1
|
Mofed D, Ahmed W, Mohaseb RN, Rahouma M, Faraag AHI, Sabet S. Anti-viral and Apoptotic Induction of m-TOR Inhibitor Drugs against Hepatitis C Virus Activity and Hepatocellular Carcinoma Cell Line: In vitro and in silico. Asian Pac J Cancer Prev 2024; 25:3725-3739. [PMID: 39471041 PMCID: PMC11711332 DOI: 10.31557/apjcp.2024.25.10.3725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024] Open
Abstract
OBJECTIVE This study investigated the potential of m-TOR inhibitor drugs (sirolimus, everolimus, and tacrolimus) in combating both hepatocellular carcinoma (HCC) and hepatitis C virus (HCV) replication. METHODS After treating HepG2 and PBMCs with the mammalian target of Rapamycin (m-TOR) inhibitors drugs; sirolimus, everolimus, and tacrolimus at different concentrations (1, 5, and 10 µM/µl), cell proliferation was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Antioxidant activities (total antioxidant, glutathione S-transferase, and glutathione reductase), Fas-ligand level, tumor necrosis factor-α (TNF-α) level, caspase-3, -8, and -9 activities, and cell cycle analysis were measured. quantitative Real-time PCR, colony forming assay, molecular docking studies after infection of PBMCs with 1 ml (1.5 × 106 HCV) serum then incubated with m-TOR inhibitor drugs at their respective IC50 concentrations. RESULTS In HepG2 cells, treatment with these inhibitors resulted in suppressed cell viability, increased dead cell accumulation, and enhanced apoptotic signaling through elevated Fas-ligand and caspase activities. Additionally, cell cycle analysis revealed arrest in G0/G1 and G2/M phases, further hindering HCC progression. Furthermore, m-TOR inhibitor drugs significantly reduced HCV viral load and colony formation in infected PBMCs. This antiviral effect was accompanied by decreased TNF-α activity, suggesting potential modulation of the inflammatory response associated with HCV infection. Molecular docking studies provided theoretical support for these findings, with Sovaldi demonstrating the highest binding affinity towards key HCV targets compared to other m-TOR inhibitors. This suggests its potential as a potent HCV inhibitor, while also highlighting the potential of exploring m-TOR inhibitors for future HCV treatment development. CONCLUSION Overall, this study provides encouraging evidence for the potential of m-TOR inhibitor drugs as promising therapeutic agents for both HCC and HCV, warranting further investigation and optimization for clinical applications.
Collapse
Affiliation(s)
- Dina Mofed
- Zoology Graduate Program, Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Wafaa Ahmed
- Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Giza, 12613, Egypt.
| | - Reham N Mohaseb
- Botany department, faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Mohamed Rahouma
- Department of Surgical Oncology, National Cancer Institute, Cairo University, Cairo 11796, Egypt.
- Cardiothoracic Surgery Department, Weill Cornell Medicine, Cornell University, NY 10065, USA.
