigs in this region are also exposed to Mycobacterium avium but not to Brucella suis.
Collapse
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, Messina, 98168, Italy.
| | - Nebyou Moje
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Antonella Rossi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137, Naples, Italy
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137, Naples, Italy
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137, Naples, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137, Naples, Italy
| |
Collapse
|
3
|
Gcebe N, Pierneef RE, Michel AL, Hlokwe MT. Mycobacteriosis in slaughter pigs from South Africa from 1991 to 2002: Mycobacterium spp. diversity and Mycobacterium avium complex genotypes. Front Microbiol 2023; 14:1284906. [PMID: 38033580 PMCID: PMC10687471 DOI: 10.3389/fmicb.2023.1284906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Mycobacterium avium complex (MAC) bacteria are the most prominent etiological agents of lymphadenitis in pigs. M. avium subspecies hominissuis (MAH) is a member of MAC and has been reported in many parts of the world to be the most prevalent non-tuberculous mycobacteria (NTM) to cause mycobacteriosis in humans, mainly in children. Thus, the economic and zoonotic impact of MAC species are increasingly being recognized. In South Africa, little is known about the distribution of NTM and the molecular epidemiology of M. avium in pigs. Materials and methods In this study, lymph nodes including mandibular, mesenteric, submandibular, and retropharyngeal, with tuberculosis-like lesions were collected during routine meat inspection of slaughter pigs with no disease symptoms (n = 132), between 1991 and 2002. These pigs were slaughtered at 44 abattoirs distributed across seven of the nine South African provinces. Mycobacterial culture, polymerase chain reaction (PCR), and sequencing of the Mycobacterium specific 577 bp 16S rRNA gene fragment were performed for species and subspecies identification. Results The majority of the isolates (each per sample); 114 (86.4%) were identified as MAH, 8 (6%) as MAA/M. avium subsp. silvaticum, 4 (3%) were Mycobacterium tuberculosis, 2 (1.5%) as Mycobacterium intracellulare, and 1 (0.75%) as Mycobacterium bovis. The other isolates were identified as Mycobacterium lentiflavum (0.75%), Mycobacterium novocastrense (0.75%), and a Micrococcus spp. (0.75%). Using an eight-marker MLVA typing tool, we deciphered at least nine MIRU VNTR INMV types of MAH and MAA. Discussion Identification of known zoonotic mycobacteria, including MAH, MAA, M. intracellulare, M. bovis, and M. tuberculosis, from slaughter pigs has a potential public health impact and also strengthens recognition of the potential economic impact of MAC. This study has also for the first time in South Africa, revealed MAC MIRU VNTR INMV genotypes which will aid in the future epidemiological investigation of MAC in South Africa.
Collapse
Affiliation(s)
- Nomakorinte Gcebe
- Bacteriology Laboratory, Agricultural Research Council–Onderstepoort Veterinary Research, Pretoria, South Africa
| | - Rian Ewald Pierneef
- Agricultural Research Council–Biotechnology Platform, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
- Microbiome@UP, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Anita Luise Michel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Motlatso Tiny Hlokwe
- Bacteriology Laboratory, Agricultural Research Council–Onderstepoort Veterinary Research, Pretoria, South Africa
| |
Collapse
|
4
|
René R, Sebastian V, Marlies D, Lukas S, Annemarie K, Andrea L. Risk factors associated with post-weaning diarrhoea in Austrian piglet-producing farms. Porcine Health Manag 2023; 9:20. [PMID: 37170128 PMCID: PMC10176918 DOI: 10.1186/s40813-023-00315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Post-weaning diarrhoea (PWD) is a frequent, multifactorial disease of piglets leading to increased mortality rates and high economic losses. Due to the emergence of multi-resistant Escherichia coli isolates and the ban of zinc oxide (ZnO) in the EU since June 2022, alternative measures to prevent PWD are urgently needed. While an abundance of feed supplements is described to prevent PWD, there are hardly any studies reflecting the current situation of PWD in the field. Thus, we aimed to identify differences in management practices, housing and feeding strategies between farms with PWD and farms without PWD. Data were personally collected using a semi-structured questionnaire in 257 Austrian piglet-producing farms. Farms with PWD in more than 10% of all weaned groups within twelve months prior to data collection were defined as case farms (n = 101), while the remaining 136 farms were defined as control farms. Data from 237 farms and 69 explanatory variables were analysed via penalized binary logistic regression using elastic-net in 100 different splits into randomly selected training and test datasets (80:20). Treatment with ZnO and/or colistin (136 farms) was negatively associated with PWD in all splits and had the biggest estimated absolute log odds ratio out of all tested variables. Implementation of an all-in/all-out system in the nursery units and administration of probiotics or horseradish also had preventive effects in most splits (≥ 97%). A higher number of feeding phases for piglets within the first seven weeks of life and housing on fully slatted floors was associated negatively with the occurrence of PWD as well in > 95% of all splits. PWD was more likely to occur on farms having problems with neonatal diarrhoea or postpartum dysgalactia syndrome. While our data demonstrate that treatment with ZnO or colistin had the biggest statistical effect on PWD, we were able to identify other preventive measures like supplementation with probiotics or horseradish. Since implementation of all-in/all-out measures and fully slatted floors were also negatively associated with the occurrence of PWD on visited farms, we assume that reduction of bacterial load by the implementation of simple hygiene measures are still crucial to prevent PWD.
