1
|
Liu Z, Zhang J, Li L, Zhang T, Huang L, Yin Q. Shoutai Pill Enhances Endometrial Receptivity in Controlled Ovarian Hyperstimulation Mice by Improving the In-Vivo Immune Environment. Comb Chem High Throughput Screen 2025; 28:711-723. [PMID: 37929727 DOI: 10.2174/0113862073274708231028185333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND The Shoutai pill (STP) is a classic formulation in traditional Chinese medicine. Preliminary experimental observations from our study suggest that it is effective in enhancing endometrial receptivity. However, the underlying mechanisms by which STP influences endometrial receptivity remain to be elucidated. OBJECTIVE The objective of this study is to investigate the effects and mechanisms of the STP formulation in enhancing endometrial receptivity in controlled ovarian hyperstimulation (COH) model mice. METHODS The network pharmacology analysis identified target proteins associated with the reduction of endometrial receptivity by STP. The COH mouse model was established using the GnRHa+PMSG+HCG protocol. The levels of MHC-1 and MHC-2 in mouse serum were measured using the ELISA method, while the levels of IL-1β, IL-4, IL-10, IP-10, IL-1a, IL-2, IL-17, TNF-a, and IFN-y were measured using liquid chip technology. RESULTS STP exhibited a significant improvement in the immune environment of COH model mice. The major active components of STP were identified as beta-sitosterol and quercetin, among others. Furthermore, AKT1, VEGFA, and several immune factors, such as TNF, IFN, IL- 1β, and IL-10, were identified as key targets for regulating endometrial receptivity. STP enhanced the expression of IL-10, IL-4, and IP-10 in the mice while reducing the expression levels of IL-2, IL-17, TNF-α, and IFN-γ in COH mice. These effects led to the modulation of early high expression of IL-1β and an improvement in endometrial receptivity. CONCLUSION This study demonstrates that STP can modulate in-vivo immune factors throughout the COH process, subsequently restoring the immune equilibrium within the endometrium, thereby enhancing the endometrial receptivity in the COH model mice.
Collapse
Affiliation(s)
- Ziping Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, China
| | - Jizhong Zhang
- Southwest University for Nationalities, Chengdu Sichuan, China
| | - Liming Li
- 3Sichuan Academy of Traditional Chinese Medicine Science, Chengdu Sichuan China
| | - Tiane Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, China
| | - Li Huang
- Sichuan Academy of Traditional Chinese Medicine Science, Chengdu Sichuan China
| | - Qiaozhi Yin
- Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, China
| |
Collapse
|
2
|
Ando A, Matsubara T, Suzuki S, Imaeda N, Takasu M, Shigenari A, Miyamoto A, Ohshima S, Kametani Y, Shiina T, Kulski JK, Kitagawa H. Genetic Links between Reproductive Traits and Amino Acid Pairwise Distances of Swine Leukocyte Antigen Alleles among Mating Partners in Microminipigs. Int J Mol Sci 2024; 25:7362. [PMID: 39000468 PMCID: PMC11242825 DOI: 10.3390/ijms25137362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Previously, we found that a greater dissimilarity in swine leukocyte antigen (SLA) class I and class II alleles between mating partners resulted in increased farrowing rates in a highly inbred population of Microminipigs (MMPs). In this follow-up study, we have analyzed the effects of dissimilarity in SLA alleles between mating partners for seven different reproductive traits, including litter size and the number of stillborn and live or dead weaned piglets. We determined the relationships among reproductive traits within each mating event and the amino acid distances of SLA alleles as markers of diversity between mating partners. Our results indicate that mating partners with greater amino acid pairwise genetic distances in the SLA-1 class I gene or DQB1 class II gene alleles were associated with significantly larger litter sizes and higher numbers of live piglets at birth and weaning. Also, partners with greater pairwise distances in the SLA-2 class I gene alleles exhibited fewer pre-weaning deaths. These findings suggest that the dissimilarity in SLA class I and class II alleles between mating partners may affect not only farrowing rates but also other key reproductive traits such as litter size and improved piglet survival rates. Consequently, SLA alleles could serve as valuable genetic markers for selecting mating partners in breeding programs and for conducting epistatic studies on various reproductive traits in MMPs.
