1
|
Minhas P, Kumar BVS, Verma R. Expression of recombinant DnaK of Brucella abortus and its evaluation as immuno-modulator. Arch Microbiol 2021; 203:2719-2725. [PMID: 33606039 DOI: 10.1007/s00203-021-02190-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 01/05/2021] [Accepted: 02/04/2021] [Indexed: 11/29/2022]
Abstract
Heat shock proteins are molecular chaperones that are immunogens as well as potent inducers of an antigen-specific immunological response. In this study, we aimed to evaluate if co-immunization of Brucella rOmp22 and rDnaK proteins had boosted immunogenic activity as compared to rOmp22 immunization alone in mice. For this, gene-encoding DnaK of B. abortus was cloned, expressed in E. coli and purified using Ni-NTA agarose. Immuno-modulatory effect of rDnaK protein was evaluated in mice when co-immunized with Brucella rOmp22. Four groups of mice (n = 6 per group) were used in the study. The control group was immunized with rOmp22 alone, while rOmp22 emulsified with conventional adjuvants (Freund's complete and incomplete adjuvants) and rOmp22 mixed with rDnaK were injected to group I and group II in mice, respectively. Group III mice were immunized with rDnaK alone. IgG class switching (IgG1 and IgG2a) response to immunization was assessed by enzyme-linked immunosorbent assay and expression of IL-4 and IL-12 mRNA was assessed by real-time PCR to evaluate the immune response in mice. The ratio of IgG1-IgG2a was less than 1 in mice co-immunized with rOmp22 and rDnaK, indicating that the immune response was directed towards CMI arm in this group of mice. Moreover, IL-12 mRNA expression was also up-regulated to a greater extent in mice co-immunized with rOmp22 and rDnaK as compared to those immunized with rOmp22 along with the conventional adjuvants, or rOmp22 alone. Our data suggest that rDnaK could be responsible for modulating the immune response, specifically the CMI response.
Collapse
Affiliation(s)
- Priyanka Minhas
- Department of Microbial and Environmental Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - B V Sunil Kumar
- Department of Microbial and Environmental Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India.
| | - Ramneek Verma
- Department of Microbial and Environmental Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
2
|
Samrot AV, Sean TC, Bhavya KS, Sahithya CS, Chan-drasekaran S, Palanisamy R, Robinson ER, Subbiah SK, Mok PL. Leptospiral Infection, Pathogenesis and Its Diagnosis-A Review. Pathogens 2021; 10:pathogens10020145. [PMID: 33535649 PMCID: PMC7912936 DOI: 10.3390/pathogens10020145] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Leptospirosis is a perplexing conundrum for many. In the existing literature, the pathophysiological mechanisms pertaining to leptospirosis is still not understood in full. Considered as a neglected tropical zoonotic disease, leptospirosis is culminating as a serious problem worldwide, seemingly existing as co-infections with various other unrelated diseases, including dengue and malaria. Misdiagnosis is also common as non-specific symptoms are documented extensively in the literature. This can easily lead to death, as the severe form of leptospirosis (Weil's disease) manifests as a complex of systemic complications, especially renal failure. The virulence of Leptospira sp. is usually attributed to the outer membrane proteins, including LipL32. With an armament of virulence factors at their disposal, their ability to easily adhere, invade and replicate within cells calls for a swift refinement in research progress to establish their exact pathophysiological framework. As an effort to reconstitute the current knowledge on leptospirosis, the basis of leptospiral infection, including its risk factors, classification, morphology, transmission, pathogenesis, co-infections and clinical manifestations are highlighted in this review. The various diagnostic techniques are also outlined with emphasis on their respective pros and cons.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia;
- Correspondence: (A.V.S.); (P.L.M.)