Collapse
Affiliation(s)
- Renzhammer René
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria.
| | - Vetter Sebastian
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - Dolezal Marlies
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - Schwarz Lukas
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - Käsbohrer Annemarie
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - Ladinig Andrea
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| |
Collapse
|
5
|
Byrne AS, Goudreau A, Bissonnette N, Shamputa IC, Tahlan K. Methods for Detecting Mycobacterial Mixed Strain Infections-A Systematic Review. Front Genet 2020; 11:600692. [PMID: 33408740 PMCID: PMC7779811 DOI: 10.3389/fgene.2020.600692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Mixed strain infection (MSI) refers to the concurrent infection of a susceptible host with multiple strains of a single pathogenic species. Known to occur in humans and animals, MSIs deserve special consideration when studying transmission dynamics, evolution, and treatment of mycobacterial diseases, notably tuberculosis in humans and paratuberculosis (or Johne's disease) in ruminants. Therefore, a systematic review was conducted to examine how MSIs are defined in the literature, how widespread the phenomenon is across the host species spectrum, and to document common methods used to detect such infections. Our search strategy identified 121 articles reporting MSIs in both humans and animals, the majority (78.5%) of which involved members of the Mycobacterium tuberculosis complex, while only a few (21.5%) examined non-tuberculous mycobacteria (NTM). In addition, MSIs exist across various host species, but most reports focused on humans due to the extensive amount of work done on tuberculosis. We reviewed the strain typing methods that allowed for MSI detection and found a few that were commonly employed but were associated with specific challenges. Our review notes the need for standardization, as some highly discriminatory methods are not adapted to distinguish between microevolution of one strain and concurrent infection with multiple strains. Further research is also warranted to examine the prevalence of NTM MSIs in both humans and animals. In addition, it is envisioned that the accurate identification and a better understanding of the distribution of MSIs in the future will lead to important information on the epidemiology and pathophysiology of mycobacterial diseases.
Collapse
Affiliation(s)
| | - Alex Goudreau
- Science & Health Sciences Librarian, University of New Brunswick, Saint John, NB, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Isdore Chola Shamputa
- Department of Nursing & Health Sciences, University of New Brunswick, Saint John, NB, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
6
|
Acid-base variables in acute and chronic form of nontuberculous mycobacterial infection in growing goats experimentally inoculated with Mycobacterium avium subsp. hominissuis or Mycobacterium avium subsp. paratuberculosis. PLoS One 2020; 15:e0243892. [PMID: 33315933 PMCID: PMC7735625 DOI: 10.1371/journal.pone.0243892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
In current literature, data assessing the acid-base equilibrium in animals and humans during bacterial infection are rare. This study aimed to evaluate acid-base deteriorations in growing goats with experimentally induced NTM (nontuberculous mycobacteria) infections by application of the traditional Henderson-Hasselbalch approach and the strong ion model. NTM-challenged animals were orally inoculated with either Mycobacterium avium subsp. hominissuis (MAH; n = 18) or Mycobacterium avium subsp. paratuberculosis (MAP; n = 48). Twenty-five goats served as non-infected controls. Until 51st week post-inoculation (wpi), blood gas analysis, serum biochemical analysis, and serum electrophoresis were performed on venous blood. Fifty percent (9/18) of goats inoculated with MAH developed acute clinical signs like apathy, fever, and diarrhea. Those animals died or had to be euthanized within 11 weeks post-inoculation. This acute form of NTM-infection was characterized by significantly lower concentrations of sodium, calcium, albumin, and total protein, as well as significantly higher concentrations of gamma globulin, associated with reduced albumin/globulin ratio. Acid-base status indicated alkalosis, but normal base excess and HCO3- concentrations, besides significantly reduced levels of SID (strong ion difference), Atot Alb (total plasma concentration of weak non-volatile acids, based on albumin), Atot TP (Atot based on total protein) and markedly lower SIG (strong ion gap). The remaining fifty percent (9/18) of MAH-infected goats and all goats challenged with MAP survived and presented a more sub-clinical, chronic form of infection mainly characterized by changes in serum protein profiles. With the progression of the disease, concentrations of gamma globulin, and total protein increased while albumin remained lower compared to controls. Consequently, significantly reduced albumin/globulin ratio and lower Atot Alb as well as higher Atot TP were observed. Changes were fully compensated with no effect on blood pH. Only the strong ion variables differentiated alterations in acid-base equilibrium during acute and chronic NTM-infection.
