1
|
Gheysari R, Nikbaf-Shandiz M, Hosseini AM, Rasaei N, Hosseini S, Bahari H, Asbaghi O, Rastgoo S, Goudarzi K, Shiraseb F, Behmadi R. The effects of L-carnitine supplementation on cardiovascular risk factors in participants with impaired glucose tolerance and diabetes: a systematic review and dose-response meta-analysis. Diabetol Metab Syndr 2024; 16:185. [PMID: 39085907 PMCID: PMC11290177 DOI: 10.1186/s13098-024-01415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
AIMS L-carnitine plays a role related to cardiometabolic factors, but its effectiveness and safety in CVD are still unknown. We aim to assess the effect of L-carnitine supplementation on CVD risk factors. METHODS A systematic literature search was conducted in PubMed, Web of Science, and Scopus until October 2022. The main outcomes were lipid profiles, anthropometric parameters, insulin resistance, serum glucose levels, leptin, blood pressure, and inflammatory markers. The pooled weighted mean difference (WMD) was calculated using a random-effects model. RESULTS We included the 21 RCTs (n = 2900) with 21 effect sizes in this study. L-carnitine supplementation had a significant effect on TG (WMD = - 13.50 mg/dl, p = 0.039), LDL (WMD = - 12.66 mg/dl, p < 0.001), FBG (WMD = - 6.24 mg/dl, p = 0.001), HbA1c (WMD = -0.37%, p = 0.013) HOMA-IR (WMD = -0.72, p = 0.038 (, CRP (WMD = - 0.07 mg/dl, P = 0.037), TNF-α (WMD = - 1.39 pg/ml, p = 0.033), weight (WMD = - 1.58 kg, p = 0.001 (, BMI (WMD = - 0.28 kg/m2, p = 0.017(, BFP (WMD = - 1.83, p < 0.001) and leptin (WMD = - 2.21 ng/ml, p = 0.003 (in intervention, compared to the placebo group, in the pooled analysis. CONCLUSIONS This meta-analysis demonstrated that administration of L-carnitine in diabetic and glucose intolerance patients can significantly reduce TG, LDL-C, FBG, HbA1c, HOMA-IR, CRP, TNF-α, weight, BMI, BFP, and leptin levels. PROSPERO registration code: CRD42022366992.
Collapse
Affiliation(s)
- Rezvan Gheysari
- Shohada-E-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Mehdi Hosseini
- Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shabnam Hosseini
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Hossein Bahari
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Rastgoo
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kian Goudarzi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Reza Behmadi
- Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Janssen AWF, Jansen Holleboom W, Rijkers D, Louisse J, Hoekstra SA, Schild S, Vrolijk MF, Hoogenboom RLAP, Beekmann K. Determination of in vitro immunotoxic potencies of a series of perfluoralkylsubstances (PFASs) in human Namalwa B lymphocyte and human Jurkat T lymphocyte cells. FRONTIERS IN TOXICOLOGY 2024; 6:1347965. [PMID: 38549690 PMCID: PMC10976438 DOI: 10.3389/ftox.2024.1347965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/01/2024] [Indexed: 01/05/2025] Open
Abstract
Exposure to PFASs is associated to several adverse health effects, such as immunotoxicity. Immunotoxic effects of PFOA and PFOS, including a reduced antibody response in both experimental animals and humans, have been reported. However, there is limited understanding of the underlying mechanisms involved. Moreover, there is only a restricted amount of immunotoxicity data available for a limited number of PFASs. In the current study the effects of 15 PFASs, including short- and long-chain perfluorinated carboxylic and sulfonic acids, fluorotelomer alcohols, and perfluoralkyl ether carboxylic acids were studied on the expression of recombinant activating gene 1 (RAG1) and RAG2 in the Namalwa human B lymphoma cell line, and on the human IL-2 promotor activity in Jurkat T-cells. Concentration-response data were subsequently used to derive in vitro relative potencies through benchmark dose analysis. In vitro relative potency factors (RPFs) were obtained for 6 and 9 PFASs based on their effect on RAG1 and RAG2 gene expression in Namalwa B-cells, respectively, and for 10 PFASs based on their inhibitory effect on IL-2 promotor activity in Jurkat T-cells. The most potent substances were HFPO-TA for the reduction of RAG1 and RAG2 gene expression in Namalwa cells (RPFs of 2.1 and 2.3 respectively), and PFDA on IL-2 promoter activity (RPF of 9.1). RAG1 and RAG2 play a crucial role in V (D)J gene recombination, a process for acquiring a varied array of antibodies crucial for antigen recognition. Hence, the effects observed in Namalwa cells might indicate a PFAS-induced impairment of generating a diverse range of B-cells essential for antigen recognition. The observed outcomes in the Jurkat T-cells suggest a possible PFAS-induced reduction of T-cell activation, which may contribute to a decline in the T-cell dependent antibody response. Altogether, the present study provides potential mechanistic insights into the reported PFAS-induced decreased antibody response. Additionally, the presented in vitro models may represent useful tools for assessing the immunotoxic potential of PFASs and prioritization for further risk assessment.