| | - Tan Chuan Sean
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia;
| | - Karanam Sai Bhavya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Chamarthy Sai Sahithya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - SaiPriya Chan-drasekaran
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Raji Palanisamy
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Emilin Renitta Robinson
- Department of Food Processing Technology, Karunya Institute of Technology and Science, Coimbatore, Tamil Nadu 641 114, India;
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
- Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Selaiyur, Tamil Nadu 600 073, India
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Pooi Ling Mok
- Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Selaiyur, Tamil Nadu 600 073, India
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Aljouf Province, Saudi Arabia
- Correspondence: (A.V.S.); (P.L.M.)
| |
Collapse
|
3
|
Chen J, Wang W, Hou S, Fu W, Cai J, Xia L, Lu Y. Comparison of protective efficacy between two DNA vaccines encoding DnaK and GroEL against fish nocardiosis. FISH & SHELLFISH IMMUNOLOGY 2019; 95:128-139. [PMID: 31629062 DOI: 10.1016/j.fsi.2019.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Fish nocardiosis is a chronic granulomatous bacterial disease mainly caused by three pathogenic bacteria, including Nocardia seriolae, N. asteroids and N. salmonicida. Molecular chaperone DnaK and GroEL were identified to be the common antigens of the three pathogenic Nocardia species in our previous studies. To evaluate the immune protective effect of two DNA vaccines encoding DnaK or GroEL against fish nocardiosis, hybrid snakehead were vaccinated and the immune responses induced by these two vaccines were comparatively analyzed. The results suggested it needed at least 7 d to transport DnaK or GroEL gene from injected muscle to head kidney, spleen and liver and stimulate host's immune system for later protection after immunization by DNA vaccines. Additionally, non-specific immunity parameters (serum lysozyme (LYZ), peroxidase (POD), acid phosphatase (ACP), alkaline phosphatase (AKP) and superoxide dismutase (SOD) activities), specific antibody (IgM) production and immune-related genes (MHCIα, MHCIIα, CD4, CD8α, IL-1β and TNFα) were used to evaluate the immune responses induced in vaccinated hybrid snakehead. It proved that all the above-mentioned immune activities were significantly enhanced after immunization with these two DNA vaccines. The protective efficacy of pcDNA-DnaK and pcDNA-GroEL DNA vaccines, in terms of relative percentage survival (RPS), were 53.01% and 80.71% respectively. It demonstrated that these two DNA vaccines could increase the survival rate of hybrid snakehead against fish nocardiosis, albeit with variations in immunoprotective effects. Taken together, these results indicated that both pcDNA-DnaK and pcDNA-GroEL DNA vaccines could boost the innate, humoral and cellular immune response in hybrid snakehead and show highly protective efficacy against fish nocardiosis, suggesting that DnaK and GroEL were promising vaccine candidates. These findings will promote the development of DNA vaccines against fish nocardiosis in aquaculture.
Collapse
Affiliation(s)
- Jianlin Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Wenji Wang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Suying Hou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Weixuan Fu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China
| | - Jia Cai
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Liqun Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, Guangdong, China.
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Ratanji KD, Derrick JP, Kimber I, Thorpe R, Wadhwa M, Dearman RJ. Influence of Escherichia coli chaperone DnaK on protein immunogenicity. Immunology 2017; 150:343-355. [PMID: 27859059 PMCID: PMC5290234 DOI: 10.1111/imm.12689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/30/2016] [Accepted: 11/05/2016] [Indexed: 01/11/2023] Open
Abstract
The production of anti-drug antibodies can impact significantly upon the safety and efficacy of biotherapeutics. It is known that various factors, including aggregation and the presence of process-related impurities, can modify and augment the immunogenic potential of proteins. The purpose of the investigations reported here was to characterize in mice the influence of aggregation and host cell protein impurities on the immunogenicity of a humanized single-chain antibody variable fragment (scFv), and mouse albumin. Host cell protein impurities within an scFv preparation purified from Escherichia coli displayed adjuvant-like activity for responses to the scFv in BALB/c strain mice. The 70 000 MW E. coli chaperone protein DnaK was identified as a key contaminant of scFv by mass spectrometric analysis. Preparations of scFv lacking detectable DnaK were spiked with recombinant E. coli DnaK to mimic the process-related impurity. Mice were immunized with monomeric and aggregated preparations, with and without 0·1% DnaK by mass. Aggregation alone enhanced IgM and IgG2a antibody responses, but had no significant effect on total IgG or IgG1 responses. The addition of DnaK further enhanced IgG and IgG2a antibody responses, but only in the presence of aggregated protein. DnaK was shown to be associated with the aggregated scFv by Western blot analysis. Experiments with mouse albumin showed an overall increase in immunogenicity with protein aggregation alone, and the presence of DnaK increased the vigour of the IgG2a antibody response further. Collectively these data reveal that DnaK has the potential to modify and enhance immunogenicity when associated with aggregated protein.