| | | | - Salwa Sabet
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
2
|
Orabi MAA, Abouelela ME, Darwish FMM, Abdelkader MSA, Elsadek BEM, Al Awadh AA, Alshahrani MM, Alhasaniah AH, Aldabaan N, Abdelhamid RA. Ceiba pentandra ethyl acetate extract improves doxorubicin antitumor outcomes against chemically induced liver cancer in rat model: a study supported by UHPLC-Q-TOF-MS/MS identification of the bioactive phytomolecules. Front Pharmacol 2024; 15:1337910. [PMID: 38370475 PMCID: PMC10871037 DOI: 10.3389/fphar.2024.1337910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent cancer worldwide. Late-stage detection, ineffective treatments, and tumor recurrence contribute to the low survival rate of the HCC. Conventional chemotherapeutic drugs, like doxorubicin (DOX), are associated with severe side effects, limited effectiveness, and tumor resistance. To improve therapeutic outcomes and minimize these drawbacks, combination therapy with natural drugs is being researched. Herein, we assessed the antitumor efficacy of Ceiba pentandra ethyl acetate extract alone and in combination with DOX against diethylnitrosamine (DENA)-induced HCC in rats. Our in vivo study significantly revealed improvement in the liver-function biochemical markers (ALT, AST, GGT, and ALP), the tumor marker (AFP-L3), and the histopathological features of the treated groups. A UHPLC-Q-TOF-MS/MS analysis of the Ceiba pentandra ethyl acetate extract enabled the identification of fifty phytomolecules. Among these are the dietary flavonoids known to have anticancer, anti-inflammatory, and antioxidant qualities: protocatechuic acid, procyanidin B2, epicatechin, rutin, quercitrin, quercetin, kaempferol, naringenin, and apigenin. Our findings highlight C. pentandra as an affordable source of phytochemicals with possible chemosensitizing effects, which could be an intriguing candidate for the development of liver cancer therapy, particularly in combination with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Faten M. M. Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | | | - Bakheet E. M. Elsadek
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Nayef Aldabaan
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Reda A. Abdelhamid
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
3
|
Akram W, Najmi AK, Alam MM, Haque SE. Levocabastine ameliorates cyclophosphamide-induced cardiotoxicity in Swiss albino mice: Targeting TLR4/NF-κB/NLRP3 signaling pathway. Toxicol Appl Pharmacol 2024; 483:116838. [PMID: 38278497 DOI: 10.1016/j.taap.2024.116838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Cyclophosphamide (CP), although a potent anti-cancer drug, causes cardiotoxicity as a side effect that limits its use. Hence, a specific medicine that can lower cardiotoxicity and be utilised as an adjuvant in cancer treatment is very much needed. In this light, we intended to assess the protective potential of levocabastine (LEV) on CP-induced cardiotoxicity in Swiss albino mice. Mice were administered LEV (50 and 100 μg/kg, i.p.) daily for 14 days and CP at 200 mg/kg, intraperitoneally once on the 7th day. On the 15th day, mice were weighed, blood withdrawn then sacrificed and hearts were removed to estimate various biochemical and histopathological parameters. CP 200 mg/kg significantly increased cardiac troponin T, LDH, CK-MB, interleukin-1β, IL-6, TNF-α, TBARS, nitrite, and decreased CAT, GSH, and SOD levels, thus, manifested cardiac damage, inflammation, oxidative stress, and nitrative stress, cumulatively causing cardiotoxicity. CP also elevated the expression of various markers including cleaved caspase-3, NF-κB, TLR4, NLRP3, and fibrotic lesions in cardiac tissues, whereas decreased hematological parameters (RBCs, platelets, and Hb) to confirm cardiotoxicity. LEV and fenofibrate (FF) treatment reversed these changes towards normal and showed a significant protective effect against CP. The results showed the protective role of LEV in restoring CP-induced cardiotoxicity in terms of inflammation, apoptosis, oxidative stress, cardiac injury and histopathological damage. Thus, levocabastine can be used as an adjuvant to cyclophosphamide in cancer treatment but a thorough study with various animal cancer models is further needed to establish the fact.
Collapse
Affiliation(s)
- Wasim Akram
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - M Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
4
|
Amoyav B, Bloom AI, Goldstein Y, Miller R, Sharam M, Fluksman A, Benny O. Drug-Eluting Porous Embolic Microspheres for Trans-Arterial Delivery of Dual Synergistic Anticancer Therapy for the Treatment of Liver Cancer. Adv Healthc Mater 2023; 12:e2301548. [PMID: 37315950 PMCID: PMC11469112 DOI: 10.1002/adhm.202301548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 06/16/2023]
Abstract
Blockage of blood supply while administering chemotherapy to tumors, using trans-arterial chemoembolization (TACE), is the most common treatment for intermediate and advanced-stage unresectable Hepatocellular carcinoma (HCC). However, HCC is characterized by a poor prognosis and high recurrence rates (≈30%), partly due to a hypoxic pro-angiogenic and pro-cancerous microenvironment. This study investigates how modifying tissue stress while improving drug exposure in target organs may maximize the therapeutic outcomes. Porous degradable polymeric microspheres (MS) are designed to obtain a gradual occlusion of the hepatic artery that nourishes the liver, while enabling efficient drug perfusion to the tumor site. The fabricated porous MS are introduced intrahepatically and designed to release a combination therapy of Doxorubicin (DOX) and Tirapazamine (TPZ), which is a hypoxia-activated prodrug. Liver cancer cell lines that are treated with the combination therapy under hypoxia reveal a synergic anti-proliferation effect. An orthotopic liver cancer model, based on N1-S1 hepatoma in rats, is used for the efficacy, biodistribution, and safety studies. Porous DOX-TPZ MS are very effective in suppressing tumor growth in rats, and induction tissue necrosis is associated with high intratumor drug concentrations. Porous particles without drugs show some advantages over nonporous particles, suggesting that morphology may affect the treatment outcomes.