Collapse
|
7
|
Cardoso-Toset F, Gómez-Laguna J, Gómez-Gascón L, Rodríguez-Gómez IM, Galán-Relaño A, Carrasco L, Tarradas C, Vela AI, Luque I. Histopathological and microbiological study of porcine lymphadenitis: contributions to diagnosis and control of the disease. Porcine Health Manag 2020; 6:36. [PMID: 33292778 PMCID: PMC7716504 DOI: 10.1186/s40813-020-00172-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/13/2020] [Indexed: 11/10/2022] Open
Abstract
Tuberculosis like lesions (TBL) in free-range pigs are characterised by presenting a marked heterogeneity in pathology and microbiology features, with a notorious role of Mycobacterium tuberculosis complex (MTC), Trueperella pyogenes and different Streptococcus species. However, the capacity of these microorganism to spread to different organic cavities leading to a generalised disease is unknown. Therefore, this study evaluated the organic distribution of these agents in free-range pig carcasses whole condemned due to generalised TBL. A total of 37 totally condemned animals were analysed, and samples of lymph nodes and organs were obtained (n = 262) and subjected to histopathological and microbiological examination. In addition, T. pyogenes and streptococci species were further characterised by PFGE analysis. Two different patterns were evidenced with lack or occasional lesions in superficial inguinal (SILN) and popliteal (PLN) lymph nodes and advanced lesions in submandibular (SLN) (35/36) and gastrohepatic (GHLN) (33/35) lymph nodes (stages III and IV). Early stage granulomas (stage I and II) prevailed in lungs (16/20), liver (14/31) and spleen (7/18). The microbiological analysis revealed that MTC, detected by qPCR, was present in 31 out of 37 animals and 90 (90/262) samples. In 26 out of the 31 pigs, MTC was detected from two or more organs. SLN (24/31) and GHLN (19/31) were the MTC+ organs most frequently detected, with 29 out of 31 MTC+ pigs detected as positive in one or both samples, which points out that both lymph nodes must be included in the sampling of surveillance programs. Other pathogens, such as T. pyogenes and Streptococcus spp., were also involved in generalised lymphadenitis, being frequently isolated from SLN and other organs, such as liver (T. pyogenes), tonsils or lung (Streptococcus spp.). A wide genetic diversity among streptococci was observed, showing the ubiquitous character of these pathogens, however, the isolation of a single clone of T. pyogenes from different organic locations from animals with generalised TBL was a common finding of this study, highlighting that the role of this pathogen in porcine lymphadenitis may be underestimated. These results should be considered in future studies on the pathogenesis and control of porcine lymphadenitis.
Collapse
Affiliation(s)
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', 14071, Córdoba, Spain
| | - Lidia Gómez-Gascón
- Department of Animal Health, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', 14071, Córdoba, Spain
| | - Irene M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', 14071, Córdoba, Spain
| | - Angela Galán-Relaño
- Department of Animal Health, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', 14071, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', 14071, Córdoba, Spain
| | - Carmen Tarradas
- Department of Animal Health, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', 14071, Córdoba, Spain
| | - Ana I Vela
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain.,VISAVET Health Surveillance Centre, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | - Inmaculada Luque
- Department of Animal Health, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', 14071, Córdoba, Spain.
| |
Collapse
|
8
|
Gerber PF, Gould N, McGahan E. Potential contaminants and hazards in alternative chicken bedding materials and proposed guidance levels: a review. Poult Sci 2020; 99:6664-6684. [PMID: 33248583 PMCID: PMC7705057 DOI: 10.1016/j.psj.2020.09.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Bedding material or litter is an important requirement of meat chicken production which can influence bird welfare, health, and food safety. A substantial increase in demand and cost of chicken bedding has stimulated interest in alternative bedding sources worldwide. However, risks arising from the use of alternative bedding materials for raising meat chickens are currently unknown. Organic chemicals, elemental, and biological contaminants, as well as physical and management hazards need to be managed in litter to protect the health of chickens and consequently that of human consumers. This requires access to information on the transfer of contaminants from litter to food to inform risk profiles and assessments to guide litter risk management. In this review, contaminants and hazards of known and potential concern in alternative bedding are described and compared with existing standards for feed. The contaminants considered in this review include organic chemical contaminants (e.g., pesticides), elemental contaminants (e.g., arsenic, cadmium, and lead), biological contaminants (phytotoxins, mycotoxins, and microorganisms), physical hazards, and management hazards. Reference is made to scientific literature for acceptable levels of the above contaminants in chicken feed that can be used for guidance by those involved in selecting and using bedding materials.
