1
|
Sadasivam IP, Sambandam R, Kaliyaperumal D, Dileep JE. Androgenetic Alopecia in Men: An Update On Genetics. Indian J Dermatol 2024; 69:282. [PMID: 39119311 PMCID: PMC11305502 DOI: 10.4103/ijd.ijd_729_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Androgenetic alopecia (AGA) is defined as the alopecia induced by androgens in genetically predisposed individuals. AGA results in progressive miniaturization of the hair follicles leading to vellus transformation of terminal hair. The high prevalence and wide range of expressed phenotypes in AGA is a result of a polygenic inheritance mode. The androgen receptor (AR) gene located on the X chromosome at Xq11-12 is the first gene to show genetic association with AGA. Newer genetic associations with AGA are under study. In early-onset AGA, obesity, diabetes, hypertension, dyslipidaemia, insulin resistance, benign prostatic hyperplasia (BPH), prostate cancers and coronary artery disease (CAD) are associated with AGA. Screening of early-onset AGA patients and intervention for metabolic syndrome and insulin resistance can prevent the development of cardiovascular disease (CVD) at an early stage. As effective treatments continue to be topical minoxidil, systemic finasteride and hair transplantations, newer modalities are under investigation. Understanding the genetic factors involved in AGA and continued research into newer therapies, such as cell-based therapies, will lead to effective treatment and improve the quality of life in patients with AGA.
Collapse
Affiliation(s)
- Ilakkia Priya Sadasivam
- From the Department of Dermatology, Venereology and Leprosy, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission Research Foundation (Deemed to be University), Puducherry, India
| | - Ravikumar Sambandam
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission Research Foundation (Deemed to be University), Puducherry, India
| | - Damayandhi Kaliyaperumal
- From the Department of Dermatology, Venereology and Leprosy, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission Research Foundation (Deemed to be University), Puducherry, India
| | - Jude Ernest Dileep
- From the Department of Dermatology, Venereology and Leprosy, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission Research Foundation (Deemed to be University), Puducherry, India
| |
Collapse
|
2
|
Guo L, Liu Y, Liu L, Shao S, Cao Y, Guo J, Niu H. The CYP19A1 (TTTA)n Repeat Polymorphism May Affect the Prostate Cancer Risk: Evidence from a Meta-Analysis. Am J Mens Health 2021; 15:15579883211017033. [PMID: 34036824 PMCID: PMC8161905 DOI: 10.1177/15579883211017033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abnormal aromatase (CYP19A1) expression may participate in prostate cancer (PCa) carcinogenesis. However, the results of studies on the CYP19A1 gene polymorphisms and PCa are conflicting. This meta-analysis aimed to systematically evaluate the associations between the CYP19A1 Arg264Cys polymorphism and the (TTTA)n repeat polymorphism and PCa. Electronic databases (PubMed, EmBase, ScienceDirect, and Cochrane Library) were comprehensively searched to identify eligible studies. The strength of the association between the Arg264Cys polymorphism and PCa was assessed by pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) in allelic, dominant, recessive, homozygous, and heterozygous genetic models. To analyze the impact of the (TTTA)n repeat polymorphism, we sequentially took the N-repeat allele (where N equals 7,8,10,11,12, and 13) as the minor allele and the sum of all the other alleles as the major allele. The ORs and 95% CIs were calculated in the allelic model; this analysis was performed individually for each repeat number. Pooled estimates of nine studies addressing the Arg264Cys polymorphism indicated that this polymorphism was not associated with PCa risk in the overall population or in the Caucasian or Asian subgroups. The 8-repeat allele in the (TTTA)n repeat polymorphism increased PCa risk in the overall population (OR = 1.34, 95% CI = 1.14-1.58, p = .001) and in the subgroup with population-based (PB) controls (OR = 1.41, 95% CI = 1.13-1.74, p = .002) as well as in the subgroup using capillary electrophoresis to identify this polymorphism (OR = 1.34, 95% CI = 1.09-1.65, p = .006).The meta-analysis indicated that the CYP19A1 (TTTA)n repeat polymorphism, but not the Arg264Cys polymorphism, may affect PCa risk.
