1
|
Khabade S, Sirigiri DNR, Ram AB. l-Asparaginase from Solanum lycopersicum as a Nutraceutical for Acute Lymphoblastic Leukemia. ACS OMEGA 2024; 9:3616-3624. [PMID: 38284052 PMCID: PMC10809669 DOI: 10.1021/acsomega.3c07633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/25/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
l-Asparaginase (E.C. 3.5.1.1) is an indispensable analeptic anticancer enzyme used as an amalgam with additional cancer medicines for the cure of acute lymphoblastic leukemia (ALL). The presence of lAparaginase in tomato was confirmed byWestern blotting and DNA sequencing. The l-Asparaginase gene from tomato has been deposited in the NCBI database with accession number: OR736141. Crude enzyme was extracted from the fruit pulp of Solanum lycopersicum, and the activity was determined by the Nesslerization method. Further, the crude extract was subjected to purification, and kinetic parameters were studied. The percentage yield was calculated to be 6.457, and the purification fold was 0.086. The enzyme showed maximum activity at optimum pH 7.0, optimum temperature 37 °C, and incubation time of 05 min. The Michaelis constant "Km" and maximum velocity "Vmax" values were determined by the Lineweaver-Burk plot, which showed a low Km value of 0.66 and Vmax of 3.846 IU. Cytotoxic studies were carried out for crude and purified l-asparaginase. Purified l-Asparaginase has exhibited anticancer activity against the ALL model system, K-562 cell line, comparable to that of the anticancer compound vinblastine. Hence, l-Asparaginase from the fruit extract of tomato could be used as a nutraceutical to support cancer treatment in acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Sarina
P. Khabade
- Department
of PG Studies in Biotechnology, Nrupathunga
University, Bangalore 560001, India
| | - Divijendra Natha Reddy Sirigiri
- Department
of Biotechnology, BMS College of Engineering, Bangalore, Affiliated to Visvesvaraya Technological University, Belagavi, Karnataka 560019, India
| | - Anshu Beulah Ram
- Department
of PG Studies in Biotechnology, Nrupathunga
University, Bangalore 560001, India
| |
Collapse
|
2
|
Aisha A, Zahra S, Tahir IM, Hussain A, Bano N, Roobi A, Afsheen N, Saleem Y. Anticancer L-Asparaginase and Phytoactive Compounds From Plant Solanum nigrum Against MDR (Methicillindrug resistant) Staphylococcus aureus and Fungal Isolates. Dose Response 2022; 20:15593258221092379. [PMID: 35558870 PMCID: PMC9087284 DOI: 10.1177/15593258221092379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
L-asparaginase is used in chemotherapy for acute lymphoblastic leukemia and other
cancers. L-asparaginase derived from bacterial source triggers immune responses.
The current study investigates Solanum nigrum as a novel and
latent source of L-asparaginase to minimize immunological reactions. The
antitumor activity of SN methanol extract was determined using the potato disc
assay. InterPro Chimera and InterPro were used to predict the amino acid
sequence of L-asparaginase and its anticancer activity. Purification of the
enzyme was carried out to homogeneity of 1.51-fold with a recovery of 61.99%. At
optimal conditions of 36.5°C, pH 8.6, and 8.5 g/mL substrate, fruit (crude
extract) revealed an L-asparaginase titer of 48.23 U/mL. The molecular weight of
the enzyme was calculated to be 32 ± 5 kDa using SDS PAGE. The fruit’s total
flavonoids and phenolic contents are 0.42 ± .030 g/mL and 94 ± 1.9 mg CAE,
respectively. Anti-tumorigenic efficacy was determined to be 66% against
Agrobacterium tumefaciens. Additionally, the extract
possesses potent antifungal and antibacterial properties. Molecular docking
provided the structural motifs and underlying interactions between
L-asparaginase, N-acetylglucosamine, murine, and chitin. SN contains high levels
of the enzyme L-asparaginase and phytochemicals, making it a potential source of
anticancer drugs.