Collapse
Affiliation(s)
- Aafke W. F. Janssen
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| | - Wendy Jansen Holleboom
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| | - Deborah Rijkers
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| | - Jochem Louisse
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
- European Food Safety Authority, Parma, Italy
| | - Sjoerdtje A. Hoekstra
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| | - Sanne Schild
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| | - Misha F. Vrolijk
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, Netherlands
| | - Ron L. A. P. Hoogenboom
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| | - Karsten Beekmann
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
3
|
Li Y, Zhu C, Yao J, Zhu C, Li Z, Liu HY, Zhu M, Li K, Ahmed AA, Li S, Hu P, Cai D. Lithocholic Acid Alleviates Deoxynivalenol-Induced Inflammation and Oxidative Stress via PPARγ-Mediated Epigenetically Transcriptional Reprogramming in Porcine Intestinal Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5452-5462. [PMID: 38428036 DOI: 10.1021/acs.jafc.3c08044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Deoxynivalenol (DON) is a common mycotoxin that induces intestinal inflammation and oxidative damage in humans and animals. Given that lithocholic acid (LCA) has been suggested to inhibit intestinal inflammation, we aimed to investigate the protective effects of LCA on DON-exposed porcine intestinal epithelial IPI-2I cells and the underlying mechanisms. Indeed, LCA rescued DON-induced cell death in IPI-2I cells and reduced DON-stimulated inflammatory cytokine levels and oxidative stress. Importantly, the nuclear receptor PPARγ was identified as a key transcriptional factor involved in the DON-induced inflammation and oxidative stress processes in IPI-2I cells. The PPARγ function was found compromised, likely due to the hyperphosphorylation of the p38 and ERK signaling pathways. In contrast, the DON-induced inflammatory responses and oxidative stress were restrained by LCA via PPARγ-mediated reprogramming of the core inflammatory and antioxidant genes. Notably, the PPARγ-modulated transcriptional regulations could be attributed to the altered recruitments of coactivator SRC-1/3 and corepressor NCOR1/2, along with the modified histone marks H3K27ac and H3K18la. This study emphasizes the protective actions of LCA on DON-induced inflammatory damage and oxidative stress in intestinal epithelial cells via PPARγ-mediated epigenetically transcriptional reprogramming, including histone acetylation and lactylation.
Collapse
Affiliation(s)
- Yanwei Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Chuyang Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Jiacheng Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Cuipeng Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Zhaojian Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Miaonan Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Abdelkareem A Ahmed
- Department of Veterinary Biomedical Sciences, Botswana University of Agriculture and Natural Resources, Gaborone 0027, Botswana
| | - Shicheng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, P. R. China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, P. R. China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, P. R. China
| |
Collapse
|
4
|
Zhu M, Gao Y, Li Y, Xie F, Zhou J, Xu L, Lv D, Zhang X, Xu Z, Dong T, Shen T, Zhang J, Lou H. Novel Diterpenoids Incorporating Rearranged Labdanes from the Chinese Liverwort Anastrophyllum joergensenii and Their Anti-inflammatory Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19551-19567. [PMID: 38032113 DOI: 10.1021/acs.jafc.3c06235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Liverworts provide valuable ecological services to improve the sustainability of agriculture, encompassing soil health maintenance and natural pest management. Some liverworts have potential applications in medicine and as food additives. Twenty-two novel diterpenoids (anajoerins A-V), of which anajoerins B-G are rearranged labdanes featuring an unprecedented 6/5 fused ring system, were isolated from the Chinese liverwort Anastrophyllum joergensenii Schiffn. The absolute configurations of all compounds were identified based on high-resolution electrospray ionization mass spectroscopy data, NMR spectra, and ECD calculations. Plausible biogenetic pathways for unprecedented rearranged labdanes were proposed. Seven diterpenoids exhibited anti-inflammatory activity by reducing nitric oxide production in LPS-stimulated RAW264.7 murine macrophages in a dose-dependent manner with IC50s between 9.71 and 56.56 μM. All tested compounds showed no cytotoxicity at the tested concentrations. Western blot analyses of NF-κB p65 downregulation showed that anajoerin L could inhibit the NF-κB signaling pathway. Furthermore, anajoerin L also suppressed the secretion of the ConA-induced proinflammatory cytokines IFN-γ, TNF-α, and IL-6.
Collapse
Affiliation(s)
- Mingzhu Zhu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yinghui Gao
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yi Li
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Feng Xie
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinchuan Zhou
- School of Pharmacy, Linyi University, Linyi 276000, China
| | - Lintao Xu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dongxue Lv
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xinyu Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zejun Xu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ting Dong
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Shen
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiaozhen Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
5
|
de Carvalho MV, Gonçalves-de-Albuquerque CF, Silva AR. PPAR Gamma: From Definition to Molecular Targets and Therapy of Lung Diseases. Int J Mol Sci 2021; 22:E805. [PMID: 33467433 PMCID: PMC7830538 DOI: 10.3390/ijms22020805] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily that regulate the expression of genes related to lipid and glucose metabolism and inflammation. There are three members: PPARα, PPARβ or PPARγ. PPARγ have several ligands. The natural agonists are omega 9, curcumin, eicosanoids and others. Among the synthetic ligands, we highlight the thiazolidinediones, clinically used as an antidiabetic. Many of these studies involve natural or synthetic products in different pathologies. The mechanisms that regulate PPARγ involve post-translational modifications, such as phosphorylation, sumoylation and ubiquitination, among others. It is known that anti-inflammatory mechanisms involve the inhibition of other transcription factors, such as nuclear factor kB(NFκB), signal transducer and activator of transcription (STAT) or activator protein 1 (AP-1), or intracellular signaling proteins such as mitogen-activated protein (MAP) kinases. PPARγ transrepresses other transcription factors and consequently inhibits gene expression of inflammatory mediators, known as biomarkers for morbidity and mortality, leading to control of the exacerbated inflammation that occurs, for instance, in lung injury/acute respiratory distress. Many studies have shown the therapeutic potentials of PPARγ on pulmonary diseases. Herein, we describe activities of the PPARγ as a modulator of inflammation, focusing on lung injury and including definition and mechanisms of regulation, biological effects and molecular targets, and its role in lung diseases caused by inflammatory stimuli, bacteria and virus, and molecular-based therapy.
