1
|
Laser Capture Microdissection in the Spatial Analysis of Epigenetic Modifications in Skin: A Comprehensive Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4127238. [PMID: 35186184 PMCID: PMC8850045 DOI: 10.1155/2022/4127238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/29/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
Each cell in the body contains an intricate regulation for the expression of its relevant DNA. While every cell in a multicellular organism contains identical DNA, each tissue-specific cell expresses a different set of active genes. This organizational property exists in a paradigm that is largely controlled by forces external to the DNA sequence via epigenetic regulation. DNA methylation and chromatin modifications represent some of the classical epigenetic modifications that control gene expression. Complex tissues like skin consist of heterogeneous cell types that are spatially distributed and mixed. Furthermore, each individual skin cell has a unique response to physiological and pathological cues. As such, it is difficult to classify skin tissue as homogenous across all cell types and across different environmental exposures. Therefore, it would be prudent to isolate targeted tissue elements prior to any molecular analysis to avoid a possibility of confounding the sample with unwanted cell types. Laser capture microdissection (LCM) is a powerful technique used to isolate a targeted cell group with extreme microscopic precision. LCM presents itself as a solution to tackling the problem of tissue heterogeneity in molecular analysis. This review will cover an overview of LCM technology, the principals surrounding its application, and benefits of its application to the newly defined field of epigenomics, in particular of cutaneous pathology. This presents a comprehensive review about LCM and its use in the spatial analysis of skin epigenetics. Within the realm of skin pathology, this ability to isolate tissues under specific environmental stresses, such as oxidative stress, allows a far more focused investigation.
Collapse
|
2
|
Pietropaolo V, Prezioso C, Moens U. Merkel Cell Polyomavirus and Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:E1774. [PMID: 32635198 PMCID: PMC7407210 DOI: 10.3390/cancers12071774] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses are the cause of approximately 15% of all human cancers. Both RNA and DNA human tumor viruses have been identified, with Merkel cell polyomavirus being the most recent one to be linked to cancer. This virus is associated with about 80% of Merkel cell carcinomas, a rare, but aggressive cutaneous malignancy. Despite its name, the cells of origin of this tumor may not be Merkel cells. This review provides an update on the structure and life cycle, cell tropism and epidemiology of the virus and its oncogenic properties. Putative strategies to prevent viral infection or treat virus-positive Merkel cell carcinoma patients are discussed.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-Degenerative Pathologies, 00166 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
3
|
Gupta P, Shahzad N, Harold A, Shuda M, Venuti A, Romero-Medina MC, Pacini L, Brault L, Robitaille A, Taverniti V, Hernandez-Vargas H, Durand G, Le Calvez-Kelm F, Gheit T, Accardi R, Tommasino M. Merkel Cell Polyomavirus Downregulates N-myc Downstream-Regulated Gene 1, Leading to Cellular Proliferation and Migration. J Virol 2020; 94:e00899-19. [PMID: 31694959 PMCID: PMC7000982 DOI: 10.1128/jvi.00899-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the first human polyomavirus etiologically associated with Merkel cell carcinoma (MCC), a rare and aggressive form of skin cancer. Similar to other polyomaviruses, MCPyV encodes early T antigen genes, viral oncogenes required for MCC tumor growth. To identify the unique oncogenic properties of MCPyV, we analyzed the gene expression profiles in human spontaneously immortalized keratinocytes (NIKs) expressing the early genes from six distinct human polyomaviruses (PyVs), including MCPyV. A comparison of the gene expression profiles revealed 28 genes specifically deregulated by MCPyV. In particular, the MCPyV early gene downregulated the expression of the tumor suppressor gene N-myc downstream-regulated gene 1 (NDRG1) in MCPyV gene-expressing NIKs and hTERT-MCPyV gene-expressing human keratinocytes (HK) compared to their expression in the controls. In MCPyV-positive MCC cells, the expression of NDRG1 was downregulated by the MCPyV early gene, as T antigen knockdown rescued the level of NDRG1. In addition, NDRG1 overexpression in hTERT-MCPyV gene-expressing HK or MCC cells resulted in a decrease in the number of cells in S phase and cell proliferation inhibition. Moreover, a decrease in wound healing capacity in hTERT-MCPyV gene-expressing HK was observed. Further analysis revealed that NDRG1 exerts its biological effect in Merkel cell lines by regulating the expression of the cyclin-dependent kinase 2 (CDK2) and cyclin D1 proteins. Overall, NDRG1 plays an important role in MCPyV-induced cellular proliferation.IMPORTANCE Merkel cell carcinoma was first described in 1972 as a neuroendocrine tumor of skin, most cases of which were reported in 2008 to be caused by a PyV named Merkel cell polyomavirus (MCPyV), the first PyV linked to human cancer. Thereafter, numerous studies have been conducted to understand the etiology of this virus-induced carcinogenesis. However, it is still a new field, and much work is needed to understand the molecular pathogenesis of MCC. In the current work, we sought to identify the host genes specifically deregulated by MCPyV, as opposed to other PyVs, in order to better understand the relevance of the genes analyzed on the biological impact and progression of the disease. These findings open newer avenues for targeted drug therapies, thereby providing hope for the management of patients suffering from this highly aggressive cancer.