Collapse
Affiliation(s)
- Benzion Amoyav
- The Institute for Drug ResearchSchool of PharmacyThe Faculty of MedicineThe Hebrew University of JerusalemJerusalem91120Israel
| | - Allan I. Bloom
- Department of Medical Imaging‐Interventional RadiologyHadassah Medical CenterJerusalem911200Israel
| | - Yoel Goldstein
- The Institute for Drug ResearchSchool of PharmacyThe Faculty of MedicineThe Hebrew University of JerusalemJerusalem91120Israel
| | - Rafael Miller
- Department of General SurgeryKaplan Medical CenterAffiliated to Hebrew University JerusalemRehovot76100Israel
| | - Mariana Sharam
- Authority for Biological and Biomedical ModelsHadassah Medical CenterJerusalem911200Israel
| | - Arnon Fluksman
- The Institute for Drug ResearchSchool of PharmacyThe Faculty of MedicineThe Hebrew University of JerusalemJerusalem91120Israel
| | - Ofra Benny
- The Institute for Drug ResearchSchool of PharmacyThe Faculty of MedicineThe Hebrew University of JerusalemJerusalem91120Israel
| |
Collapse
|
5
|
Zhang Y, Xie Y, Huang X, Zhang L, Shu K. Screening of Hub Genes in Hepatocellular Carcinoma Based on Network Analysis and Machine Learning. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7300788. [PMID: 36479313 PMCID: PMC9722289 DOI: 10.1155/2022/7300788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/11/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (LIHC) is the fifth common cancer worldwide, and it requires effective diagnosis and treatment to prevent aggressive metastasis. The purpose of this study was to construct a machine learning-based diagnostic model for the diagnosis of liver cancer. Using weighted correlation network analysis (WGCNA), univariate analysis, and Lasso-Cox regression analysis, protein-protein interactions network analysis is used to construct gene networks from transcriptome data of hepatocellular carcinoma patients and find hub genes for machine learning. The five models, including gradient boosting, random forest, support vector machine, logistic regression, and integrated learning, were to identify a multigene prediction model of patients. Immunological assessment, TP53 gene mutation and promoter methylation level analysis, and KEGG pathway analysis were performed on these groups. Potential drug molecular targets for the corresponding hepatocellular carcinomas were obtained by molecular docking for analysis, resulting in the screening of 2 modules that may be relevant to the survival of hepatocellular carcinoma patients, and the construction of 5 diagnostic models and multiple interaction networks. The modes of action of drug-molecule interactions that may be effective against hepatocellular carcinoma core genes CCNA2, CCNB1, and CDK1 were investigated. This study is expected to provide research ideas for early diagnosis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yu Zhang
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, 400000, China
| | - Yongfang Xie
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, 400000, China
| | - Xiaorong Huang
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, 400000, China
| | - Langlang Zhang
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, 400000, China
| | - Kunxian Shu
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, 400000, China
| |
Collapse
|
6
|
Isolation and crystal structure of the first Pr(IV) coordination polymer and the complex anti-proliferative activity evaluation against seven cancer cell lines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Mahmoud SS, Hussein S, Rashed H, Abdelghany EMA, Ali AI. Anticancer Effects of Tacrolimus on Induced Hepatocellular Carcinoma in Mice. Curr Mol Pharmacol 2021; 15:434-445. [PMID: 34061012 DOI: 10.2174/1874467214666210531164546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tacrolimus is a calcineurin inhibitor widely used for immunological disorders. However, there is a