Collapse
Affiliation(s)
- Márcia V. de Carvalho
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Cassiano F. Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, Brazil
| | - Adriana R. Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
6
|
Christofides A, Konstantinidou E, Jani C, Boussiotis VA. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism 2021; 114:154338. [PMID: 32791172 PMCID: PMC7736084 DOI: 10.1016/j.metabol.2020.154338] [Citation(s) in RCA: 368] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are fatty acid-activated transcription factors of nuclear hormone receptor superfamily that regulate energy metabolism. Currently, three PPAR subtypes have been identified: PPARα, PPARγ, and PPARβ/δ. PPARα and PPARδ are highly expressed in oxidative tissues and regulate genes involved in substrate delivery and oxidative phosphorylation (OXPHOS) and regulation of energy homeostasis. In contrast, PPARγ is more important in lipogenesis and lipid synthesis, with highest expression levels in white adipose tissue (WAT). In addition to tissues regulating whole body energy homeostasis, PPARs are expressed in immune cells and have an emerging critical role in immune cell differentiation and fate commitment. In this review, we discuss the actions of PPARs in the function of the innate and the adaptive immune system and their implications in immune-mediated inflammatory conditions.
Collapse
Affiliation(s)
- Anthos Christofides
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Harvard Medical School, Boston, MA 02215, United States of America; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Eirini Konstantinidou
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Harvard Medical School, Boston, MA 02215, United States of America; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Chinmay Jani
- Department of Medicine, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Mt. Auburn Hospital, Cambridge, MA 02138, United States of America
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Harvard Medical School, Boston, MA 02215, United States of America; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America.
| |
Collapse
|
7
|
Wu L, Guo C, Wu J. Therapeutic potential of PPARγ natural agonists in liver diseases. J Cell Mol Med 2020; 24:2736-2748. [PMID: 32031298 PMCID: PMC7077554 DOI: 10.1111/jcmm.15028] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/17/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator‐activated receptor gamma (PPARγ) is a vital subtype of the PPAR family. The biological functions are complex and diverse. PPARγ plays a significant role in protecting the liver from inflammation, oxidation, fibrosis, fatty liver and tumours. Natural products are a promising pool for drug discovery, and enormous research effort has been invested in exploring the PPARγ‐activating potential of natural products. In this manuscript, we will review the research progress of PPARγ agonists from natural products in recent years and probe into the application potential and prospects of PPARγ natural agonists in the therapy of various liver diseases, including inflammation, hepatic fibrosis, non‐alcoholic fatty liver and liver cancer.
Collapse
Affiliation(s)
- Liwei Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Xiang S, Chen K, Xu L, Wang T, Guo C. Bergenin Exerts Hepatoprotective Effects by Inhibiting the Release of Inflammatory Factors, Apoptosis and Autophagy via the PPAR-γ Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:129-143. [PMID: 32021098 PMCID: PMC6970010 DOI: 10.2147/dddt.s229063] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022]
Abstract
Objective Hepatic ischemia reperfusion (IR) limits the development of liver transplantation technology. The aim of this study was to explore the protective effects of Bergenin on hepatic IR, particularly the elimination of reactive oxygen species (ROS) and activation of the peroxisome proliferators activated receptor γ (PPAR-γ) pathway. Methods Initial experiments were performed to confirm the non-toxicity of Bergenin. Mice were randomly divided into sham, IR, and IR + Bergenin (10, 20 and 40 mg/kg) groups, and serum and tissue samples were obtained at 2, 8 and 24 h for detection of liver enzymes (ALT and AST), inflammatory factors (TNF-α, IL-6 and IL-1β), ROS, cell death markers (Bcl-2, Bax, Beclin-1 and LC3) and related important pathways (PPAR-γ, P38 MAPK, NF-κB p65 and JAK2/STAT1). Results Bergenin reduced the release of ROS, down-regulated inflammatory factors, and inhibited apoptosis and autophagy. Additionally, expression of PPAR-γ-related genes was increased and phosphorylation of P38 MAPK, NF-κB p65 and JAK2/STAT1-related proteins was decreased in Bergenin pre-treatment groups in a dose-dependent manner. Conclusion Bergenin exerts hepatic protection by eliminating ROS, affecting the release of inflammatory factors, and influencing apoptosis- and autophagy-related genes via the PPAR-γ pathway in this model of hepatic IR injury.