Collapse
Affiliation(s)
- Priscilla F Gerber
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| | - Nic Gould
- Integrity Ag and Environment, New England Highway, Highfields, QLD 4352, Australia
| | - Eugene McGahan
- Integrity Ag and Environment, New England Highway, Highfields, QLD 4352, Australia
| |
Collapse
|
9
|
Ocepek M, Newberry RC, Andersen IL. Which types of rooting material give weaner pigs most pleasure? Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2020.105070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Subangkit M, Yamamoto T, Ishida M, Nomura A, Yasiki N, Sudaryatma PE, Goto Y, Okabayashi T. Genotyping of swine Mycobacterium avium subsp. hominissuis isolates from Kyushu, Japan. J Vet Med Sci 2019; 81:1074-1079. [PMID: 31155550 PMCID: PMC6715914 DOI: 10.1292/jvms.19-0048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The incidence of diseases caused by nontuberculous mycobacteria (NTM) is increasing
annually worldwide, including Japan. Mycobacterium avium subsp.
hoiminissuis (MAH) is one of the most common NTM species responsible
for chronic lung diseases in animals and humans. In the current study, mycobacterial
interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing was employed
to characterize the genetic diversity of swine MAH isolates from Kyushu, Japan. In total,
309 isolates were obtained from the lymph nodes of 107 pigs not displaying any clinical
signs of disease, of which 307 were identified as MAH, comprising 173 strains. Based on
eight established MIRU-VNTR loci, the MAH strains represented 50 genotypes constituting
three lineages, and 29 had not been described in the Mac French National Institute for
Agricultural Research Nouzilly MIRU-VNTR (Mac-INMV) database. MAH was the dominant
M. avium complex (MAC) in pigs from Kyushu, and there was high genetic
diversity among genotype profiles of MAH from Kyushu. We identified three predominant
genotype profiles in the tested area sharing high relatedness with genotype profiles of
strains isolated in European countries. MAH was the most common NTM in pigs from Kyushu
and exhibited high diversity, with new strain-derived genotypes.
Collapse
Affiliation(s)
- Mawar Subangkit
- Laboratory of Veterinary Microbiology, Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan.,Laboratory of Veterinary Microbiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan.,Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Tomoki Yamamoto
- Laboratory of Veterinary Microbiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan.,Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Mikiko Ishida
- Laboratory of Veterinary Microbiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan.,Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Arisa Nomura
- Laboratory of Veterinary Microbiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan.,Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Natsu Yasiki
- Laboratory of Veterinary Microbiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan.,Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Putu Eka Sudaryatma
- Laboratory of Veterinary Microbiology, Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan.,Laboratory of Veterinary Microbiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan.,Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Yoshitaka Goto
- Laboratory of Veterinary Microbiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan.,Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Tamaki Okabayashi
- Laboratory of Veterinary Microbiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan.,Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
11
|
Hulinova Stromerova N, Faldyna M. Mycobacterium avium complex infection in pigs: A review. Comp Immunol Microbiol Infect Dis 2018; 57:62-68. [PMID: 30017080 DOI: 10.1016/j.cimid.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/18/2018] [Accepted: 06/10/2018] [Indexed: 11/19/2022]
Abstract
Mycobacterial infections in pigs are caused particularly by the Mycobacterium avium complex (MAC) and these infections lead to great economic losses mainly within the countries with high pork meat production. The importance of the MAC infections in humans is rising because of its higher prevalence and also higher mortality rates particularly in advanced countries. In addition, treatment of the MAC infections in humans tends to be complicated because of its increasing resistance to antimicrobial agents. Several studies across Europe have documented the MAC occurrence in the slaughtered pigs - not only in their lymph nodes and tonsils, which are the most frequent, but also in the diaphragmas, other organs and not least in meat. This is why we need both more specific and more sensitive methods for the MAC infection detection. Different PCR assays were established as well as advanced intravital testing by the gamma interferon release test. On the other hand, tuberculin skin test is still one of the cheapest methods of mycobacterial infections detection.
Collapse
Affiliation(s)
- Nikola Hulinova Stromerova
- State Veterinary Institute Olomouc, Jakoubka ze Stříbra 1, 779 00 Olomouc, Czech Republic; Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Martin Faldyna
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic.
| |
Collapse
|
12
|
Komatsu T, Inaba N, Kondo K, Nagata R, Kawaji S, Shibahara T. Systemic mycobacteriosis caused by 'Mycobacterium avium subspecies hominissuis' in a 14-month-old Japanese black beef steer. J Vet Med Sci 2017; 79:1384-1388. [PMID: 28690289 PMCID: PMC5573826 DOI: 10.1292/jvms.17-0204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A 14-month-old Japanese black beef steer presented with severe chronic diarrhea and emaciation and was euthanized. Postmortem examination showed thickened and corrugated intestinal mucosa and enlarged granulomatous mesenteric lymph nodes with caseating necrosis. Numerous epithelioid cells and multinucleated giant cells infiltrated in the lamina propria and the submucosal tissue of the intestines. These cells were also observed in the systemic organs. Many acid-fast bacilli were detected in the cytoplasm of these cells and were identified as 'Mycobacterium avium subsp. hominissuis' (Mah) on the basis of the results of molecular examinations and immunohistochemistry. These findings indicate that Mah can cause systemic mycobacteriosis, and this unique infection needs to be distinguished from Johne's disease and tuberculosis in cattle.