Collapse
Affiliation(s)
- Asako Ando
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.S.); (A.S.); (A.M.); (S.O.); (Y.K.); (T.S.); or (J.K.K.)
| | - Tatsuya Matsubara
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan; (T.M.); (N.I.)
| | - Shingo Suzuki
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.S.); (A.S.); (A.M.); (S.O.); (Y.K.); (T.S.); or (J.K.K.)
| | - Noriaki Imaeda
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan; (T.M.); (N.I.)
| | - Masaki Takasu
- Gifu University Institute for Advanced Study, Gifu University, Gifu 501-1193, Japan;
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu 501-1193, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.S.); (A.S.); (A.M.); (S.O.); (Y.K.); (T.S.); or (J.K.K.)
| | - Asuka Miyamoto
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.S.); (A.S.); (A.M.); (S.O.); (Y.K.); (T.S.); or (J.K.K.)
| | - Shino Ohshima
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.S.); (A.S.); (A.M.); (S.O.); (Y.K.); (T.S.); or (J.K.K.)
| | - Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.S.); (A.S.); (A.M.); (S.O.); (Y.K.); (T.S.); or (J.K.K.)
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.S.); (A.S.); (A.M.); (S.O.); (Y.K.); (T.S.); or (J.K.K.)
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.S.); (A.S.); (A.M.); (S.O.); (Y.K.); (T.S.); or (J.K.K.)
- Faculty of Health and Medical Sciences, School of Biomedical Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Hitoshi Kitagawa
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan; (T.M.); (N.I.)
- Laboratory of Veterinary Internal Medicine, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan
| |
Collapse
|
3
|
Anisimova MV, Gon Y, Kontsevaya GV, Romashchenko AV, Khotskin NV, Stanova AK, Gerlinskaya LA, Moshkin MP. Body composition as an indicator of metabolic changes in mice obtained by in vitro fertilization. Vavilovskii Zhurnal Genet Selektsii 2023; 27:357-365. [PMID: 37465196 PMCID: PMC10350860 DOI: 10.18699/vjgb-23-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023] Open
Abstract
To identify body systems subject to epigenetic transformation during in vitro fertilization (IVF), comparative morphological and functional studies were performed on sexually mature offspring of outbred CD1 mice, specific-pathogen-free (SPF), obtained by IVF (experiment) and natural conception (control). The studies included assessment of age-related changes in body weight and composition, energy intake and expenditure, and glucose homeostasis. To level the effects caused by the different number of newborns in the control and in the experiment, the size of the fed litters was halved in the control females. Males obtained using the IVF procedure were superior in body weight compared to control males in all age groups. As was shown by analysis of variance with experiment/control factors, gender, age (7, 10 and 20 weeks), the IVF procedure had a statistically significant and unidirectional effect on body composition. At the same time, IVF offspring outperformed control individuals in relative fat content, but were behind in terms of lean mass. The effect of the interaction of factors was not statistically significant. IVF offspring of both sexes had higher fat to lean mass ratios (FLR). Since adipose tissue contributes significantly less to total energy intake compared to muscle, the main component of lean mass, it is not surprising that at the same level of IVF locomotor activity offspring consumed less food than controls. When converted to one gram of body weight, this difference reached 19 %. One of the consequences of reduced utilization of IVF energy substrates by offspring is a decrease in their tolerance to glucose loading. The integral criterion for the effectiveness of restoring the initial glucose level is the area under the curve (AUC), the value of which was 2.5 (males) and 3.2 (females) times higher in IVF offspring compared to the corresponding control. Thus, the totality of our original and literature data shows an increase in the risk of metabolic disorders in IVF offspring, which is confirmed by epidemiological studies of a relatively young cohort of people born using assisted reproductive technologies.