Collapse
Affiliation(s)
- Shihao Xiang
- Medical College of Soochow University, Suzhou, 215006, People's Republic of China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, People's Republic of China
| | - Ting Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, People's Republic of China
| | - Chuanyong Guo
- Medical College of Soochow University, Suzhou, 215006, People's Republic of China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| |
Collapse
|
9
|
Fan X, Men R, Wang H, Shen M, Wang T, Ye T, Luo X, Yang L. Methylprednisolone Decreases Mitochondria-Mediated Apoptosis and Autophagy Dysfunction in Hepatocytes of Experimental Autoimmune Hepatitis Model via the Akt/mTOR Signaling. Front Pharmacol 2019; 10:1189. [PMID: 31680966 PMCID: PMC6813226 DOI: 10.3389/fphar.2019.01189] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/17/2019] [Indexed: 02/05/2023] Open
Abstract
Autoimmune hepatitis (AIH) is characterized by massive immune cell-mediated hepatocyte destruction. Glucocorticoids, particularly methylprednisolone (MP), are the most effective treatment for AIH; however, the mechanism underlying the effects of glucocorticoid treatment has not been fully elucidated. The present study explored the effects of MP on damaged hepatocytes in mice with concanavalin A (ConA)-induced experimental autoimmune hepatitis (EAH). C57BL/6 mice were divided into three groups: a normal control group (injected with normal saline), a ConA (20 mg/kg) group, and a ConA + MP (3.12 mg/kg) group. The serum levels of liver enzymes, cytokines, activated T cells, and apoptosis- and autophagy-associated marker proteins were determined 12 h after ConA injection. Human hepatocyte cell line LO2 was used to verify the effects of ConA and MP in vitro. MP treatment significantly decreased inflammatory reactions in the serum and liver tissues and activated the Akt/mTOR signaling pathway to inhibit apoptosis and autophagy in hepatocytes in vivo. Transmission electron microscopy (TEM) revealed fewer autophagosomes in the MP-treated group than in the ConA-treated group. MP treatment obviously suppressed apoptosis and mitochondrial membrane potential (ΔΨm) loss in hepatocytes in vitro. Furthermore, ConA treatment increased the levels of LC3-II, p62/SQSTM1, and Beclin-1, while bafilomycin A1 did not augment the levels of LC3-II. MP treatment decreased the levels of LC3-II, p62/SQSTM1, and Beclin-1 and upregulated the levels of phosphorylated (p)-Akt and p-mTOR. In conclusion, MP ameliorated mitochondria-mediated apoptosis and autophagy dysfunction in ConA-induced hepatocyte injury in vivo and in vitro via the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaoli Fan
- Department of Gastroenterology and Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre,West China Hospital, Sichuan University, Chengdu, China
| | - Ruoting Men
- Department of Gastroenterology and Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre,West China Hospital, Sichuan University, Chengdu, China
| | - Haoran Wang
- Department of Gastroenterology and Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre,West China Hospital, Sichuan University, Chengdu, China
| | - Mengyi Shen
- Department of Gastroenterology and Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre,West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Wang
- Department of Gastroenterology and Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre,West China Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuefeng Luo
- Department of Gastroenterology and Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre,West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre,West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
15-Deoxy-∆- 12,14-Prostaglandin J2 (15d-PGJ2), an Endogenous Ligand of PPAR- γ: Function and Mechanism. PPAR Res 2019; 2019:7242030. [PMID: 31467514 PMCID: PMC6699332 DOI: 10.1155/2019/7242030] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/14/2019] [Indexed: 02/06/2023] Open
Abstract
15-Deoxy-∆-12,14-prostaglandin J2 (15d-PGJ2), a natural peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, has been explored in some detail over the last 20 years. By triggering the PPAR-γ signalling pathway, it plays many roles and exerts antitumour, anti-inflammatory, antioxidation, antifibrosis, and antiangiogenesis effects. Although many synthetic PPAR-γ receptor agonists have been developed, as an endogenous product of PPAR-γ receptors, 15d-PGJ2 has beneficial characteristics including rapid expression and the ability to contribute to a natural defence mechanism. In this review, we discuss the latest advances in our knowledge of the biological role of 15d-PGJ2 mediated through PPAR-γ. It is important to understand its structure, synthesis, and functional mechanisms to develop preventive agents and limit the progression of associated diseases.
Collapse
|
11
|
The effect of L-carnitine on inflammatory mediators: a systematic review and meta-analysis of randomized clinical trials. Eur J Clin Pharmacol 2019; 75:1037-1046. [PMID: 30915521 DOI: 10.1007/s00228-019-02666-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/07/2019] [Indexed: 12/28/2022]
Abstract
AIM AND BACKGROUND Reducing inflammation by nutritional supplements may help to reduce the risk of many chronic diseases. Our aim in this meta-analysis was to determine the effect of L-carnitine on inflammatory mediators including C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). METHODS Our systematic search to find relevant randomized clinical trials (RCTs) was performed up to October 2018 using ISI Web of Science, Google Scholar, PubMed/Medline, and SCOPUS. In this meta-analysis, the weighted mean differences (WMD) with standard errors (SE) were used to pool the data. WMD was calculated by subtracting change-from-baseline mean values in the control group from change-from-baseline mean values in the intervention group in each study. To identify heterogeneity among studies, the I2 statistic was employed. The protocol was registered with PROSPERO (No. CRD42019116695). RESULTS Thirteen articles were included in our systematic review and meta-analysis. The results of the meta-analysis indicated that L-carnitine supplementation was significantly associated with lower levels of CRP in comparison to controls (WMD = -1.23 mg/L; 95% CI: -1.73, -0.72 mg/dL; P < 0.0001). Also, a slight but statistically significant decrease was observed in IL-6 and TNF-α levels (WMD = -0.85 pg/dL; 95% CI: -1.38, -0.32 pg/dL; P = 0.002 and WMD = -0.37 pg/dL; 95% CI: -0.68, -0.06 pg/dL; P = 0.018, respectively). CONCLUSION Our results indicate that L-carnitine reduced inflammatory mediators, especially in studies with a duration of more than 12 weeks. Further studies with different doses and intervention durations and separately in men and women are necessary.