Collapse
Affiliation(s)
- Lei Guo
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yanan Liu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lijun Liu
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shixiu Shao
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yanwei Cao
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jiaming Guo
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haitao Niu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Tenuta M, Tarsitano MG, Mazzotta P, Lucchini L, Sesti F, Fattorini G, Pozza C, Olivieri V, Naro F, Gianfrilli D, Lenzi A, Isidori AM, Pofi R. Therapeutic use of pulsed electromagnetic field therapy reduces prostate volume and lower urinary tract symptoms in benign prostatic hyperplasia. Andrology 2020; 8:1076-1085. [PMID: 32090492 PMCID: PMC7496682 DOI: 10.1111/andr.12775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 01/08/2023]
Abstract
Background Benign prostatic hyperplasia (BPH) etiology remains poorly understood, but chronic low‐grade inflammation plays a role. Pulsed electromagnetic field therapy (PEMF) (1‐50 Hz) is effective in reducing tissue inflammation. Objectives We designed a pilot study to evaluate the effects of PEMF on prostate volume (PV) in BPH. Materials and Methods This is a prospective interventional trial on 27 naive patients with BPH and lower urinary tract symptoms (LUTS). At baseline (V0), all patients had blood tests, transrectal ultrasound, and questionnaires (IPSS, IIEF‐15) and received a perineal PEMF device (Magcell®Microcirc, Physiomed Elektromedizin). PEMF was delivered on perineal area 5 minutes twice daily for 28 days, then (V1) all baseline evaluations were repeated. Afterward, nine patients continued therapy for 3 more months (PT group) and 15 discontinued (FU group). A 4‐month evaluation (V2) was performed in both groups. Results A reduction was observed both at V1 and at V2 in PV: PVV0 44.5 mL (38.0;61.6) vs PVV1 42.1 mL (33.7;61.5, P = .039) vs PVV2 41.7mL (32.7;62.8, P = .045). IPSS was reduced both at V1 and at V2: IPSSV0 11 (5.7;23.2) vs IPSSV1 10 (6;16, P = .045) vs IPSSV2 9 (6;14, P = .015). Baseline IPSS was related to IPSS reduction both at V1 (rs = 0.313;P = .003) and at V2 (rs = 0.664;P < .001). PV reduction in patients without metabolic syndrome (ΔPVV1nMetS −4.7 mL, 95%CI −7.3;‐2.0) was greater than in affected patients (ΔPVV1MetS 1.7 mL, 95%CI −2.69;6.1)(P = .017, Relative RiskMetS = 6). No changes were found in gonadal hormones or sexual function. Discussion PEMF was able to reduce PV after 28 days of therapy. Symptoms improved in a short time, with high compliance and no effects on hormonal and sexual function or any side effects. Patients with moderate‐severe LUTS and without MetS seem to benefit more from this treatment. Conclusion PEMF reduces PV and improves LUTS in a relative short time, in BPH patients. These benefits seem greater in those patients with moderate‐severe LUTS but without MetS.
Collapse
Affiliation(s)
- Marta Tenuta
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria G Tarsitano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Mazzotta
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Livia Lucchini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Franz Sesti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giorgio Fattorini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carlotta Pozza
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Valerio Olivieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Riccardo Pofi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Lafront C, Germain L, Weidmann C, Audet-Walsh É. A Systematic Study of the Impact of Estrogens and Selective Estrogen Receptor Modulators on Prostate Cancer Cell Proliferation. Sci Rep 2020; 10:4024. [PMID: 32132580 PMCID: PMC7055213 DOI: 10.1038/s41598-020-60844-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/17/2020] [Indexed: 01/10/2023] Open
Abstract
The estrogen signaling pathway has been reported to modulate prostate cancer (PCa) progression through the activity of estrogen receptors α and β (ERα and ERβ). Given that selective estrogen receptor modulators (SERMs) are used to treat breast cancer, ERs have been proposed as attractive therapeutic targets in PCa. However, many inconsistencies regarding the expression of ERs and the efficacy of SERMs for PCa treatment exist, notably due to the use of ERβ antibodies lacking specificity and treatments with high SERM concentrations leading to off-target effects. To end this confusion, our objective was to study the impact of estrogenic and anti-estrogenic ligands in well-studied in vitro PCa models with appropriate controls, dosages, and ER subtype-specific antibodies. When using physiologically relevant concentrations of nine estrogenic/anti-estrogenic compounds, including five SERMs, we observed no significant modulation of PCa cell proliferation. Using RNA-seq and validated antibodies, we demonstrate that these PCa models do not express ERs. In contrast, RNA-seq from PCa samples from patients have detectable expression of ERα. Overall, our study reveals that commonly used PCa models are inappropriate to study ERs and indicate that usage of alternative models is essential to properly assess the roles of the estrogen signaling pathway in PCa.
Collapse
Affiliation(s)
- Camille Lafront
- Department of molecular medicine, Faculty of Medicine, Université Laval, Québec City, G1V 0A6, Canada
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada
- Centre de recherche sur le cancer (CRC) of Université Laval, Québec City, Canada
| | - Lucas Germain
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada
- Centre de recherche sur le cancer (CRC) of Université Laval, Québec City, Canada
- Department of biochemistry, microbiology and bioinformatics, Faculty of Sciences and Engineering, Université Laval, Québec City, G1V 0A6, Canada
| | - Cindy Weidmann
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada
- Centre de recherche sur le cancer (CRC) of Université Laval, Québec City, Canada
| | - Étienne Audet-Walsh
- Department of molecular medicine, Faculty of Medicine, Université Laval, Québec City, G1V 0A6, Canada.