Collapse
Affiliation(s)
- Ambreen Aisha
- Department of Biochemistry, Faisalabad Medical University, Faisalabad, Pakistan
| | - Saba Zahra
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Imtiaz M. Tahir
- College of Allied Health Professionals, Government College University, Faisalabad, Pakistan
| | - Asim Hussain
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Naheed Bano
- Department of Fisheries & Aquaculture, MNS-University of Agriculture, Multan, Pakistan
| | - Alishbah Roobi
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Yasir Saleem
- Pakistan Council of Scientific and Industrial Research (PCSIR) Labs, Lahore, Pakistan
| |
Collapse
|
3
|
Bioactive Constituents and Toxicological Evaluation of Selected Antidiabetic Medicinal Plants of Saudi Arabia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7123521. [PMID: 35082904 PMCID: PMC8786507 DOI: 10.1155/2022/7123521] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 12/23/2022]
Abstract
The purpose of this review is to summarize the available antidiabetic medicinal plants in the Kingdom of Saudi Arabia with its phytoconstituents and toxicological findings supporting by the latest literature. Required data about medicinal plants having antidiabetic activities and growing in the Kingdom of Saudi Arabia were searched/collected from the online databases including Wiley, Google, PubMed, Google Scholar, ScienceDirect, and Scopus. Keywords used in search are in vivo antidiabetic activities, flora of Saudi Arabia, active ingredients, toxicological evaluations, and medicinal plants. A total of 50 plant species belonging to 27 families were found in the flora of Saudi Arabia. Dominant family was found Lamiaceae with 5 species (highest) followed by Moraceae with 4 species. β-Amyrin, β-sitosterol, stigmasterol, oleanolic acid, ursolic acid, rutin, chlorogenic acid, quercetin, and kaempferol are the very common bioactive constituents of these selected plant species. This paper has presented a list of antidiabetic plants used in the treatment of diabetes mellitus. Bioactive antidiabetic phytoconstituents which showed that these plants have hypoglycemic effects and highly recommended for further pharmacological purposes and to isolate/identify antidiabetes mellitus (anti-DM) active agents also need to investigate the side effects of active ingredients.
Collapse
|
4
|
Therapeutic Effect of Cinnamomum osmophloeum Leaf Extract on Oral Mucositis Model Rats Induced by 5-Fluororacil via Influencing IL-1β and IL-6 Levels. Processes (Basel) 2021. [DOI: 10.3390/pr9040615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oral mucositis (OM) is the oral inflammation as manifestation of chemotherapy and/or radiotherapy. Cinnamomum osmophloeum (CO), of which the constituents possess anti-inflammatory activities, may have potential to alleviate OM. In this study, laboratory rats were injected with 5-Fluororacil and their oral mucosa were irritated by 18-gauge needle pouching to induce OM. Rats were randomly divided into six experimental groups: without treatment (WT), only 100 mg/mL CO leaf extract (COLE) treatment (100-only), only 5-Fluororacil treatment (5-FU), 5-FU then treated with Triamcinolone acetonide orobase (5-FU+G), 5-FU then treated with 50 mg/mL COLE, and 5-FU then treated with 100 mg/mL COLE (5-FU+100). Body weights and food and water intakes during the experimental period were recorded. Macroscopic examination, histopathological analyses, and serum tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) levels of these rats were evaluated or determined. No significant difference was found between the WT and 100-only groups. Results of macroscopic examinations, histopathological analyses, body weight changes, food and water intakes, and serum IL-1β and IL-6 levels showed significant therapeutic effects of the 5-FU+100 group compared to the 5-FU group. These finding suggest that COLE can be one of potential remedies for OM therapy through influencing proinflammatory cytokine levels.