Collapse
|
12
|
Illés P, Grycová A, Krasulová K, Dvořák Z. Effects of Flavored Nonalcoholic Beverages on Transcriptional Activities of Nuclear and Steroid Hormone Receptors: Proof of Concept for Novel Reporter Cell Line PAZ-PPARg. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12066-12078. [PMID: 30394742 DOI: 10.1021/acs.jafc.8b05158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We developed and characterized a novel human luciferase reporter cell line for the assessment of peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activity, PAZ-PPARg. The luciferase activity induced by PPARγ endogenous agonist 15d-PGJ2 and prostaglandin PGD2 reached mean values of (87.9 ± 14.0)-fold and (89.6 ± 19.7)-fold after 24 h of exposure to 40 μM 15d-PGJ2 and 70 μM PGD2, respectively. A concentration-dependent inhibition of 15d-PGJ2- and PGD2-induced luciferase activity was observed after the application of T0070907, a selective antagonist of PPARγ, which confirms the specificity of response to both agonists. The PAZ-PPARg cell line, along with the reporter cell lines for the assessment of transcriptional activities of thyroid receptor (TR), vitamin D3 receptor (VDR), androgen receptor (AR), and glucocorticoid receptor (GR), were used for the screening of 27 commonly marketed flavored nonalcoholic beverages for their possible disrupting effects. Our findings indicate that some of the examined beverages have the potential to modulate the transcriptional activities of PPARγ, VDR, and AR.
Collapse
Affiliation(s)
- Peter Illés
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| | - Aneta Grycová
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| | - Kristýna Krasulová
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| | - Zdeněk Dvořák
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| |
Collapse
|
13
|
Bie Q, Dong H, Jin C, Zhang H, Zhang B. 15d-PGJ2 is a new hope for controlling tumor growth. Am J Transl Res 2018; 10:648-658. [PMID: 29636856 PMCID: PMC5883107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/23/2017] [Indexed: 06/08/2023]
Abstract
15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), a natural PPARγ agonist, has been investigated for over a decade. Studies have revealed that it has proapoptotic, anti-inflammatory, antiangiogenic, and anti-metastatic abilities, as well as a significant anticancer effect. However, the mechanisms underlying the actions of 15d-PGJ2 on various tumors are only partially known. In this review, we discuss the recent progress in elucidating these mechanisms. Understanding the various functions and mechanisms of 15d-PGJ2 are crucial for the development of new therapies for controlling tumor growth and providing the basis for further research.
Collapse
Affiliation(s)
- Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical UniversityJining, Shandong, P. R. China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical UniversityJining, Shandong, P. R. China
| | - Haixin Dong
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical UniversityJining, Shandong, P. R. China
| | - Chengqiang Jin
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical UniversityJining, Shandong, P. R. China
| | - Hao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical UniversityJining, Shandong, P. R. China
- Department of Hematology, Affiliated Hospital of Jining Medical UniversityJining, Shandong, P. R. China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical UniversityJining, Shandong, P. R. China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical UniversityJining, Shandong, P. R. China
| |
Collapse
|
14
|
Yao L, Chen W, Song K, Han C, Gandhi CR, Lim K, Wu T. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) prevents lipopolysaccharide (LPS)-induced acute liver injury. PLoS One 2017; 12:e0176106. [PMID: 28423012 PMCID: PMC5397067 DOI: 10.1371/journal.pone.0176106] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/05/2017] [Indexed: 12/23/2022] Open
Abstract
The NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes the oxidation of the 15(S)-hydroxyl group of prostaglandin E2 (PGE2), converting the pro-inflammatory PGE2 to the anti-inflammatory 15-keto-PGE2 (an endogenous ligand for peroxisome proliferator-activated receptor-gamma [PPAR-γ]). To evaluate the significance of 15-PGDH/15-keto-PGE2 cascade in liver inflammation and tissue injury, we generated transgenic mice with targeted expression of 15-PGDH in the liver (15-PGDH Tg) and the animals were subjected to lipopolysaccharide (LPS)/Galactosamine (GalN)-induced acute liver inflammation and injury. Compared to the wild type mice, the 15-PGDH Tg mice showed lower levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), less liver tissue damage, less hepatic apoptosis/necrosis, less macrophage activation, and lower inflammatory cytokine production. In cultured Kupffer cells, treatment with 15-keto-PGE2 or the conditioned medium (CM) from 15-PGDH Tg hepatocyes inhibited LPS-induced cytokine production, in vitro. Both 15-keto-PGE2 and the CM from15-PGDH Tg hepatocyes also up-regulated the expression of PPAR-γ downstream genes in Kupffer cells. In cultured hepatocytes, 15-keto-PGE2 treatment or 15-PGDH overexpression did not influence TNF-α-induced hepatocyte apoptosis. These findings suggest that 15-PGDH protects against LPS/GalN-induced liver injury and the effect is mediated via 15-keto-PGE2, which activates PPAR-γ in Kupffer cells and thus inhibits their ability to produce inflammatory cytokines. Accordingly, we observed that the PPAR-γ antagonist, GW9662, reversed the effect of 15-keto-PGE2 in Kupffer cell in vitro and restored the susceptibility of 15-PGDH Tg mice to LPS/GalN-induced acute liver injury in vivo. Collectively, our findings suggest that 15-PGDH-derived 15-keto-PGE2 from hepatocytes is able to activate PPAR-γ and inhibit inflammatory cytokine production in Kupffer cells and that this paracrine mechanism negatively regulates LPS-induced necro-inflammatory response in the liver. Therefore, induction of 15-PGDH expression or utilization of 15-keto-PGE2 analogue may have therapeutic benefits for the treatment of endotoxin-associated liver inflammation/injury.