Collapse
Affiliation(s)
- M V Anisimova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yanli Gon
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - G V Kontsevaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Romashchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N V Khotskin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A K Stanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L A Gerlinskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M P Moshkin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Tomsk State University, Department of Vertebrate Zoology and Ecology, Tomsk, Russia
| |
Collapse
|
4
|
Ando A, Matsubara T, Suzuki S, Imaeda N, Takasu M, Shigenari A, Miyamoto A, Ohshima S, Kametani Y, Shiina T, Kulski JK, Kitagawa H. Genetic Association between Farrowing Rates and Swine Leukocyte Antigen Alleles or Haplotypes in Microminipigs. Cells 2022; 11:3138. [PMID: 36231100 PMCID: PMC9563624 DOI: 10.3390/cells11193138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
We have previously reported specific swine leukocyte antigen (SLA) haplotype associations with significant effects on several reproduction performance traits in a highly inbred miniature pig population of Microminipigs (MMPs). In this study, to clarify the effects on farrowing rates of SLA similarity between mating partners in the MMP population, we compared the farrowing rates as a measure of reproductive success after 1063-cumulative matings among the following three groups of mating partners: (1) completely sharing SLA class I or class II haplotypes or alleles between partners (CS), (2) only one sharing the haplotypes or alleles (OS), and (3) non-sharing the haplotypes or alleles (NS). Average farrowing rates in CS groups consisting of completely sharing SLA class II haplotypes or DRBI and DQB1 alleles were lowest in the three groups. Moreover, lower farrowing rates were indicated in mating pairs with smaller amino acid pairwise genetic distances of SLA-1, SLA-3, DRB1 and DQB1 alleles between the pairs. These results suggested that the dissimilarity of SLA class I and class II alleles between mating partners markedly improved reproductive performance; therefore, SLA alleles or haplotypes are potentially useful genetic markers for the selection of mating pairs in breeding programs and epistatic studies of reproductive traits of MMPs.
Collapse
Affiliation(s)
- Asako Ando
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Tatsuya Matsubara
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Shingo Suzuki
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Noriaki Imaeda
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Asuka Miyamoto
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Shino Ohshima
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Hitoshi Kitagawa
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- Laboratory of Veterinary Internal Medicine, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari 794-8555, Japan
| |
Collapse
|
5
|
Block LN, Bowman BD, Schmidt JK, Keding LT, Stanic AK, Golos TG. The promise of placental extracellular vesicles: models and challenges for diagnosing placental dysfunction in utero†. Biol Reprod 2021; 104:27-57. [PMID: 32856695 PMCID: PMC7786267 DOI: 10.1093/biolre/ioaa152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Monitoring the health of a pregnancy is of utmost importance to both the fetus and the mother. The diagnosis of pregnancy complications typically occurs after the manifestation of symptoms, and limited preventative measures or effective treatments are available. Traditionally, pregnancy health is evaluated by analyzing maternal serum hormone levels, genetic testing, ultrasonographic imaging, and monitoring maternal symptoms. However, researchers have reported a difference in extracellular vesicle (EV) quantity and cargo between healthy and at-risk pregnancies. Thus, placental EVs (PEVs) may help to understand normal and aberrant placental development, monitor pregnancy health in terms of developing placental pathologies, and assess the impact of environmental influences, such as infection, on pregnancy. The diagnostic potential of PEVs could allow for earlier detection of pregnancy complications via noninvasive sampling and frequent monitoring. Understanding how PEVs serve as a means of communication with maternal cells and recognizing their potential utility as a readout of placental health have sparked a growing interest in basic and translational research. However, to date, PEV research with animal models lags behind human studies. The strength of animal pregnancy models is that they can be used to assess placental pathologies in conjunction with isolation of PEVs from fluid samples at different time points throughout gestation. Assessing PEV cargo in animals within normal and complicated pregnancies will accelerate the translation of PEV analysis into the clinic for potential use in prognostics. We propose that appropriate animal models of human pregnancy complications must be established in the PEV field.