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada.
- Centre de recherche sur le cancer (CRC) of Université Laval, Québec City, Canada.
| |
Collapse
|
5
|
Hilborn E, Stål O, Jansson A. Estrogen and androgen-converting enzymes 17β-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17β-hydroxysteroid dehydrogenase type 1, 2, and breast cancer. Oncotarget 2018; 8:30552-30562. [PMID: 28430630 PMCID: PMC5444764 DOI: 10.18632/oncotarget.15547] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/12/2017] [Indexed: 12/12/2022] Open
Abstract
Sex steroid hormones such as estrogens and androgens are involved in the development and differentiation of the breast tissue. The activity and concentration of sex steroids is determined by the availability from the circulation, and on local conversion. This conversion is primarily mediated by aromatase, steroid sulfatase, and 17β-hydroxysteroid dehydrogenases. In postmenopausal women, this is the primary source of estrogens in the breast. Up to 70-80% of all breast cancers express the estrogen receptor-α, responsible for promoting the growth of the tissue. Further, 60-80% express the androgen receptor, which has been shown to have tissue protective effects in estrogen receptor positive breast cancer, and a more ambiguous response in estrogen receptor negative breast cancers. In this review, we summarize the function and clinical relevance in cancer for 17β-hydroxysteroid dehydrogenases 1, which facilitates the reduction of estrone to estradiol, dehydroepiandrosterone to androstendiol and dihydrotestosterone to 3α- and 3β-diol as well as 17β-hydroxysteroid dehydrogenases 2 which mediates the oxidation of estradiol to estrone, testosterone to androstenedione and androstendiol to dehydroepiandrosterone. The expression of 17β-hydroxysteroid dehydrogenases 1 and 2 alone and in combination has been shown to predict patient outcome, and inhibition of 17β-hydroxysteroid dehydrogenases 1 has been proposed to be a prime candidate for inhibition in patients who develop aromatase inhibitor resistance or in combination with aromatase inhibitors as a first line treatment. Here we review the status of inhibitors against 17β-hydroxysteroid dehydrogenases 1. In addition, we review the involvement of 17β-hydroxysteroid dehydrogenases 4, 5, 7, and 14 in breast cancer.
Collapse
Affiliation(s)
- Erik Hilborn
- Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Olle Stål
- Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Agneta Jansson
- Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Morais-Santos M, Werneck-Gomes H, Campolina-Silva GH, Santos LC, Mahecha GAB, Hess RA, Oliveira CA. Basal Cells Show Increased Expression of Aromatase and Estrogen Receptor α in Prostate Epithelial Lesions of Male Aging Rats. Endocrinology 2018; 159:723-732. [PMID: 29121167 DOI: 10.1210/en.2017-00773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/01/2017] [Indexed: 12/16/2022]
Abstract
Besides androgens, estrogen signaling plays a key role in normal development and pathologies of the prostate. Irreversible synthesis of estrogens from androgens is catalyzed by aromatase. Interestingly, animals lacking aromatase do not develop cancer or prostatitis, whereas those with overexpression of aromatase and, consequently, high estrogen levels develop prostatitis and squamous metaplasia via estrogen receptor 1 (ERα). Even with this evidence, the aromatase expression in the prostate is controversial. Moreover, little is known about the occurrence of age-dependent variation of aromatase and its association with histopathological changes commonly found in advanced age, a knowledge gap that is addressed herein. For this purpose, the immunoexpression of aromatase was evaluated in the prostatic complex of young adult to senile Wistar rats. ERα was also investigated, to extend our understanding of estrogen responsiveness in the prostate. Moderate cytoplasmic immunoreactivity for aromatase was detected in the glandular epithelium. Eventually, some basal cells showed intense staining for aromatase. The expression pattern for aromatase appeared similar in the normal epithelium when young and senile rats were compared; this result was corroborated by Western blotting. Conversely, in senile rats, there was an increase in the frequency of basal cells intensely stained for aromatase, which appeared concentrated in areas of intraepithelial proliferation and prostatitis. These punctual areas also presented increased ERα positivity. Together, these findings suggest a plausible source for hormonal imbalance favoring estrogen production, which, by acting through ERα, may favor the development of prostatic lesions commonly found in advanced age.