Collapse
Affiliation(s)
- Lu Yao
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Kyoungsub Song
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Chang Han
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Chandrashekhar R. Gandhi
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and Department of Surgery, University of Cincinnati, Cincinnati, United States of America
| | - Kyu Lim
- Department of Biochemistry, College of Medicine, Cancer Research Institute and Infection Signaling Network Research Center, Chungnam National University, Daejeon, Korea
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
15
|
15-Deoxy-Δ 12,14-prostaglandin J 2 Exerts Antioxidant Effects While Exacerbating Inflammation in Mice Subjected to Ureteral Obstruction. Mediators Inflamm 2017; 2017:3924912. [PMID: 28503033 PMCID: PMC5414590 DOI: 10.1155/2017/3924912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/17/2017] [Accepted: 03/12/2017] [Indexed: 02/01/2023] Open
Abstract
Urinary obstruction is associated with inflammation and oxidative stress, leading to renal dysfunction. Previous studies have shown that 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has both antioxidant and anti-inflammatory effects. Using a unilateral ureteral obstruction (UUO) mouse model, we examined the effects of 15d-PGJ2 on oxidative stress and inflammation in the kidney. Mice were subjected to UUO for 3 days and treated with 15d-PGJ2. Protein and RNA expression were examined using immunoblotting and qPCR. 15d-PGJ2 increased NF-E2-related nuclear factor erythroid-2 (Nrf2) protein expression in response to UUO, and heme oxygenase 1 (HO-1), a downstream target of Nrf2, was induced by 15d-PGJ2. Additionally, 15d-PGJ2 prevented protein carbonylation, a UUO-induced oxidative stress marker. Inflammation, measured by nuclear NF-κB, F4/80, and MCP-1, was increased in response to UUO and further increased by 15d-PGJ2. Renal injury was aggravated by 15d-PGJ2 treatment as measured by kidney injury molecule-1 (KIM-1) and cortical caspase 3 content. No effect of 15d-PGJ2 was observed on renal function in mice subjected to UUO. This study illustrates differentiated functioning of 15d-PGJ2 on inflammation and oxidative stress in response to obstructive nephropathy. High concentrations of 15d-PGJ2 protects against oxidative stress during 3-day UUO in mice; however, it aggravates the associated inflammation.
Collapse
|
16
|
Li J, Chen K, Li S, Liu T, Wang F, Xia Y, Lu J, Zhou Y, Guo C. Pretreatment with Fucoidan from Fucus vesiculosus Protected against ConA-Induced Acute Liver Injury by Inhibiting Both Intrinsic and Extrinsic Apoptosis. PLoS One 2016; 11:e0152570. [PMID: 27035150 PMCID: PMC4818100 DOI: 10.1371/journal.pone.0152570] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/16/2016] [Indexed: 12/28/2022] Open
Abstract
This study aimed to explore the effects of fucoidan from Fucus vesiculosus on concanavalin A (ConA)-induced acute liver injury in mice. Pretreatment with fucoidan protected liver function indicated by ALT, AST and histopathological changes by suppressing inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). In addition, intrinsic and extrinsic apoptosis mediated by Bax, Bid, Bcl-2, Bcl-xL and Caspase 3, 8, and 9 were inhibited by fucoidan and the action was associated with the TRADD/TRAF2 and JAK2/STAT1 signal pathways. Our results demonstrated that fucoidan from Fucus vesiculosus alleviated ConA-induced acute liver injury via the inhibition of intrinsic and extrinsic apoptosis mediated by the TRADD/TRAF2 and JAK2/STAT1 pathways which were activated by TNF-α and IFN-γ. These findings could provide a potential powerful therapy for T cell-related hepatitis.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
17
|
Li S, Xia Y, Chen K, Li J, Liu T, Wang F, Lu J, Zhou Y, Guo C. Epigallocatechin-3-gallate attenuates apoptosis and autophagy in concanavalin A-induced hepatitis by inhibiting BNIP3. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:631-47. [PMID: 26929598 PMCID: PMC4760659 DOI: 10.2147/dddt.s99420] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Epigallocatechin-3-gallate (EGCG) is the most effective compound in green tea, and possesses a wide range of beneficial effects, including anti-inflammatory, antioxidant, antiobesity, and anticancer effects. In this study, we investigated the protective effects of EGCG in concanavalin A (ConA)-induced hepatitis in mice and explored the possible mechanisms involved in these effects. Methods Balb/C mice were injected with ConA (25 mg/kg) to induce acute autoimmune hepatitis, and EGCG (10 or 30 mg/kg) was administered orally twice daily for 10 days before ConA injection. Serum liver enzymes, proinflammatory cytokines, and other marker proteins were determined 2, 8, and 24 hours after the ConA administration. Results BNIP3 mediated cell apoptosis and autophagy in ConA-induced hepatitis. EGCG decreased the immunoreaction and pathological damage by reducing inflammatory factors, such as TNF-α, IL-6, IFN-γ, and IL-1β. EGCG also exhibited an antiapoptotic and antiautophagic effect by inhibiting BNIP3 via the IL-6/JAKs/STAT3 pathway. Conclusion EGCG attenuated liver injury in ConA-induced hepatitis by downregulating IL-6/JAKs/STAT3/BNIP3-mediated apoptosis and autophagy.