Collapse
Affiliation(s)
- Lindsey N Block
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Brittany D Bowman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Logan T Keding
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Aleksandar K Stanic
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Njue A, Coyne C, Margulis AV, Wang D, Marks MA, Russell K, Das R, Sinha A. The Role of Congenital Cytomegalovirus Infection in Adverse Birth Outcomes: A Review of the Potential Mechanisms. Viruses 2020; 13:v13010020. [PMID: 33374185 PMCID: PMC7823935 DOI: 10.3390/v13010020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (CMV) is a major cause of nonhereditary adverse birth outcomes, including hearing and visual loss, neurologic deficits, and intrauterine growth retardation (IUGR), and may contribute to outcomes such as stillbirth and preterm delivery. However, the mechanisms by which CMV could cause adverse birth outcomes are not fully understood. This study reviewed proposed mechanisms underlying the role of CMV in stillbirth, preterm birth, and IUGR. Targeted literature searches were performed in PubMed and Embase to identify relevant articles. Several potential mechanisms were identified from in vitro studies in which laboratory-adapted and low-passage strains of CMV and various human placental models were used. Potential mechanisms identified included impairment of trophoblast progenitor stem cell differentiation and function, impairment of extravillous trophoblast invasiveness, dysregulation of Wnt signaling pathways in cytotrophoblasts, tumor necrosis factor-α mediated apoptosis of trophoblasts, CMV-induced cytokine changes in the placenta, inhibition of indoleamine 2,3-dioxygenase activity, and downregulation of trophoblast class I major histocompatibility complex molecules. Inherent challenges for the field remain in the identification of suitable in vivo animal models. Nonetheless, we believe that our review provides useful insights into the mechanisms by which CMV impairs placental development and function and how these changes could result in adverse birth outcomes.
Collapse
Affiliation(s)
- Annete Njue
- RTI Health Solutions, Manchester M20 2LS, UK
- Correspondence:
| | - Carolyn Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | | | - Dai Wang
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| | - Morgan A. Marks
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| | - Kevin Russell
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| | - Rituparna Das
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| | - Anushua Sinha
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| |
Collapse
|
7
|
Pillay P, Moodley K, Vatish M, Moodley J. Exosomal MicroRNAs in Pregnancy Provides Insight into a Possible Cure for Cancer. Int J Mol Sci 2020; 21:ijms21155384. [PMID: 32751127 PMCID: PMC7432616 DOI: 10.3390/ijms21155384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
The biological links between cancer and pregnancy are of recent interest due to parallel proliferative, immunosuppressive and invasive mechanisms between tumour and trophoblast development. Therefore, understanding “cancer-like” mechanisms in pregnancy could lead to the development of novel cancer therapeutics, however, little is understood on how tumour and trophoblast cells recapitulate similar molecular mechanisms. Based on our observations from a previous study, it was not only evident that exosomal miRNAs are involved in the pathophysiology of preeclampsia but also contained cancer-specific miRNAs, which suggested that “pseudo-malignant-like” exosomal-mediated mechanisms exist in pregnancy. The presented study therefore aimed to identify exosomal miRNAs (exomiR) in pregnancy which can be repurposed towards preventing tumour metastasis and immunosuppression. It was identified that exomiR-302d-3p, exomiR-223-3p and exomiR-451a, commonly associated with cancer metastasis, were found to be highly expressed in pregnancy. Furthermore, computational merging and meta-analytical pathway analysis (DIANA miRPath) of significantly expressed exomiRs between 38 ± 1.9 vs. 30 ± 1.11 weeks of gestation indicated controlled regulation of biological pathways associated with cancer metastasis and immunosuppression. Therefore, the observations made in this study provide the experimental framework for the repurposing of exosomal miRNA molecular mechanisms in pregnancy towards treating and preventing cancer.