Collapse
Affiliation(s)
- Tetsuya Komatsu
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Nanami Inaba
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Keiko Kondo
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Reiko Nagata
- Bacterial and Parasitic Disease Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Satoko Kawaji
- Bacterial and Parasitic Disease Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Tomoyuki Shibahara
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.,Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
13
|
Oropeza-Moe M, Grøntvedt CA, Phythian CJ, Sørum H, Fauske AK, Framstad T. Zinc oxide enriched peat influence Escherichia coli infection related diarrhea, growth rates, serum and tissue zinc levels in Norwegian piglets around weaning: five case herd trials. Porcine Health Manag 2017; 3:14. [PMID: 28680702 PMCID: PMC5488422 DOI: 10.1186/s40813-017-0060-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/16/2017] [Indexed: 11/22/2022] Open
Abstract
Background Zinc oxide (ZnO), commonly used to control post-weaning diarrhea in piglets, has been highlighted as of potential concern from an environmental perspective. The aim of this field trial was to examine effects of different sources and levels of ZnO added to peat on average daily weight gain (ADG), fecal score in pens and serum and tissue zinc (Zn) levels around time of weaning in order to reduce the environmental impact without loss of the beneficial effect of ZnO on intestinal health and growth. Five case herds with enterotoxic colibacillosis challenges were included. The piglets entered the study aged three or five weeks. All piglets received a commercial diet containing <150 mg Zn/ per kg of complete feed. Four treatment groups received commercial peat added A: uncoated ZnO, B: lipid microencapsulated ZnO, C: solely commercial peat or D: no peat (Farms 2 and 3). Results At Farms 1, 2 and 3, a significant effect of treatment was identified for fecal score (P < 0.05). Treatment A led to lower fecal scores compared to treatments C (P < 0.05) and D (P < 0.01). At Farms 2 and 3, there was a significant difference in individual average daily weight gain (iADG) between treatment A and D (P < 0.05). The iADG of piglets receiving treatment B did not differ significantly from treatment A. Conclusions In 2016, The European Medicines Agency’s Committee on Veterinary Medicinal Products concluded that the benefits of ZnO for the prevention of diarrhea in pigs do not outweigh the risks to the environment. Effective alternative measures to reduce the accumulation of Zn in the environment have not been identified. Our results imply that peat added low concentration of both coated and uncoated ZnO influences the gut health of weaned piglets reflected by enhanced weight gain and reduced occurrence of diarrhea. This preventive approach certainly represents a favourable alternative in the “One Health” perspective. It will also contribute to reduced antibiotic use in pig farming while diminishing the environmental consequences caused by ZnO.
Collapse
Affiliation(s)
- M Oropeza-Moe
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences (NMBU) Faculty of Veterinary Medicine, Campus Sandnes, Sandnes, Norway
| | | | - C J Phythian
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences (NMBU) Faculty of Veterinary Medicine, Campus Sandnes, Sandnes, Norway
| | - H Sørum
- Faculty of Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - A K Fauske
- Faculty of Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - T Framstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences (NMBU) Faculty of Veterinary Medicine, Campus Adamstuen, Adamstuen, Norway
| |
Collapse
|
14
|
Abstract
Mycobacterium avium hominissuis is the most important causative agent of chronic nontuberculous lymphadenitis in children. Despite a ubiquitous occurrence of the bacteria in the environment, the disease is a rare entity, and so far no source of infection has been formally identified. The current state of knowledge regarding possible sources of M. avium hominissuis, especially where children are concerned, is summarized here. An analysis of the seasonal variation of M. avium lymphadenitis in children leads to a new hypothesis regarding the probable source of infection of M. avium hominissuis, where global trade of alimentary products might be involved.