significant controversy regarding its effect on the liver. The present study was conducted to evaluate the anticancer effects of tacrolimus on an induced murine hepatocellular carcinoma (HCC) model and its possible hepatotoxicity at standard therapeutic doses. METHODS Fifty-four male mice were divided into five groups: a control healthy group, control HCC group, tacrolimus-treated group, doxorubicin (DOXO)-treated group, and combined tacrolimus- and DOXO-treated group. The activity of liver enzymes, including alkaline phosphatase, gamma-glutamyl transferase, lactate dehydrogenase, alanine transaminase, and aspartate transaminase, was determined. Serum vascular endothelial growth factor (VEGF) was measured using an enzyme-linked immunosorbent assay. A quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to measure the expression of proliferating cell nuclear antigen (PCNA), Bax, and p53 mRNA. Immunohistochemical staining for cyclin D1 and VEGF was performed. RESULTS Mice that received combined treatment with tacrolimus and DOXO exhibited the best improvement in all parameters when compared with the groups that received DOXO or tacrolimus alone (p < 0.001). CONCLUSION The combination of DOXO and tacrolimus was more effective in the management of HCC compared with either agent alone. This improvement was detected by the reduction of liver enzymes and the improvement of the histopathological picture. The involved mechanisms included significant apoptosis induction demonstrated by upregulation of bax along with a reduction in angiogenesis demonstrated by downregulation of VEGF. This was accompanied by inhibition of cell cycle progression mediated by upregulated p53 and downregulated PCNA and cyclin D1.
Collapse
Affiliation(s)
- Shireen Sami Mahmoud
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samia Hussein
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hayam Rashed
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman M A Abdelghany
- Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Alaa I Ali
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Birari L, Wagh S, Patil KR, Mahajan UB, Unger B, Belemkar S, Goyal SN, Ojha S, Patil CR. Aloin alleviates doxorubicin-induced cardiotoxicity in rats by abrogating oxidative stress and pro-inflammatory cytokines. Cancer Chemother Pharmacol 2020; 86:419-426. [PMID: 32812061 DOI: 10.1007/s00280-020-04125-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/07/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE Aloin, an anthraquinone present in the aloe species, possesses antiangiogenic, chemopreventive and antioxidant properties. It exerts cytotoxicity against breast cancer and ovarian cancer cell lines. These properties of aloin project it as a chemopreventive adjuvant to anticancer chemotherapy. METHODS We evaluated the effect of concurrent oral administration of aloin against doxorubicin (DOX)-induced cardiotoxicity in rats. The protective effects of aloin against DOX-induced toxicity were evident as a statistically significant inhibition of a rise in the biochemical markers of myocardial damage including lactate dehydrogenase (LDH), creatinine kinase-myocardial band (CK-MB), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). RESULTS Aloin dose dependently inhibited the DOX-induced changes in ECG like increased ST-height and prolonged QT interval. It protected heart against the lipid peroxidation and restored the levels of antioxidative defenses: reduced glutathione, catalase and superoxide dismutase. Aloin prominently reduced the levels of proinflammatory cytokines- TNF-α, IL-1β and IL-6. Notably, the significant protective effects of aloin were evident even at the strikingly lower doses of 1 and 5 mg/kg per day. CONCLUSION Our results highlight the necessity to further investigate the chemopreventive effects of aloin against other chemotherapeutic agents.