Collapse
Affiliation(s)
- Purnima Gupta
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Naveed Shahzad
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Alexis Harold
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Masahiro Shuda
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Assunta Venuti
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | | | - Laura Pacini
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Lise Brault
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Alexis Robitaille
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Valerio Taverniti
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | | | - Geoffroy Durand
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, Lyon, France
| | - Florence Le Calvez-Kelm
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, Lyon, France
| | - Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Rosita Accardi
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
4
|
Hulin JA, Gubareva EA, Jarzebska N, Rodionov RN, Mangoni AA, Tommasi S. Inhibition of Dimethylarginine Dimethylaminohydrolase (DDAH) Enzymes as an Emerging Therapeutic Strategy to Target Angiogenesis and Vasculogenic Mimicry in Cancer. Front Oncol 2020; 9:1455. [PMID: 31993367 PMCID: PMC6962312 DOI: 10.3389/fonc.2019.01455] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/05/2019] [Indexed: 01/01/2023] Open
Abstract
The small free radical gas nitric oxide (NO) plays a key role in various physiological and pathological processes through enhancement of endothelial cell survival and proliferation. In particular, NO has emerged as a molecule of interest in carcinogenesis and tumor progression due to its crucial role in various cancer-related events including cell invasion, metastasis, and angiogenesis. The dimethylarginine dimethylaminohydrolase (DDAH) family of enzymes metabolize the endogenous nitric oxide synthase (NOS) inhibitors, asymmetric dimethylarginine (ADMA) and monomethyl arginine (L-NMMA), and are thus key for maintaining homeostatic control of NO. Dysregulation of the DDAH/ADMA/NO pathway resulting in increased local NO availability often promotes tumor growth, angiogenesis, and vasculogenic mimicry. Recent literature has demonstrated increased DDAH expression in tumors of different origins and has also suggested a potential ADMA-independent role for DDAH enzymes in addition to their well-studied ADMA-mediated influence on NO. Inhibition of DDAH expression and/or activity in cell culture models and in vivo studies has indicated the potential therapeutic benefit of this pathway through inhibition of both angiogenesis and vasculogenic mimicry, and strategies for manipulating DDAH function in cancer are currently being actively pursued by several research groups. This review will thus provide a timely discussion on the expression, regulation, and function of DDAH enzymes in regard to angiogenesis and vasculogenic mimicry, and will offer insight into the therapeutic potential of DDAH inhibition in cancer based on preclinical studies.