Collapse
Affiliation(s)
- Mônica Morais-Santos
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Animal Biology, Universidade Federal de Viçosa,, Viçosa, Minas Gerais, Brazil
| | - Hipácia Werneck-Gomes
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel H Campolina-Silva
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leticia C Santos
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Germán A B Mahecha
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rex A Hess
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois
| | - Cleida A Oliveira
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
7
|
Lolli F, Pallotti F, Rossi A, Fortuna MC, Caro G, Lenzi A, Sansone A, Lombardo F. Androgenetic alopecia: a review. Endocrine 2017; 57:9-17. [PMID: 28349362 DOI: 10.1007/s12020-017-1280-y] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/25/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Androgenetic alopecia, commonly known as male pattern baldness, is the most common type of progressive hair loss disorder in men. The aim of this paper is to review recent advances in understanding the pathophysiology and molecular mechanism of androgenetic alopecia. METHODS Using the PubMed database, we conducted a systematic review of the literature, selecting studies published from 1916 to 2016. RESULTS The occurrence and development of androgenetic alopecia depends on the interaction of endocrine factors and genetic predisposition. Androgenetic alopecia is characterized by progressive hair follicular miniaturization, caused by the actions of androgens on the epithelial cells of genetically susceptible hair follicles in androgen-dependent areas. Although the exact pathogenesis of androgenetic alopecia remains to be clarified, research has shown that it is a polygenetic condition. Numerous studies have unequivocally identified two major genetic risk loci for androgenetic alopecia, on the X-chromosome AR⁄EDA2R locus and the chromosome 20p11 locus. CONCLUSIONS Candidate gene and genome-wide association studies have reported that single-nucleotide polymorphisms at different genomic loci are associated with androgenetic alopecia development. A number of genes determine the predisposition for androgenetic alopecia in a polygenic fashion. However, further studies are needed before the specific genetic factors of this polygenic condition can be fully explained.
Collapse
Affiliation(s)
- Francesca Lolli
- Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Francesco Pallotti
- Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Alfredo Rossi
- Department of Internal Medicine and Medical Specialties, University of Rome "La Sapienza", Rome, Italy
| | - Maria C Fortuna
- Department of Internal Medicine and Medical Specialties, University of Rome "La Sapienza", Rome, Italy
| | - Gemma Caro
- Department of Internal Medicine and Medical Specialties, University of Rome "La Sapienza", Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Andrea Sansone
- Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Francesco Lombardo
- Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy.
| |
Collapse
|
8
|
Frycz BA, Murawa D, Borejsza-Wysocki M, Wichtowski M, Spychała A, Marciniak R, Murawa P, Drews M, Jagodziński PP. Transcript level of AKR1C3 is down-regulated in gastric cancer. Biochem Cell Biol 2015; 94:138-46. [PMID: 27019068 DOI: 10.1139/bcb-2015-0096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Steroid hormones have been shown to play a role in gastric carcinogenesis. Large amounts of steroid hormones are locally produced in the peripheral tissues of both genders. Type 5 of 17β-hydroxysteroid dehydrogenase, encoded by the AKR1C3 gene, plays a pivotal role in both androgen and estrogen metabolism, and its expression was found to be deregulated in different cancers. In this study we measured AKR1C3 transcript and protein levels in nontumoral and primary tumoral gastric tissues, and evaluated their association with some clinicopathological features of gastric cancer (GC). We found decreased levels of AKR1C3 transcript (p < 0.0001) and protein (p = 0.0021) in GC tissues compared with the adjacent, apparently histopathologically normal, mucosa. Lower levels of AKR1C3 transcript were observed in diffuse and intestinal types of GC, whereas AKR1C3 protein levels were decreased in tumors with multisite localization, in diffuse histological type, T3, T4, and G3 grades. We also determined the effect of the histone deacetylase inhibitor sodium butyrate (NaBu) on AKR1C3 expression in EPG 85-257 and HGC-27 GC cell lines. We found that NaBu elevates the levels of both AKR1C3 transcript and protein in the cell lines we investigated. Together, our results suggest that decreased expression of AKR1C3 may be involved in development of GC and can be restored by NaBu.
Collapse
Affiliation(s)
- Bartosz Adam Frycz
- a Department of Biochemistry and Molecular Biology, University of Medical Sciences, Poznań, Poland
| | - Dawid Murawa
- b First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, Poznań, Poland.,c Regional Specialist Hospital, Research and Development Centre, Wrocław, Poland
| | - Maciej Borejsza-Wysocki
- d Department of General, Endocrinological Surgery and Gastroenterological Oncology, University of Medical Sciences, Poznań, Poland
| | - Mateusz Wichtowski
- b First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, Poznań, Poland
| | - Arkadiusz Spychała
- b First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, Poznań, Poland
| | - Ryszard Marciniak
- d Department of General, Endocrinological Surgery and Gastroenterological Oncology, University of Medical Sciences, Poznań, Poland
| | - Paweł Murawa
- b First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, Poznań, Poland
| | - Michał Drews
- d Department of General, Endocrinological Surgery and Gastroenterological Oncology, University of Medical Sciences, Poznań, Poland
| | - Paweł Piotr Jagodziński
- a Department of Biochemistry and Molecular Biology, University of Medical Sciences, Poznań, Poland
| |
Collapse
|