Collapse
Affiliation(s)
- Preenan Pillay
- Pearson Institute of Higher Education, Faculty of Applied Science, Johannesburg 2153, South Africa
- Nuffield Department of Women’s and Reproductive Health, Women’s Centre, John Radcliffe Hospital, University of Oxford, Oxford 38655, UK;
- Correspondence: or ; Tel.: +27-83-4402-486
| | - Kogi Moodley
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Manu Vatish
- Nuffield Department of Women’s and Reproductive Health, Women’s Centre, John Radcliffe Hospital, University of Oxford, Oxford 38655, UK;
| | - Jagidesa Moodley
- Women’s Health and HIV Research Group, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
8
|
Boschen KE, Ptacek TS, Simon JM, Parnell SE. Transcriptome-Wide Regulation of Key Developmental Pathways in the Mouse Neural Tube by Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2020; 44:1540-1550. [PMID: 32557641 DOI: 10.1111/acer.14389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/02/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Early gestational alcohol exposure is associated with severe craniofacial and CNS dysmorphologies and behavioral abnormalities during adolescence and adulthood. Alcohol exposure during the formation of the neural tube (gestational day [GD] 8 to 10 in mice; equivalent to4th week of human pregnancy) disrupts development of ventral midline brain structures such as the pituitary, septum, and ventricles. This study identifies transcriptomic changes in the rostroventral neural tube (RVNT), the region of the neural tube that gives rise to the midline structures sensitive to alcohol exposure during neurulation. METHODS Female C57BL/6J mice were administered 2 doses of alcohol (2.9 g/kg) or vehicle 4 hours apart on GD 9.0. The RVNTs of embryos were collected 6 or 24 hours after the first dose and processed for RNA-seq. RESULTS Six hours following GD 9.0 alcohol exposure (GD 9.25), over 2,300 genes in the RVNT were determined to be differentially regulated by alcohol. Enrichment analysis determined that PAE affected pathways related to cell proliferation, p53 signaling, ribosome biogenesis, and immune activation. In addition, over 100 genes involved in primary cilia formation and function and regulation of morphogenic pathways were altered 6 hours after alcohol exposure. The changes to gene expression were largely transient, as only 91 genes identified as differentially regulated by prenatal alcohol at GD 10 (24 hours postexposure). Functionally, the differentially regulated genes at GD 10 were related to organogenesis and cell migration. CONCLUSIONS These data give a comprehensive view of the changing landscape of the embryonic transcriptome networks in regions of the neural tube that give rise to brain structures impacted by a neurulation-stage alcohol exposure. Identification of gene networks dysregulated by alcohol will help elucidate the pathogenic mechanisms of alcohol's actions.
Collapse
Affiliation(s)
- Karen E Boschen
- From the Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Travis S Ptacek
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeremy M Simon
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott E Parnell
- From the Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Ando A, Imaeda N, Matsubara T, Takasu M, Miyamoto A, Oshima S, Nishii N, Kametani Y, Shiina T, Kulski JK, Kitagawa H. Genetic Association between Swine Leukocyte Antigen Class II Haplotypes and Reproduction Traits in Microminipigs. Cells 2019; 8:E783. [PMID: 31357541 PMCID: PMC6721486 DOI: 10.3390/cells8080783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
The effects of swine leukocyte antigen (SLA) molecules on numerous production and reproduction performance traits have been mainly reported as associations with specific SLA haplotypes that were assigned using serological typing methods. In this study, we intended to clarify the association between SLA class II genes and reproductive traits in a highly inbred population of 187 Microminipigs (MMP), that have eight different types of SLA class II haplotypes. In doing so, we compared the reproductive performances, such as fertility index, gestation period, litter size, and number of stillbirth among SLA class II low resolution haplotypes (Lrs) that were assigned by a polymerase chain reaction-sequence specific primers (PCR-SSP) typing method. Only low resolution haplotypes were used in this study because the eight SLA class II high-resolution haplotypes had been assigned to the 14 parents or the progenitors of the highly inbred MMP herd in a previous publication. The fertility index of dams with Lr-0.13 was significantly lower than that of dams with Lr-0.16, Lr-0.17, Lr-0.18, or Lr-0.37. Dams with Lr-0.23 had significantly smaller litter size at birth than those with Lr-0.17, Lr-0.18, or Lr-0.37. Furthermore, litter size at weaning of dams with Lr-0.23 was also significantly smaller than those dams with Lr-0.16, Lr-0.17, Lr-0.18, or Lr-0.37. The small litter size of dams with Lr-0.23 correlated with the smaller body sizes of these MMPs. These results suggest that SLA class II haplotypes are useful differential genetic markers for further haplotypic and epistatic studies of reproductive traits, selective breeding programs, and improvements in the production and reproduction performances of MMPs.
Collapse
Affiliation(s)
- Asako Ando
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Noriaki Imaeda
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Tatsuya Matsubara
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Asuka Miyamoto
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Shino Oshima
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Naohito Nishii
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Jerzy K Kulski
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
- Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Hitoshi Kitagawa
- Laboratory of Veterinary Internal Medicine, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan.