Collapse
Affiliation(s)
- Lalit Birari
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Dist. Dhule, Shirpur, 425405, Maharashtra, India
| | - Shivani Wagh
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Dist. Dhule, Shirpur, 425405, Maharashtra, India
| | - Kalpesh R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Dist. Dhule, Shirpur, 425405, Maharashtra, India
| | - Umesh B Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Dist. Dhule, Shirpur, 425405, Maharashtra, India
| | - Banappa Unger
- Pharmacology and Toxicology Division, ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi, India
| | - Sateesh Belemkar
- School of Pharmacy and Technology Management, SVKM & NMIMS, MPTP, Dist. Dhule, Shirpur, 425405, Maharashtra, India
| | - Sameer N Goyal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, Abu Dhabi, UAE
| | - Chandragouda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Dist. Dhule, Shirpur, 425405, Maharashtra, India.
| |
Collapse
|
9
|
Nix HP, Momeni A, Chevrier DM, Whitman CA, Filiaggi MJ. Doxorubicin-loaded polyphosphate glass microspheres for transarterial chemoembolization. J Biomed Mater Res B Appl Biomater 2020; 108:2621-2632. [PMID: 32100967 DOI: 10.1002/jbm.b.34594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/08/2020] [Accepted: 02/15/2020] [Indexed: 11/12/2022]
Abstract
The standard of care for intermediate stage hepatocellular carcinoma is transarterial chemoembolization (TACE). Drug-eluting bead TACE (DEB-TACE) has emerged as a leading form of TACE, as it uses highly calibrated microspheres to deliver consistent embolization and controlled drug release to the tumor microenvironment. We report here on doxorubicin (DOX)-loaded polyphosphate glass microspheres (PGM) as a novel resorbable, radiopaque, preloaded DEB-TACE platform. Coacervate composed of polyphosphate chains complexed with Ba2+ , Ca2+ , and Cu2+ can be loaded with DOX prior to PGM synthesis, with PGM production achieved using a water-in-oil emulsion technique at room temperature yielding highly spherical particles in clinically relevant size fractions. In vitro, DOX release was found to be linear, pH dependent, and in accordance with Type II non-Fickian transport. PGM degradation was characterized by an initial burst release of degradation products over 7 days, followed by a plateau in mass loss at approximately 75% over a period of several weeks. in vitro studies indicate that PGM degradation products, namely Cu2+ , are cytotoxic and may interact with eluted DOX to impair its pharmacological activity. With additional compositional considerations, this approach may prove promising for DEB-TACE applications.
Collapse
Affiliation(s)
- Hayden P Nix
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Arash Momeni
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Applied Oral Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel M Chevrier
- Department of Applied Oral Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Catherine A Whitman
- Department of Applied Oral Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark J Filiaggi
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Applied Oral Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
10
|
Yousef S, Alsaab HO, Sau S, Iyer AK. Development of asialoglycoprotein receptor directed nanoparticles for selective delivery of curcumin derivative to hepatocellular carcinoma. Heliyon 2018; 4:e01071. [PMID: 30603704 PMCID: PMC6305692 DOI: 10.1016/j.heliyon.2018.e01071] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/11/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular cellular carcinoma (HCC) is one of the most challenging liver cancer subtypes. Due to lack of cell surface biomarkers and highly metastatic nature, early detection and targeted therapy of HCC is an unmet need. Galactosamine (Gal) is among the few selective ligands used for targeting HCCs due to its high binding affinity to asialoglycoprotein receptors (ASGPRs) overexpressed in HCC. In the present work, we engineered nanoscale G4 polyamidoamine (PAMAM) dendrimers anchored to galactosamine and loaded with the potent anticancer curcumin derivative (CDF) as a platform for targeted drug delivery to HCC. In vivo targeting ability and bio-distribution of PAMAM-Gal were assessed via its labeling with the clinically used, highly contrast, near infrared (NIR) dye: S0456, with testing of the obtained conjugate in aggressive HCC xenograft model. Our results highlighted the targeted dendrimer PAMAM-Gal ability to achieve selective high cellular uptake via ASGPR mediated endocytosis and significantly enhance the delivery of CDF into the studied HCC cell lines. Cytotoxicity MTT assays in HCC cell lines, interestingly highlighted, the comparative high potency of CDF, where CDF was more potent as a chemotherapeutic anticancer small molecule than the currently in use Doxorubicin, Sorafenib and Cisplatin chemotherapeutic agents. In conclusion the proof-of-concept study using nanoscale PAMAM-Gal dendrimer has demonstrated its competency as an efficient delivery system for selective delivery of potent CDF for HCC anticancer therapy as well as HCC diagnosis via NIR imaging.