Collapse
|
5
|
Xia C, Jiang C, Li W, Wei J, Hong H, Li J, Feng L, Wei H, Xin H, Chen T. A Phase II Randomized Clinical Trial and Mechanistic Studies Using Improved Probiotics to Prevent Oral Mucositis Induced by Concurrent Radiotherapy and Chemotherapy in Nasopharyngeal Carcinoma. Front Immunol 2021; 12:618150. [PMID: 33841399 PMCID: PMC8024544 DOI: 10.3389/fimmu.2021.618150] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Earlier evidence has proven that probiotic supplements can reduce concurrent chemoradiotherapy (CCRT)-induced oral mucositis (OM) in nasopharyngeal cancer (NPC). The incidence of severe OM (grade 3 or higher) was the primary endpoint in this study. We first enrolled 85 patients with locally advanced NPC who were undergoing CCRT. Of them, 77 patients were finally selected and randomized (1:1) to receive either a probiotic cocktail or placebo. To investigate the protective effects and the mechanism of probiotic cocktail treatment on OM induced by radiotherapy and chemotherapy, we randomly divided the rats into the control (C) group, the model (M) group, and the probiotic (P) group. After treatment, samples from the tongue, blood, and fecal and proximal colon tissues on various days (7th, 14th, and 21st days) were collected and tested for the inflammatory response, cell apoptosis, intestinal permeability, and intestinal microbial changes. We found that patients taking the probiotic cocktail showed significantly lower OM. The values of the incidence of 0, 1, 2, 3, and 4 grades of OM in the placebo group and in the probiotic cocktail group were reported to be 0, 14.7, 38.2, 32.4, and 14.7% and 13.9, 36.1, 25, 22.2, and 2.8%, respectively. Furthermore, patients in the probiotic cocktail group showed a decrease in the reduction rate of CD3+ T cells (75.5% vs. 81%, p < 0.01), CD4+ T cells (64.53% vs. 79.53%, p < 0.01), and CD8+ T cells (75.59 vs. 62.36%, p < 0.01) compared to the placebo group. In the rat model, the probiotic cocktail could ameliorate the severity of OM, decrease the inflammatory response, cause cell apoptosis and intestinal permeability, and restore the structure of gut microbiota to normalcy. In conclusion, the modified probiotic cocktail significantly reduces the severity of OM by enhancing the immune response of patients with NPC and modifying the structure of gut microbiota. Clinical Trial Registration: The Clinical Trial Registration should be the NCT03112837.
Collapse
Affiliation(s)
- Chaofei Xia
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Chunling Jiang
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China.,NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Wenyu Li
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hu Hong
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Jingao Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China.,NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Liu Feng
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China.,NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongbo Xin
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Hasheminasab FS, Sharififar F, Hashemi SM, Setayesh M. An Evidence-Based Research on Botanical Sources for Oral Mucositis Treatment in Traditional Persian Medicine. Curr Drug Discov Technol 2021; 18:225-234. [PMID: 32013832 DOI: 10.2174/1570163817666200203110803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/03/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cancer is one of the most prevalent diseases associated with heavy complications in treatment. Mucotoxic cancer therapies such as head and neck radiotherapy and some of the chemotherapy agents may lead to oral mucositis. In addition to its economic consequences, mucositis also affects patients' quality of life. In Traditional Persian Medicine (TPM) manuscripts, several medicaments have been suggested for the treatment of mucositis. OBJECTIVE Considering the public welcome for herbal medicine, the current evidence-based review study is conducted to investigate the herbal remedies which have been proposed for oral mucositis in TPM. METHODS At first, a comprehensive survey was done on Qanon fi al-Teb, which is the most important textbook of TPM; then the scientific name of the herbs was authenticated according to the botanical textbooks. At last, data banks including Scopus, Pubmed, Web of science and Science direct were investigated for possible relevant properties of each medicinal plant in the literature. RESULTS In total, 30 herbs are introduced in this study. According to the registered documents, 18 herbs are reported to have antioxidant, anti-inflammatory, antimicrobial, anti-nociceptive and wound healing properties of which the therapeutic effect of only a few herbs including Glycyrrhiza glabra, Malva sylvestris, Morus nigra, Punica granatum, and Solanum nigrum were directly evaluated against oral mucositis on the literature. CONCLUSION Despite the lack of human studies on mucositis for the other discussed herbs, their related pharmacological properties can be considered for new natural drug discovery supported by medieval and traditional experiments.