Collapse
Affiliation(s)
- Julie-Ann Hulin
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ekaterina A Gubareva
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Natalia Jarzebska
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Roman N Rodionov
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Arduino A Mangoni
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sara Tommasi
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
5
|
Wang S, He Z, Wang X, Li H, Liu XS. Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction. eLife 2019; 8:49020. [PMID: 31767055 PMCID: PMC6879305 DOI: 10.7554/elife.49020] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
Immunotherapy, represented by immune checkpoint inhibitors (ICI), is transforming the treatment of cancer. However, only a small percentage of patients show response to ICI, and there is an unmet need for biomarkers that will identify patients who are more likely to respond to immunotherapy. The fundamental basis for ICI response is the immunogenicity of a tumor, which is primarily determined by tumor antigenicity and antigen presentation efficiency. Here, we propose a method to measure tumor immunogenicity score (TIGS), which combines tumor mutational burden (TMB) and an expression signature of the antigen processing and presenting machinery (APM). In both correlation with pan-cancer ICI objective response rates (ORR) and ICI clinical response prediction for individual patients, TIGS consistently showed improved performance compared to TMB and other known prediction biomarkers for ICI response. This study suggests that TIGS is an effective tumor-inherent biomarker for ICI-response prediction. In the last decade a new kind of cancer therapy, called immunotherapy, has changed how doctors treat cancer patients. These therapies mean that previously incurable cancers, including some skin and lung cancers, can now sometimes be cured. Immunotherapy does this by activating the patient’s own immune system so that it will attack the cancer cells. But for this to work, the cancer cells, much like invading bacteria or viruses, need to be recognized as foreign. Cancer cells contain many DNA mutations that cause the cell to make mutated proteins it would not normally make. These proteins betray the cancer cells as foreign to the immune system. The extent to which cancer cells make mutated proteins – also called the ‘tumor mutational burden’ – can sometimes predict whether a patient will respond to immunotherapy. In general, patients with a high mutational burden respond well to immunotherapy, but overall fewer than one in five cancer patients are cured by this treatment. An important question is whether there are better ways of predicting if a cancer patient will respond to immunotherapy. Wang et al. have addressed this problem by adding a second variable to the prediction. Not only do cancer cells have to make mutated proteins, but these proteins also have to be ‘seen’ by immune cells. Cancer cells, like normal cells, have mechanisms to present protein fragments to immune cells. Wang et al. hypothesized that patients with a high mutational burden would not respond to immunotherapy if they were lacking the machinery required for presenting protein fragments. The experiments revealed that measuring both tumor mutational burden and the levels of the machinery that presents protein fragments resulted in better predictions of patients’ responses to immunotherapy than measuring tumor mutational burden alone. Additionally, this new way of predicting responses to immunotherapy was successful across many different cancer types. The combined measurement of these two variables could be applied in clinical practice as a way to predict cancer patients’ response to immunotherapy. This should allow doctors to determine which course of treatment will work best for a specific patient. The results also suggest that inducing tumor cells to produce more of the machinery that presents protein fragments to the immune system could increase their responsiveness to immunotherapy. In the future, predicting how well a patient will respond to immunotherapy could become even more accurate by incorporating additional variables.
Collapse
Affiliation(s)
- Shixiang Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zaoke He
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huimin Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Song Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
6
|
Wollina U, Hansel G, Zimmermann F, Schönlebe J, Nowak A. Merkel cell carcinoma of the lower leg with retroperitoneal GIST: a very rare association. Wien Klin Wochenschr 2015; 127:402-5. [PMID: 25943418 DOI: 10.1007/s00508-014-0660-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/19/2014] [Indexed: 12/11/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare neuroendocrine tumor of the skin. Although its association with other malignancies is well known, an association with gastrointestinal stromal tumor (GIST) has yet not been described.We report about a 65-year-old female patient who presented with a hypervascularized subcutaneous tumor mass of her left calf. Resection of the primary tumor and histopathological investigations confirmed the diagnosis of MCC. The patient was treated by delayed Mohs surgery, and tumor-free margins were obtained. Sentinel lymph node biopsy was negative for metastatic spread. Primary tumor and lymph node basin were treated by adjuvant radiotherapy. During staging of the patient, a second malignancy-a GIST-was detected. Neoadjuvant treatment with multikinase inhibitor imatinib induced a partial response of GIST that was eventually removed by surgery. However, 8 months later, the patient developed subcutaneous regional metastases of MCC, which were surgically removed. Adjuvant therapy was planned by oncologists.To the best of our knowledge, the occurrence of MCC and GIST in the same patient has yet not been reported. In contrast to GIST, MCC did not respond to imatinib, although c-kit mutations are common in MCC.
Collapse
Affiliation(s)
- Uwe Wollina
- Department of Dermatology and Allergology, Academic Teaching Hospital Dresden-Friedrichstadt, Friedrichstrasse 41, 01067, Dresden, Germany,
| | | | | | | | | |
Collapse
|