Collapse
Affiliation(s)
- Shaimaa Yousef
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Hashem O. Alsaab
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K. Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
11
|
Tan J, Ye J, Song M, Zhou M, Hu Y. Ribavirin augments doxorubicin's efficacy in human hepatocellular carcinoma through inhibiting doxorubicin-induced eIF4E activation. J Biochem Mol Toxicol 2017; 32. [PMID: 29112301 DOI: 10.1002/jbt.22007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/02/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023]
Abstract
Activation of eukaryotic translation initiation factor 4E (eIF4E) is a cellular survival mechanism in response to chemotherapy in cancers. In this work, we demonstrate that targeting eIF4E by ribavirin sensitizes hepatocellular carcinoma (HCC) cell response to doxorubicin. Ribavirin inhibits growth and survival of HCC cells, and to a greater extent than in normal liver cells. Its combination with doxorubicin achieves greater efficacy than single drug in vitro and in vivo. Ribavirin suppresses phosphorylation of molecules involved in Akt/mTOR/eIF4E pathway. Overexpression of the phosphomimetic form (S209D) but not the nonphosphorylatable form (S209A) eIF4E significantly reverses the inhibitory effects of ribavirin. Interestingly, doxorubicin significantly increases p-eIF4E(S209) level in a dose- and time-dependent manner, suggesting that doxorubicin induces eIF4E activation in HCC cells. In addition, eIF4E activation induced by doxorubicin in HCC cells is inhibited by ribavirin. Our work demonstrates the greater efficacy of ribavirin and doxorubicin combination and its underlying mechanisms.
Collapse
Affiliation(s)
- Jun Tan
- Department of Hepatology, Ningbo No. 2 Hospital, Ningbo 315010, People's Republic of China
| | - Jingfen Ye
- Department of Hepatology, Ningbo No. 2 Hospital, Ningbo 315010, People's Republic of China
| | - Meijun Song
- Department of Respiratory Medicine, Ningbo Medical Treatment Center Li Huili Hospital, Ningbo 315041, People's Republic of China
| | - Mi Zhou
- School of Medicine, Ningbo University, Ningbo 315211, People's Republic of China
| | - Yaoren Hu
- Department of Hepatology, Ningbo No. 2 Hospital, Ningbo 315010, People's Republic of China
| |
Collapse
|
12
|
Kuruvilla SP, Tiruchinapally G, ElAzzouny M, ElSayed MEH. N-Acetylgalactosamine-Targeted Delivery of Dendrimer-Doxorubicin Conjugates Influences Doxorubicin Cytotoxicity and Metabolic Profile in Hepatic Cancer Cells. Adv Healthc Mater 2017; 6. [PMID: 28085993 DOI: 10.1002/adhm.201601046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/25/2016] [Indexed: 12/28/2022]
Abstract
This study describes the development of targeted, doxorubicin (DOX)-loaded generation 5 (G5) polyamidoamine dendrimers able to achieve cell-specific DOX delivery and release into the cytoplasm of hepatic cancer cells. G5 is functionalized with poly(ethylene glycol) (PEG) brushes displaying N-acetylgalactosamine (NAcGal) ligands to target hepatic cancer cells. DOX is attached to G5 through one of two aromatic azo-linkages, L3 or L4, achieving either P1 ((NAcGalβ -PEGc)16.6 -G5-(L3-DOX)11.6 ) or P2 ((NAcGalβ -PEGc)16.6 -G5-(L4-DOX)13.4 ) conjugates. After confirming the conjugates' biocompatibility, flow cytometry studies show P1/P2 achieve 100% uptake into hepatic cancer cells at 30-60 × 10-9 m particle concentration. This internalization correlates with cytotoxicity against HepG2 cells with 50% inhibitory concentration (IC50 ) values of 24.8, 1414.0, and 237.8 × 10-9 m for free DOX, P1, and P2, respectively. Differences in cytotoxicity prompted metabolomics analysis to identify the intracellular release behavior of DOX. Results show that P1/P2 release alternative DOX metabolites than free DOX. Stable isotope tracer studies show that the different metabolites induce different effects on metabolic cycles. Namely, free DOX reduces glycolysis and increases fatty acid oxidation, while P1/P2 increase glycolysis, likely as a response to high oxidative stress. Overall, P1/P2 conjugates offer a platform drug delivery technology for improving hepatic cancer therapy.