Collapse
Affiliation(s)
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Mehdi Hashemi
- Clinical Immunology Research Center, Ali-ebne Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Setayesh
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Cuba LDF, Salum FG, Guimarães FS, Cherubini K, Borghetti RL, de Figueiredo MAZ. Cannabidiol on 5-FU-induced oral mucositis in mice. Oral Dis 2020; 26:1483-1493. [PMID: 32400905 DOI: 10.1111/odi.13413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 04/17/2020] [Accepted: 05/03/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE The aim of this study was to evaluate the clinical, histological, hematological, and oxidative stress effects of cannabidiol (CBD) in mice with induced oral mucositis. METHODS We used 90 mice of the CF-1 strain in which oral mucositis was induced using a protocol with 5-fluorouracil (5-FU) chemotherapy. The animals were divided randomly into 10 study groups. Three groups were treated with different doses of CBD (3, 10, and 30 mg/kg), while 2 were control groups (positive control: 5-FU + mechanical trauma + placebo; and negative control: mechanical trauma + placebo), and 2 experimental times were studied (4 and 7 days). All treatments were by intraperitoneal administration. RESULTS In the clinical evaluation, the groups treated with CBD showed less severity of oral lesions compared with the positive control at both experimental times. The intensity of the inflammatory response was also lower in the groups treated with this drug, but there was no statistically significant difference when compared with the positive control. With regard to erythrocyte, leukocyte, and platelet counts and anti-oxidant enzyme activity, the groups treated with CBD showed better results, but only some of these variables showed statistically significant differences. CONCLUSIONS CBD seems to exert an anti-inflammatory and anti-oxidant activity favoring a faster resolution of oral mucositis in this animal model.
Collapse
Affiliation(s)
- Letícia de Freitas Cuba
- Division of Oral Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Division of Oral Medicine, Paranaense University (UNIPAR), Paraná, Brazil
| | - Fernanda Gonçalves Salum
- Division of Oral Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | | | - Karen Cherubini
- Division of Oral Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | | | | |
Collapse
|
8
|
Balkrishna A, Sakat SS, Ranjan R, Joshi K, Shukla S, Joshi K, Verma S, Gupta A, Bhattacharya K, Varshney A. Polyherbal Medicine Divya Sarva-Kalp-Kwath Ameliorates Persistent Carbon Tetrachloride Induced Biochemical and Pathological Liver Impairments in Wistar Rats and in HepG2 Cells. Front Pharmacol 2020; 11:288. [PMID: 32269524 PMCID: PMC7109321 DOI: 10.3389/fphar.2020.00288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Divya Sarva-Kalp-Kwath (SKK) is a poly-herbal ayurvedic medicine formulated using plant extracts of Boerhavia diffusa L. (Nyctaginaceae), Phyllanthus niruri L. (Euphorbiaceae), and Solanum nigrum L. (Solanaceae), described to improve liver function and general health. In the present study, we have explored the hepatoprotective effects of SKK in ameliorating carbon tetrachloride (CCl4) induced liver toxicity using in-vitro and in-vivo test systems. Chemical analysis of SKK using Liquid Chromatography-Mass Spectroscopy (LC-MS-QToF) and High-Performance Liquid Chromatography (HPLC) revealed the presence of different bioactive plant metabolites, known to impart hepatoprotective effects. In human hepatocarcinoma (HepG2) cells, co-treatment of SKK with CCl4 effectively reduced the hepatotoxicity induced by the latter. These effects were confirmed by studying parameters such as loss of cell viability; release of hepatic injury enzymatic biomarkers- aspartate aminotransferase (AST), and alkaline phosphatase (ALP); and changes in reactive oxygen species and in mitochondrial membrane potentials. In-vivo safety analysis in Wistar rats showed no loss in animal body weight, or change in feeding habits after repeated oral dosing of SKK up to 1,000 mg/kg/day for 28 days. Also, no injury-related histopathological changes were observed in the animal's blood, liver, kidney, heart, brain, and lung. Pharmacologically, SKK played a significant role in modulating CCl4 induced hepatic injuries in the Wistar rats at a higher dose. In the 9 weeks' study, SKK (200 mg/kg) reduced the CCl4 stimulated increase in the release of enzymes (ALT, AST, and ALP), bilirubin, total cholesterol, and uric acid levels in the Wistar rats. It also reduced the CCl4 stimulated inflammatory lesions such as liver fibrosis, lymphocytic infiltration, and hyper-plasticity. In conclusion, SKK showed pharmacological effects in improving the CCl4 stimulated liver injuries in HepG2 cells and in Wistar rats. Furthermore, no adverse effects were observed up to 10× higher human equivalent dose of SKK during 28-days repeated dose exposure in Wistar rats. Based on the literature search on the identified plant metabolites, SKK was found to act in multiple ways to ameliorate CCl4 induced hepatotoxicity. Therefore, polyherbal SKK medicine has shown remarkable potentials as a possible alternative therapeutics for reducing liver toxicity induced by drugs, and other toxins.