| |
Collapse
|
10
|
Polivka J, Altun I, Golubnitschaja O. Pregnancy-associated breast cancer: the risky status quo and new concepts of predictive medicine. EPMA J 2018. [PMID: 29515683 DOI: 10.1007/s13167-018-0129-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The paper is motivated by severe concerns regarding currently applied care of the pregnancy-associated breast cancer (PABC) characterised by particularly poor outcomes of the disease. Psychological and ethical aspects play a crucial role in PABC: the highest priority not to damage the foetus significantly complicates any treatment generally, and it is quite usual that patients disclaim undergoing any breast cancer treatment during pregnancy. Although, due to global demographic trends, PABC is far from appearing rarely now, severe societal and economic consequences of the disease are still neglected by currently applied reactive medical approach. These actualities require creating new strategies which should be better adapted to the needs of the society at large by advancing the PABC care based on predictive diagnostic approaches specifically in premenopausal women, innovative screening programmes focused on young female populations, targeted prevention in high-risk groups, and optimised treatment concepts. The article summarises the facts and provides recommendations to advance the field-related research and medical services specifically dedicated to the PABC care.
Collapse
Affiliation(s)
- Jiri Polivka
- 1Department of Histology and Embryology, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic
- 2Biomedical Centre, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic
| | - Irem Altun
- 3CEMBIO, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Olga Golubnitschaja
- 4Radiological Clinic, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Str 25, 53105 Bonn, Germany
- 5Breast Cancer Research Centre, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- 6Centre for Integrated Oncology, Cologne-Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
11
|
Poulet FM, Wolf JJ, Herzyk DJ, DeGeorge JJ. An Evaluation of the Impact of PD-1 Pathway Blockade on Reproductive Safety of Therapeutic PD-1 Inhibitors. ACTA ACUST UNITED AC 2016; 107:108-19. [PMID: 27062127 DOI: 10.1002/bdrb.21176] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/19/2022]
Abstract
This report discusses the principles of reproductive toxicity risk assessment for biopharmaceuticals blocking the PD-1/programmed cell death ligand 1 (PD-L1) pathway, which have been developed for the treatment of patients with advanced malignancies. The PD-1/PD-L1 pathway is a T-cell co-inhibitory pathway that normally maintains immune tolerance to self. Its role in pregnancy is to maintain immune tolerance to the fetal allograft. In cancer patients, this signaling pathway is hijacked by some neoplasms to avoid immune destruction. PD-1/PD-L1-blocking agents enhance functional activity of the target lymphocytes to eventually cause immune rejection of the tumor. A therapeutic blockade of PD-1/PD-L1 pathway that occurs at full target engagement provides a unique challenge to address the risk to pregnancy because disruption of the same pathway may also reduce or abrogate maternal immune tolerance to the fetal alloantigens inherited through the father. Typically, nonclinical reproductive and developmental toxicity (DART) studies in animals (rats and rabbits) with clinical drug candidates are conducted to identify potential risk in humans and to determine exposure margin for the effects on reproduction as part of the risk assessment. However, for biopharmaceuticals for which the desired mechanism of action cannot be separated from potential deleterious effects to the fetus and when the only relevant toxicology species is nonhuman primate (NHP), the risk to reproduction can be predicted by a mechanism-based assessment using data generated from murine surrogate models as supportive information without conducting DART in NHPs. Such an approach has been used in the evaluation of pregnancy risk of anti-PD-1 agent, pembrolizumab, and has been demonstrated as an important alternative to performing DART studies in NHPs.
Collapse
|
12
|
Weisblum Y, Panet A, Haimov-Kochman R, Wolf DG. Models of vertical cytomegalovirus (CMV) transmission and pathogenesis. Semin Immunopathol 2014; 36:615-25. [PMID: 25291972 DOI: 10.1007/s00281-014-0449-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 02/04/2023]
Abstract
Despite the considerable clinical impact of congenital human cytomegalovirus (HCMV) infection, the mechanisms of maternal-fetal transmission and the resultant placental and fetal damage are largely unknown. Here, we discuss animal models for the evaluation of CMV vaccines and virus-induced pathology and particularly explore surrogate human models for HCMV transmission and pathogenesis in the maternal-fetal interface. Studies in floating and anchoring placental villi and more recently, ex vivo modeling of HCMV infection in integral human decidual tissues, provide unique insights into patterns of viral tropism, spread, and injury, defining the outcome of congenital infection, and the effect of potential antiviral interventions.
Collapse
Affiliation(s)
- Yiska Weisblum
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | |
Collapse
|