Collapse
Affiliation(s)
- Sibu P. Kuruvilla
- Department of Materials Science and Engineering University of Michigan 2300 Hayward St. Ann Arbor MI 48109 USA
| | - Gopinath Tiruchinapally
- Department of Biomedical Engineering University of Michigan 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Mahmoud ElAzzouny
- Department of Internal Medicine University of Michigan Medical School 1500 East Medical Center Drive Ann Arbor MI 48109 USA
| | - Mohamed E. H. ElSayed
- Department of Biomedical Engineering University of Michigan 1101 Beal Avenue Ann Arbor MI 48109 USA
- Department of Macromolecular Science and Engineering University of Michigan 2300 Hayward Avenue Ann Arbor MI 48109 USA
| |
Collapse
|
13
|
Guerriero E, Sorice A, Capone F, Storti G, Colonna G, Ciliberto G, Costantini S. Combining doxorubicin with a phenolic extract from flaxseed oil: Evaluation of the effect on two breast cancer cell lines. Int J Oncol 2017; 50:468-476. [PMID: 28101573 DOI: 10.3892/ijo.2017.3835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/29/2016] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is one of the most frequently diagnosed forms of cancer and different treatments are used to block its progression. However, it still represents a very common cause of death in women. Doxorubicin (Dox) is reported as an effective agent in breast cancer treatment nonetheless it induces many side‑effects. For this reason, many laboratories are engaged in understanding how it is possible to decrease the drug concentration, considering that one of the possible solutions is to use drug synergy, combining it with natural substances. Recently we showed that a phenolic extract from flaxseed (FS) oil, named PEFSO, induced on MCF‑7 cell line an increase of apoptosis with related modification of G0/G1 phase cell cycle, and the activation of signaling and pro‑oxidant pathways. In this study we present data on the combined effect of Dox and PEFSO on two different breast cancer cell lines to define the conditions to use lower doses of this chemotherapeutic agent. We report the data relating to the ability of this mixture to induce cytotoxicity and apoptosis, cell cycle modification, mitochondrial membrane depolarization and activation of extrinsic and/or intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Eliana Guerriero
- CROM, Istituto Nazionale Tumori 'Fondazione G. Pascale' ‑ IRCCS, Naples, Italy
| | - Angela Sorice
- CROM, Istituto Nazionale Tumori 'Fondazione G. Pascale' ‑ IRCCS, Naples, Italy
| | - Francesca Capone
- CROM, Istituto Nazionale Tumori 'Fondazione G. Pascale' ‑ IRCCS, Naples, Italy
| | | | - Giovanni Colonna
- Medical Informatics Service, University Hospital, Second University of Naples, Naples, Italy
| | - Gennaro Ciliberto
- Scientific Direction, Istituto Nazionale Tumori 'Fondazione G. Pascale' ‑ IRCCS, Naples, Italy
| | - Susan Costantini
- CROM, Istituto Nazionale Tumori 'Fondazione G. Pascale' ‑ IRCCS, Naples, Italy
| |
Collapse
|
14
|
Salustiano EJ, Dumas ML, Silva-Santos GG, Netto CD, Costa PRR, Rumjanek VM. In vitro and in vivo antineoplastic and immunological effects of pterocarpanquinone LQB-118. Invest New Drugs 2016; 34:541-51. [PMID: 27189479 DOI: 10.1007/s10637-016-0359-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/11/2016] [Indexed: 11/29/2022]
Abstract
Cancer is a malignancy of worldwide prevalence, and although new therapeutic strategies are under investigation, patients still resort to reductive or palliative chemotherapy. Side effects are a great concern, since treatment can render patients susceptible to infections or secondary cancers. Thus, design of safer chemotherapeutic drugs must consider the risk of immunotoxicity. Pterocarpans are natural isoflavones that possess immunomodulatory and antineoplastic properties. Ubiquitous in nature, quinones are present in chemotherapeutic drugs such as doxorubicin and mitoxantrone. Our group has patented a hybrid molecule, the pterocarpanquinone LQB-118, and demonstrated its antineoplastic