Collapse
Affiliation(s)
- Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Chen K, Dai W, Wang F, Xia Y, Li J, Li S, Liu T, Zhang R, Wang J, Lu W, Zhou Y, Yin Q, Zheng Y, Abudumijiti H, Chen R, Lu J, Zhou Y, Guo C. Inhibitive effects of 15-deoxy-Δ(12),(14)-prostaglandin J2 on hepatoma-cell proliferation through reactive oxygen species-mediated apoptosis. Onco Targets Ther 2015; 8:3585-3593. [PMID: 26664142 PMCID: PMC4671813 DOI: 10.2147/ott.s92832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) induces reactive oxygen species (ROS)-mediated apoptosis in many malignant cells, which has not been studied in hepatoma cells. In this study, we investigated whether 15d-PGJ2 induced apoptosis in hepatocellular carcinoma (HCC) associated with ROS. MATERIALS AND METHODS The LM3, SMMC-7721, and Huh-7 HCC cell lines were treated with 15d-PGJ2 (5-40 μM) for 24, 48, and 72 hours. Cholecystokinin 8 was used to detect the cytotoxicity of 15d-PGJ2. Flow cytometry, Hoechst staining, and Western blotting were used to analyze apoptosis. ROS were combined with the fluorescent probe dihydroethidium and then observed by fluorescence microscopy and flow cytometry. Activation of JNK and expression of Akt were detected by Western blotting. RESULTS 15d-PGJ2 inhibited HCC cell proliferation and induced apoptosis in a dose- and time-dependent manner. Apoptosis was mainly induced via an intrinsic pathway and was ROS-dependent, and was alleviated by ROS scavengers. ROS induced JNK activation and Akt downregulation in HCC cells. CONCLUSION 15d-PGJ2 induced ROS in HCC cell lines, and inhibition of cell growth and apoptosis were partly ROS-dependent.
Collapse
Affiliation(s)
- Kan Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Rong Zhang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, First Clinical Medical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jianrong Wang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, First Clinical Medical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Wenxia Lu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, First Clinical Medical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yuqing Zhou
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Qin Yin
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Huerxidan Abudumijiti
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Rongxia Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
19
|
Yin Q, Li J, Xia Y, Zhang R, Wang J, Lu W, Zhou Y, Zheng Y, Abudumijiti H, Chen R, Chen K, Li S, Liu T, Wang F, Lu J, Zhou Y, Guo C. Systematic review and meta-analysis: bezafibrate in patients with primary biliary cirrhosis. Drug Des Devel Ther 2015; 9:5407-19. [PMID: 26491252 PMCID: PMC4599574 DOI: 10.2147/dddt.s92041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND AIM Ursodeoxycholic acid (UDCA) is the standard treatment for primary biliary cirrhosis (PBC), but not all cases respond well. Evidence has shown that combination therapy of UDCA with bezafibrate significantly improved liver function. A meta-analysis was performed to assess the efficacy and safety of UDCA and bezafibrate combination therapy in the treatment of PBC. RESULTS Nine trials, with a total of 269 patients, were included in the analysis. The bias risk of these trials was high. Compared with UDCA alone, the combination with bezafibrate improved the Mayo risk score (mean difference [MD], 0.60; 95% confidence interval [CI], 0.25-0.95; P=0.0008) and liver biochemistry: alkaline phosphatase (MD, -238.21 IU/L; 95% CI, -280.83 to -195.60; P<0.00001); gamma-glutamyltransferase (MD, -38.23 IU/L; 95% CI, -50.16 to -25.85; P<0.00001); immunoglobulin M (MD, -128.63 IU/L; 95% CI, -151.55 to -105.71; P<0.00001); bilirubin (MD, -0.20 mg/dL; 95% CI, -0.33 to -0.07; P=0.002); triglycerides (MD, -26.84 mg/dL; 95% CI, -36.51 to -17.17; P<0.0001); total cholesterol (MD, -21.58 mg/dL; 95% CI, -30.81 to -12.34; P<0.0001), and serum alanine aminotransferase (MD, -10.24 IU/L; 95% CI, -12.65 to -78.5; P<0.00001). However, combination therapy showed no significant differences in the incidence of all-cause mortality or pruritus, and may have resulted in more adverse events (risk ratio [RR], 0.22; 95% CI, 0.07-0.67; P=0.008). CONCLUSION Combination therapy improved liver biochemistry and the prognosis of PBC, but did not improve clinical symptoms or incidence of death. Attention should be paid to adverse events when using bezafibrate.