Collapse
Affiliation(s)
- Johanna Thegerström
- a Department of Clinical Physiology , Kalmar County Hospital , Kalmar , Sweden
| |
Collapse
|
15
|
Bruffaerts N, Vluggen C, Roupie V, Duytschaever L, Van den Poel C, Denoël J, Wattiez R, Letesson JJ, Fretin D, Rigouts L, Chapeira O, Mathys V, Saegerman C, Huygen K. Virulence and immunogenicity of genetically defined human and porcine isolates of M. avium subsp. hominissuis in an experimental mouse infection. PLoS One 2017; 12:e0171895. [PMID: 28182785 PMCID: PMC5300754 DOI: 10.1371/journal.pone.0171895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/27/2017] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium avium subsp. hominissuis (Mah) represents a health concern for humans and to a lesser extent for pigs, but its zoonotic potential remains elusive. Using multispacer sequence typing (MST) we previously identified 49 different genotypes of Mah among Belgian clinical and porcine isolates, with 5 MSTs shared by both hosts. Using experimental intranasal infection of BALB/c mice, we compared the virulence and immunogenicity of porcine and clinical human isolates with shared genotype or with a genotype only found in humans or pigs. Bacterial replication was monitored for 20 weeks in lungs, spleen and liver and mycobacteria specific spleen cell IFN-γ, IL-10 and IL-17 production as well as serum antibody responses were analyzed. Isolates varied in virulence, with human and porcine isolates sharing MST22 genotype showing a thousand fold higher bacterial replication in lungs and more dissemination to spleen and liver than the human and porcine MST91 isolates. Virulent MST22 type was also associated with progressive suppression of IFN-γ and IL-17 responses, and increased IL-10 production. Whole genome sequencing of the two virulent isolates with MST22 genotype and two avirulent isolates of genotype MST91 and comparison with two well-studied M. avium subsp. hominissuis reference strains i.e. Mah 104 and Mah TH135, identified in the two MST22 isolates nine specific virulence factors of the mammalian cell entry family, that were identical with Mah 104 strain. Despite the obvious limitations of the mouse model, a striking link of virulence and identity at the genome level of porcine and human isolates with the same multisequence type, for which no correlation of place of residence (humans) or farm of origin (pigs) was observed, seems to point to the existence in the environment of certain genotypes of Mah which may be more infectious both for humans and pigs than other genotypes.
Collapse
Affiliation(s)
- Nicolas Bruffaerts
- Service Immunology, Operational Direction Communicable and infectious Diseases, Scientific Institute of Public Health, Brussels, Belgium
- * E-mail: (NB); (KH)
| | - Christelle Vluggen
- Service Bacterial diseases, Operational Direction Communicable and infectious Diseases, Scientific Institute of Public Health, Brussels, Belgium
| | - Virginie Roupie
- Unit Bacterial Zoonoses of livestock, Operational Direction Bacterial Diseases, Veterinary and Agrochemical Research Centre, Brussels, Belgium
| | - Lucille Duytschaever
- Unit Bacterial Zoonoses of livestock, Operational Direction Bacterial Diseases, Veterinary and Agrochemical Research Centre, Brussels, Belgium
- Research Unit in Epidemiology and Risk Analysis applied to Veterinary Sciences, Fundamental and Applied Research for Animal and Health, Université of Liège, Liège, Belgium
| | - Christophe Van den Poel
- Service Immunology, Operational Direction Communicable and infectious Diseases, Scientific Institute of Public Health, Brussels, Belgium
| | - Joseph Denoël
- Research Unit in Epidemiology and Risk Analysis applied to Veterinary Sciences, Fundamental and Applied Research for Animal and Health, Université of Liège, Liège, Belgium
| | - Ruddy Wattiez
- Service Protéomique et Microbiologie, Université de Mons, Mons, Belgium
| | - Jean-Jacques Letesson
- Unité de Recherche en Biologie des Microorganismes, Université de Namur, Namur, Belgium
| | - David Fretin
- Unit Bacterial Zoonoses of livestock, Operational Direction Bacterial Diseases, Veterinary and Agrochemical Research Centre, Brussels, Belgium
| | - Leen Rigouts
- Department Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Unit Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Vanessa Mathys
- Service Bacterial diseases, Operational Direction Communicable and infectious Diseases, Scientific Institute of Public Health, Brussels, Belgium
| | - Claude Saegerman
- Research Unit in Epidemiology and Risk Analysis applied to Veterinary Sciences, Fundamental and Applied Research for Animal and Health, Université of Liège, Liège, Belgium
| | - Kris Huygen
- Service Immunology, Operational Direction Communicable and infectious Diseases, Scientific Institute of Public Health, Brussels, Belgium
- * E-mail: (NB); (KH)
| |
Collapse
|
16
|
Abstract
Abstract
Although Mycobacterium avium subspecies are generally not considered food pathogens, the infections caused by these particular nontuberculous mycobacteria (NTM) can represent a serious threat to immunocompromised population. Additionally, infections with a member of Mycobacterium Avium Compex (MAC) can affect the efficiency of BCG vaccines used for the humans. In infected animals, M. avium may be present in different tissues without apparent clinical symptoms and macroscopic lesions. Veterinary meat inspection would then fail to recognize infected animals and such meat and meat products thereof could enter the human diet. The aim of this paper is also to analyze the current control policy in Europe according to infections of pigs with the members of MAC, and point out the risks for public health. By analyzing a large number of meat samples and other dietary nutrients, different groups of authors have provided evidence to support the hypothesis that M. avium is present in the everyday environment. Therefore, food as a source of infection with mycobacteria should not be ignored. The control of mycobacteria requires a better diagnostic approach, having in mind recent positive cases of M. avium subspecies hominissuis (MAH) in an increasing number of exported pigs from EU countries to Serbia. The introduction of reliable diagnostic methods for MAH could result in decreasing the occurrence of infection in pigs, as well as in humans, having in mind that WHO reported 10 million new cases of tuberculosis-mycobacteriosis in the human population in 2015 with 21% of these cases occurring in immunocompromised individuals and children.