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India.,Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, India
| | - Sachin Shridhar Sakat
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Ravikant Ranjan
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Kheemraj Joshi
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Sunil Shukla
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Kamal Joshi
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Sudeep Verma
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Abhishek Gupta
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Kunal Bhattacharya
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India.,Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, India
| |
Collapse
|
9
|
Choi S, Shin S, Lee H, Sohn K, Yoon SY, Kim JW. 1‐Palmitoyl‐2‐linoleoyl‐3‐acetyl‐rac‐glycerol ameliorates chemoradiation‐induced oral mucositis. Oral Dis 2019; 26:111-121. [DOI: 10.1111/odi.13224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Solji Choi
- Division of Systems Biology and Bioengineering Cell Factory Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon Korea
- Department of Functional Genomics University of Science and Technology Daejeon Korea
| | - Su‐Hyun Shin
- Division of Systems Biology and Bioengineering Cell Factory Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon Korea
- Department of Functional Genomics University of Science and Technology Daejeon Korea
| | | | | | | | - Jae Wha Kim
- Division of Systems Biology and Bioengineering Cell Factory Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon Korea
- Department of Functional Genomics University of Science and Technology Daejeon Korea
| |
Collapse
|
10
|
Campisi A, Acquaviva R, Raciti G, Duro A, Rizzo M, Santagati NA. Antioxidant Activities of Solanum Nigrum L. Leaf Extracts Determined in in vitro Cellular Models. Foods 2019; 8:foods8020063. [PMID: 30744041 PMCID: PMC6406898 DOI: 10.3390/foods8020063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 01/06/2023] Open
Abstract
Several medicinal foods abound in traditional medicine with antioxidant potentials that could be of importance for the management of several diseases but with little or no scientific justification to substantiate their use. Thus, the objective of this study was the assessment of the antioxidant effect of two leave extracts of Solanum nigrum L. (SN), which is a medicinal plant member of the Solanaceae family, mainly used for soup preparation in different parts of the world. Then methanolic/water (80:20) (SN1) and water (SN2) leaves extracts were prepared. The total polyphenolic content and the concentration of phenolic acids and flavones compounds were determined. In order to verify whether examined extracts were able to restore the oxidative status, modified by glutamate in primary cultures of astrocytes, the study evaluated the glutathione levels, the intracellular oxidative stress, and the cytotoxicity of SN1 and SN2 extracts. Both extracts were able to quench the radical in an in vitro free cellular system and restore the oxidative status in in vitro primary cultures of rat astroglial cells exposed to glutamate. These extracts prevented the increase in glutamate uptake and inhibited glutamate excitotoxicity, which leads to cell damage and shows a notable antioxidant property.
Collapse
Affiliation(s)
- Agata Campisi
- Department of Drug Science, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Rosaria Acquaviva
- Department of Drug Science, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Giuseppina Raciti
- Department of Drug Science, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Anna Duro
- Department of Biological, Geological and Environmental Sciences, University of Catania,Via A. Longo 19, 95125 Catania, Italy.
| | - Milena Rizzo
- Department of Drug Science, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | | |
Collapse
|