effect in vitro. In this report we describe its antineoplastic effect in vivo and assess its toxicity toward the immune system. Treated mice presented no changes in weight of primary and secondary organs of the immune system nor their cellular composition. Immunophenotyping showed that treatment increased CD4(+) thymocytes and proportionally reduced the CD4(+)CD8(+) subpopulation in the thymus. No significant changes were observed in T CD8(+) peripheral lymphocytes nor was the activation of fresh T cells affected after treatment. LQB-118 induced apoptosis in murine tumor cells in vitro, being synergistic with the autophagy promoter rapamycin. Furthermore, treatment significantly reduced ascites or solid Ehrlich and B16F10 melanoma growth in vivo, and ameliorated side effects such as cachexia. Based on its favorable preclinical profile and considering previous results obtained in vitro, this drug emerges as a promising candidate for further development.
Collapse
Affiliation(s)
- Eduardo J Salustiano
- Laboratory of Tumor Immunology, Leopoldo de Meis Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, Bloco H, 2° andar sala 003 Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil. .,Laboratory of Bioorganic Chemistry, Institute for Natural Products Research, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Matheus L Dumas
- Laboratory of Tumor Immunology, Leopoldo de Meis Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, Bloco H, 2° andar sala 003 Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Gabriel G Silva-Santos
- Laboratory of Tumor Immunology, Leopoldo de Meis Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, Bloco H, 2° andar sala 003 Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Chaquip D Netto
- Laboratory of Bioorganic Chemistry, Institute for Natural Products Research, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Chemistry, Macaé Institute of Metrology and Technology, Federal University of Rio de Janeiro, Professor Aloísio Teixeira Macaé Campus, Macaé, RJ, Brazil
| | - Paulo R R Costa
- Laboratory of Bioorganic Chemistry, Institute for Natural Products Research, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian M Rumjanek
- Laboratory of Tumor Immunology, Leopoldo de Meis Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, Bloco H, 2° andar sala 003 Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil
| |
Collapse
|
15
|
Differential Response of Two Human Breast Cancer Cell Lines to the Phenolic Extract from Flaxseed Oil. Molecules 2016; 21:319. [PMID: 27005599 PMCID: PMC6274312 DOI: 10.3390/molecules21030319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 12/16/2022] Open
Abstract
Many studies have evidenced that the phenolic components from flaxseed (FS) oil have potential health benefits. The effect of the phenolic extract from FS oil has been evaluated on two human breast cancer cell lines, MCF7 and MDA-MB231, and on the human non-cancerous breast cell line, MCF10A, by SRB assay, cellular death, cell cycle, cell signaling, lipid peroxidation and expression of some key genes. We have evidenced that the extract shows anti-proliferative activity on MCF7 cells by inducing cellular apoptosis, increase of the percentage of cells in G0/G1 phase and of lipid peroxidation, activation of the H2AX signaling pathway, and upregulation of a six gene signature. On the other hand, on the MDA-MB2131 cells we verified only an anti-proliferative activity, a weak lipid peroxidation, the activation of the PI3K signaling pathway and an up-regulation of four genes. Overall these data suggest that the extract has both cytotoxic and pro-oxidant effects only on MCF7 cells, and can act as a metabolic probe, inducing differences in the gene expression. For this purpose, we have performed an interactomic analysis, highlighting the existing associations. From this approach, we show that the phenotypic difference between the two cell lines can be explained through their differential response to the phenolic extract.
Collapse
|