Collapse
|
17
|
Rónai Z, Csivincsik Á, Dán Á, Gyuranecz M. Molecular analysis and MIRU-VNTR typing of Mycobacterium avium subsp. avium, 'hominissuis' and silvaticum strains of veterinary origin. INFECTION GENETICS AND EVOLUTION 2016; 40:192-199. [PMID: 26964909 DOI: 10.1016/j.meegid.2016.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/02/2016] [Accepted: 03/05/2016] [Indexed: 10/22/2022]
Abstract
Besides Mycobacterium avium subsp. paratuberculosis (MAP), M. avium subsp. avium (MAA), M. avium subsp. silvaticum (MAS), and 'M. avium subsp. hominissuis' (MAH) are equally important members of M. avium complex, with worldwide distribution and zoonotic potential. Genotypic discrimination is a prerequisite to epidemiological studies which can facilitate disease prevention through revealing infection sources and transmission routes. The primary aim of this study was to identify the genetic diversity within 135 MAA, 62 MAS, and 84 MAH strains isolated from wild and domestic mammals, reptiles and birds. Strains were tested for the presence of large sequence polymorphism LSP(A)17 and were submitted to Mycobacterial interspersed repetitive units-variable-number tandem repeat (MIRU-VNTR) analysis at 8 loci, including MIRU1, 2, 3, and 4, VNTR25, 32, and 259, and MATR9. In 12 strains hsp65 sequence code type was also determined. LSP(A)17 was present only in 19.9% of the strains. All LSP(A)17 positive strains belonged to subspecies MAH. The discriminatory power of the MIRU-VNTR loci set used reached 0.9228. Altogether 54 different genotypes were detected. Within MAH, MAA, and MAS strains 33, 16, and 5 different genotypes were observed. The described genotypes were not restricted to geographic regions or host species, but proved to be subspecies specific. Our knowledge about MAS is limited due to isolation and identification difficulties. This is the first study including a large number of MAS field strains. Our results demonstrate the high diversity of MAH and MAA strains and the relative uniformity of MAS strains.
Collapse
Affiliation(s)
- Zsuzsanna Rónai
- Veterinary Diagnostic Directorate, National Food Chain Safety Office (NFCSO), P.O. Box 2, 1581 Budapest, Hungary.
| | - Ágnes Csivincsik
- University of Kaposvar, Diagnostic Imaging and Radiation Oncology, Guba Sándor u. 40., 7400 Kaposvár, Hungary
| | - Ádám Dán
- Veterinary Diagnostic Directorate, National Food Chain Safety Office (NFCSO), P.O. Box 2, 1581 Budapest, Hungary
| | - Miklós Gyuranecz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21., 1143 Budapest, Hungary
| |
Collapse
|
18
|
Cardoso-Toset F, Gómez-Laguna J, Amarilla SP, Vela AI, Carrasco L, Fernández-Garayzábal JF, Astorga RJ, Luque I. Multi-Etiological Nature of Tuberculosis-Like Lesions in Condemned Pigs at the Slaughterhouse. PLoS One 2015; 10:e0139130. [PMID: 26418681 PMCID: PMC4587938 DOI: 10.1371/journal.pone.0139130] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/08/2015] [Indexed: 12/02/2022] Open
Abstract
Tuberculosis-like lesions (TBL) in pigs have been associated with microorganisms other than mycobacteria. In this work a histopathological and microbiological evaluation of TBL in pigs is shown. A total of 352 samples belonging to 171 pigs totally condemned at slaughterhouse due to generalized TBL were sampled and selected for analysis. Pyogranulomatous (56.2%) and granulomatous lesions (20.2%) were observed in all analysed organs. Most of the granulomas observed in both lymph nodes and lungs belonged to more advanced stages of development (stages III and IV) whereas in the liver and the spleen most of lesions belonged to intermediate stages (stages II and III). Different microorganisms were simultaneously detected from TBL in the 42.7% of the animals. Mycobacterium tuberculosis complex (MTC) (38%), coryneform bacteria (40.3%) and streptococci (28.1%) were the main groups of microorganisms detected after bacteriological analysis, with Trueperella pyogenes and Streptococcus suis as the most frequently isolated species. Mycobacteria belonging to MTC were the most frequently detected pathogens in granulomatous and pyogranulomatous lesions in submandibular lymph nodes (32.7%) and coryneform bacteria were the microorganisms more frequently isolated from lungs (25.9%) and spleen samples (37.2%). These results may provide new insights into the pathogenesis and diagnosis of this pathology. The importance of coryneform bacteria and streptococci in such processes must be evaluated in future studies.