Collapse
Affiliation(s)
- Qin Yin
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Rong Zhang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- The First Clinical Medical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jianrong Wang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- The First Clinical Medical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Wenxia Lu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- The First Clinical Medical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yuqing Zhou
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Huerxidan Abudumijiti
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Rongxia Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
20
|
Zhang Y, Li S, He L, Wang F, Chen K, Li J, Liu T, Zheng Y, Wang J, Lu W, Zhou Y, Yin Q, Xia Y, Zhou Y, Lu J, Guo C. Combination therapy of fenofibrate and ursodeoxycholic acid in patients with primary biliary cirrhosis who respond incompletely to UDCA monotherapy: a meta-analysis. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2757-66. [PMID: 26045661 PMCID: PMC4448927 DOI: 10.2147/dddt.s79837] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Although the effectiveness of treatment with ursodeoxycholic acid (UDCA) and fenofibrate for primary biliary cirrhosis (PBC) has been suggested by small trials, a systematic review to summarize the evidence has not yet been carried out. Methods A meta-analysis of all long-term randomized controlled trials comparing the combination of UDCA and fenofibrate with UDCA monotherapy was performed via electronic searches. Results Six trials, which included 84 patients, were assessed. Combination therapy with UDCA and fenofibrate was more effective than UDCA monotherapy in improving alkaline phosphatase (mean difference [MD]: −90.44 IU/L; 95% confidence interval [CI]: −119.95 to −60.92; P<0.00001), gamma-glutamyl transferase (MD: −61.58 IU/L; 95% CI: −122.80 to −0.35; P=0.05), immunoglobulin M (MD: −38.45 mg/dL; 95% CI: −64.38 to −12.51; P=0.004), and triglycerides (MD: −0.41 mg/dL; 95% CI: −0.82 to −0.01; P=0.05). However, their effects on pruritus (odds ratio [OR]: 0.39; 95% CI: 0.09–1.78; P=0.23), total bilirubin (MD: −0.05 mg/dL; 95% CI: −0.21 to 0.12; P=0.58), and alanine aminotransferase (MD: −3.31 IU/L; 95% CI: −14.60 to 7.97; P=0.56) did not differ significantly. This meta-analysis revealed no significant differences in the incidence of adverse events (OR: 0.21; 95% CI: 0.03–1.25; P=0.09) between patients treated with combination therapy and those treated with monotherapy. Conclusion In this meta-analysis, combination therapy with UDCA and fenofibrate was more effective in reducing alkaline phosphatase than UDCA monotherapy, but it did not improve clinical symptoms. There did not appear to be an increase in adverse events with combination therapy.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China ; Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lei He
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jianrong Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China ; The First Clinical Medical College of Nanjing Medical University, Nanjing, People's Republic of China
| | - Wenxia Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China ; The First Clinical Medical College of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuqing Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China ; The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qin Yin
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China ; The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Zhou Y, Chen K, He L, Xia Y, Dai W, Wang F, Li J, Li S, Liu T, Zheng Y, Wang J, Lu W, Yin Q, Zhou Y, Lu J, Teng H, Guo C. The Protective Effect of Resveratrol on Concanavalin-A-Induced Acute Hepatic Injury in Mice. Gastroenterol Res Pract 2015; 2015:506390. [PMID: 26089871 PMCID: PMC4458299 DOI: 10.1155/2015/506390] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 04/01/2015] [Accepted: 05/02/2015] [Indexed: 12/29/2022] Open
Abstract
Pharmacologic Relevance. Resveratrol, an antioxidant derived from grapes, has been reported to modulate the inflammatory process. In this study, we investigated the effects of resveratrol and its mechanism of protection on concanavalin-A- (ConA-) induced liver injury in mice. Materials and Methods. Acute autoimmune hepatitis was induced by ConA (20 mg/kg) in Balb/C mice; mice were treated with resveratrol (10, 20, and 30 mg/kg) daily by oral gavage for fourteen days prior to a single intravenous injection of ConA. Eight hours after injection, histologic grading, proinflammatory cytokine levels, and hedgehog pathway activity were determined. Results. After ConA injection, the cytokines IL-2, IL-6, and TNF-α were increased, and Sonic hedgehog (Shh), Glioblastoma- (Gli-) 1, and Patched (Ptc) levels significantly increased. Pretreatment with resveratrol ameliorated the pathologic effects of ConA-induced autoimmune hepatitis and significantly inhibited IL-2, IL-6, TNF-α, Shh, Gli-1, and Ptc. The effects of resveratrol on the hedgehog pathway were studied by western blotting and immunohistochemistry. Resveratrol decreased Shh expression, possibly by inhibiting Shh expression in order to reduce Gli-1 and Ptc expression. Conclusion. Resveratrol protects against ConA-induced autoimmune hepatitis by decreasing cytokines expression in mice. The decreases seen in Gli-1 and Ptc may correlate with the amelioration of hedgehog pathway activity.
Collapse
Affiliation(s)
- Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lei He
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jianrong Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- The First Clinical Medical College of Nanjing Medical University, Nanjing 210029, China
| | - Wenxia Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- The First Clinical Medical College of Nanjing Medical University, Nanjing 210029, China
| | - Qin Yin
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yuqing Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongfei Teng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
22
|
Wang C, Xia Y, Zheng Y, Dai W, Wang F, Chen K, Li J, Li S, Zhu R, Yang J, Yin Q, Zhang H, Wang J, Lu J, Zhou Y, Guo C. Protective effects of N-acetylcysteine in concanavalin A-induced hepatitis in mice. Mediators Inflamm 2015; 2015:189785. [PMID: 25821351 PMCID: PMC4363985 DOI: 10.1155/2015/189785] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/01/2015] [Accepted: 01/13/2015] [Indexed: 01/26/2023] Open
Abstract
This study was designed to study the protective effects and mechanisms of N-acetylcysteine (NAC) in concanavalin A-induced hepatitis in mice. In this study, pretreatment with NAC ameliorated the histopathological changes and suppressed inflammatory cytokines in ConA-induced hepatitis. The expression of IL-2, IL-6, TNF-α, and IFN-γ was significantly reduced in the NAC-treated groups. NAC activated PI3K/Akt pathway and inhibited the activation of NF-κB. Additionally, NAC reduced autophagosome formation, as assessed by detecting the expression of LC3 and Beclin 1. Our results demonstrate that NAC can alleviate ConA-induced hepatitis by regulating the PI3K/Akt pathway and reducing the late stages of autophagy. Our results described a new pharmaceutical to provide more effective therapies for immune hepatitis.
Collapse
Affiliation(s)
- Chengfen Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Rong Zhu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Jing Yang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Qin Yin
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Huawei Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Junshan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| |
Collapse
|