Collapse
Affiliation(s)
- Kirsty D. Ratanji
- Faculty of Biology, Medicine and HealthSchool of Biological SciencesThe University of ManchesterManchesterUK
| | - Jeremy P. Derrick
- Faculty of Biology, Medicine and HealthSchool of Biological SciencesThe University of ManchesterManchesterUK
| | - Ian Kimber
- Faculty of Biology, Medicine and HealthSchool of Biological SciencesThe University of ManchesterManchesterUK
| | - Robin Thorpe
- National Institute for Biological Standards and ControlPotters BarHertfordshireUK
| | - Meenu Wadhwa
- National Institute for Biological Standards and ControlPotters BarHertfordshireUK
| | - Rebecca J. Dearman
- Faculty of Biology, Medicine and HealthSchool of Biological SciencesThe University of ManchesterManchesterUK
| |
Collapse
|
5
|
Teixeira AF, de Morais ZM, Kirchgatter K, Romero EC, Vasconcellos SA, Nascimento ALTO. Features of two new proteins with OmpA-like domains identified in the genome sequences of Leptospira interrogans. PLoS One 2015; 10:e0122762. [PMID: 25849456 PMCID: PMC4388678 DOI: 10.1371/journal.pone.0122762] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/13/2015] [Indexed: 12/12/2022] Open
Abstract
Leptospirosis is an acute febrile disease caused by pathogenic spirochetes of the genus Leptospira. It is considered an important re-emerging infectious disease that affects humans worldwide. The knowledge about the mechanisms by which pathogenic leptospires invade and colonize the host remains limited since very few virulence factors contributing to the pathogenesis of the disease have been identified. Here, we report the identification and characterization of two new leptospiral proteins with OmpA-like domains. The recombinant proteins, which exhibit extracellular matrix-binding properties, are called Lsa46 - LIC13479 and Lsa77 - LIC10050 (Leptospiral surface adhesins of 46 and 77 kDa, respectively). Attachment of Lsa46 and Lsa77 to laminin was specific, dose dependent and saturable, with KD values of 24.3 ± 17.0 and 53.0 ± 17.5 nM, respectively. Lsa46 and Lsa77 also bind plasma fibronectin, and both adhesins are plasminogen (PLG)-interacting proteins, capable of generating plasmin (PLA) and as such, increase the proteolytic ability of leptospires. The proteins corresponding to Lsa46 and Lsa77 are present in virulent L. interrogans L1-130 and in saprophyte L. biflexa Patoc 1 strains, as detected by immunofluorescence. The adhesins are recognized by human leptospirosis serum samples at the onset and convalescent phases of the disease, suggesting that they are expressed during infection. Taken together, our data could offer valuable information to the understanding of leptospiral pathogenesis.
Collapse
Affiliation(s)
- Aline F. Teixeira
- Centro de Biotecnologia, Instituto Butantan, Sao Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia,Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Zenaide M. de Morais
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Karin Kirchgatter
- Nucleo de Estudos em Malária, Superintendência de Controle de Endemias - Instituto de Medicina Tropical, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Eliete C. Romero
- Centro de Bacteriologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | - Silvio A. Vasconcellos
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana Lucia T. O. Nascimento
- Centro de Biotecnologia, Instituto Butantan, Sao Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia,Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|