Collapse
Affiliation(s)
- Fernando Cardoso-Toset
- Department of Animal Health, Faculty of Veterinary Medicine, ‘International Excellence Agrifood Campus, CeiA3’, Córdoba, Spain
- Department of R&D, CICAP - Food Research Centre, Pozoblanco, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of R&D, CICAP - Food Research Centre, Pozoblanco, Córdoba, Spain
| | - Shyrley P. Amarilla
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, ‘International Excellence Agrifood Campus, CeiA3’, Córdoba, Spain
| | - Ana I. Vela
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
- VISAVET Health Surveillance Centre, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, ‘International Excellence Agrifood Campus, CeiA3’, Córdoba, Spain
| | - Jose F. Fernández-Garayzábal
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
- VISAVET Health Surveillance Centre, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | - Rafael J. Astorga
- Department of Animal Health, Faculty of Veterinary Medicine, ‘International Excellence Agrifood Campus, CeiA3’, Córdoba, Spain
| | - Inmaculada Luque
- Department of Animal Health, Faculty of Veterinary Medicine, ‘International Excellence Agrifood Campus, CeiA3’, Córdoba, Spain
| |
Collapse
|
19
|
Leite FLL. Understanding Mycobacterium avium subspecies hominissuis microaggregate mediated pathogenesis. Virulence 2015; 6:675-6. [PMID: 26364883 DOI: 10.1080/21505594.2015.1088633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Mycobacterium avium subspecies hominissuis (MAH) is an opportunistic pathogen and causes nontuberculous infections in immune compromised individuals, an emerging problem that has been recognized worldwide. Understanding the pathogenesis of this organism is important as better treatment and prevention options are needed. Microaggregates form when two or more bacterial cells join at a surface. MAH forms micgroaggregates to promote its entry in to epithelial cells and cause infection. The mechanisms involved in the interaction between the microaggregate and the host are becoming clearer as the molecules involved in this process are being uncovered. Microaggregate Invasion Protein-1 (MIP-1) is now described as having a major role in the invasion of epithelial cells by MAH.
Collapse
|
20
|
Braun P, Grass G, Aceti A, Serrecchia L, Affuso A, Marino L, Grimaldi S, Pagano S, Hanczaruk M, Georgi E, Northoff B, Schöler A, Schloter M, Antwerpen M, Fasanella A. Microevolution of Anthrax from a Young Ancestor (M.A.Y.A.) Suggests a Soil-Borne Life Cycle of Bacillus anthracis. PLoS One 2015; 10:e0135346. [PMID: 26266934 PMCID: PMC4534099 DOI: 10.1371/journal.pone.0135346] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/15/2015] [Indexed: 01/10/2023] Open
Abstract
During an anthrax outbreak at the Pollino National Park (Basilicata, Italy) in 2004, diseased cattle were buried and from these anthrax-foci Bacillus anthracis endospores still diffuse to the surface resulting in local accumulations. Recent data suggest that B. anthracis multiplies in soil outside the animal-host body. This notion is supported by the frequent isolation of B. anthracis from soil lacking one or both virulence plasmids. Such strains represent an evolutionary dead end, as they are likely no longer able to successfully infect new hosts. This loss of virulence plasmids is explained most simply by postulating a soil-borne life cycle of the pathogen. To test this hypothesis we investigated possible microevolution at two natural anthrax foci from the 2004 outbreak. If valid, then genotypes of strains isolated from near the surface at these foci should be on a different evolutionary trajectory from those below residing in deeper-laying horizons close to the carcass. Thus, the genetic diversity of B. anthracis isolates was compared conducting Progressive Hierarchical Resolving Assays using Nucleic Acids (PHRANA) and next generation Whole Genome Sequencing (WGS). PHRANA was not discriminatory enough to resolve the fine genetic relationships between the isolates. Conversely, WGS of nine isolates from near-surface and nine from near-carcass revealed five isolate specific SNPs, four of which were found only in different near-surface isolates. In support of our hypothesis, one surface-isolate lacked plasmid pXO1 and also harbored one of the unique SNPs. Taken together, our results suggest a limited soil-borne life cycle of B. anthracis.
Collapse
Affiliation(s)
- Peter Braun
- Bundeswehr Institute of Microbiology, Munich, Germany
- Technische Universität München, Wissenschaftszentrum Weihenstephan, Chair for Soil Ecology, Freising, Germany
| | - Gregor Grass
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Angela Aceti
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| | - Luigina Serrecchia
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| | - Alessia Affuso
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| | - Leonardo Marino
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| | - Stefania Grimaldi
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| | - Stefania Pagano
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| | | | - Enrico Georgi
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Bernd Northoff
- Bundeswehr Institute of Microbiology, Munich, Germany
- Ludwig Maximilians Universität München, Institute for Laboratory Medicine, Munich, Germany
| | - Anne Schöler
- German Research Center for Environmental Health, Research Unit for Environmental Genomics, Neuherberg, Germany
| | - Michael Schloter
- Technische Universität München, Wissenschaftszentrum Weihenstephan, Chair for Soil Ecology, Freising, Germany
- German Research Center for Environmental Health, Research Unit for Environmental Genomics, Neuherberg, Germany
| | | | - Antonio Fasanella
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| |
Collapse
|