1
|
Zhang X, Duan X, Liu X. The role of kinases in peripheral nerve regeneration: mechanisms and implications. Front Neurol 2024; 15:1340845. [PMID: 38689881 PMCID: PMC11058862 DOI: 10.3389/fneur.2024.1340845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Peripheral nerve injury disease is a prevalent traumatic condition in current medical practice. Despite the present treatment approaches, encompassing surgical sutures, autologous nerve or allograft nerve transplantation, tissue engineering techniques, and others, an effective clinical treatment method still needs to be discovered. Exploring novel treatment methods to improve peripheral nerve regeneration requires more effort in investigating the cellular and molecular mechanisms involved. Many factors are associated with the regeneration of injured peripheral nerves, including the cross-sectional area of the injured nerve, the length of the nerve gap defect, and various cellular and molecular factors such as Schwann cells, inflammation factors, kinases, and growth factors. As crucial mediators of cellular communication, kinases exert regulatory control over numerous signaling cascades, thereby participating in various vital biological processes, including peripheral nerve regeneration after nerve injury. In this review, we examined diverse kinase classifications, distinct nerve injury types, and the intricate mechanisms involved in peripheral nerve regeneration. Then we stressed the significance of kinases in regulating autophagy, inflammatory response, apoptosis, cell cycle, oxidative processes, and other aspects in establishing conductive microenvironments for nerve tissue regeneration. Finally, we briefly discussed the functional roles of kinases in different types of cells involved in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, School of Life Science, Nantong Laboratory of Development and Diseases, Medical College, Clinical Medical Research Center, Affiliated Wuxi Clinical College of Nantong University, Nantong University, Nantong, China
- Clinical Medical Research Center, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, China
| | - Xuchu Duan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, School of Life Science, Nantong Laboratory of Development and Diseases, Medical College, Clinical Medical Research Center, Affiliated Wuxi Clinical College of Nantong University, Nantong University, Nantong, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, School of Life Science, Nantong Laboratory of Development and Diseases, Medical College, Clinical Medical Research Center, Affiliated Wuxi Clinical College of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
2
|
Sun Y, Zhang H, Zhang Y, Liu Z, He D, Xu W, Li S, Zhang C, Zhang Z. Li-Mg-Si bioceramics provide a dynamic immuno-modulatory and repair-supportive microenvironment for peripheral nerve regeneration. Bioact Mater 2023; 28:227-242. [PMID: 37292230 PMCID: PMC10245070 DOI: 10.1016/j.bioactmat.2023.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/10/2023] Open
Abstract
Biomaterials can modulate the local immune and repair-supportive microenvironments to promote peripheral nerve regeneration. Inorganic bioceramics have been widely used for regulating tissue regeneration and local immune response. However, little is known on whether inorganic bioceramics can have potential for enhancing peripheral nerve regeneration and what are the mechanisms underlying their actions. Here, the inorganic lithium-magnesium-silicon (Li-Mg-Si, LMS) bioceramics containing scaffolds are fabricated and characterized. The LMS-containing scaffolds had no cytotoxicity against rat Schwann cells (SCs), but promoted their migration and differentiation towards a remyelination state by up-regulating the expression of neurotrophic factors in a β-catenin-dependent manner. Furthermore, using single cell-sequencing, we showed that LMS-containing scaffolds promoted macrophage polarization towards the pro-regenerative M2-like cells, which subsequently facilitated the migration and differentiation of SCs. Moreover, implantation with the LMS-containing nerve guidance conduits (NGCs) increased the frequency of M2-like macrophage infiltration and enhanced nerve regeneration and motor functional recovery in a rat model of sciatic nerve injury. Collectively, these findings indicated that the inorganic LMS bioceramics offered a potential strategy for enhancing peripheral nerve regeneration by modulating the immune microenvironment and promoting SCs remyelination.
Collapse
Affiliation(s)
- Yiting Sun
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Zheqi Liu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Dongming He
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Wanlin Xu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Siyi Li
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Chenping Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Zhen Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| |
Collapse
|
3
|
Farmani AR, Salmeh MA, Golkar Z, Moeinzadeh A, Ghiasi FF, Amirabad SZ, Shoormeij MH, Mahdavinezhad F, Momeni S, Moradbeygi F, Ai J, Hardy JG, Mostafaei A. Li-Doped Bioactive Ceramics: Promising Biomaterials for Tissue Engineering and Regenerative Medicine. J Funct Biomater 2022; 13:162. [PMID: 36278631 PMCID: PMC9589997 DOI: 10.3390/jfb13040162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
Lithium (Li) is a metal with critical therapeutic properties ranging from the treatment of bipolar depression to antibacterial, anticancer, antiviral and pro-regenerative effects. This element can be incorporated into the structure of various biomaterials through the inclusion of Li chloride/carbonate into polymeric matrices or being doped in bioceramics. The biocompatibility and multifunctionality of Li-doped bioceramics present many opportunities for biomedical researchers and clinicians. Li-doped bioceramics (capable of immunomodulation) have been used extensively for bone and tooth regeneration, and they have great potential for cartilage/nerve regeneration, osteochondral repair, and wound healing. The synergistic effect of Li in combination with other anticancer drugs as well as the anticancer properties of Li underline the rationale that bioceramics doped with Li may be impactful in cancer treatments. The role of Li in autophagy may explain its impact in regenerative, antiviral, and anticancer research. The combination of Li-doped bioceramics with polymers can provide new biomaterials with suitable flexibility, especially as bio-ink used in 3D printing for clinical applications of tissue engineering. Such Li-doped biomaterials have significant clinical potential in the foreseeable future.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa 74615-168, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Mohammad Ali Salmeh
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14155-6619, Iran
| | - Zahra Golkar
- Department of Midwifery, Firoozabad Branch, Islamic Azad University, Firoozabad 74715-117, Iran
| | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Farzaneh Farid Ghiasi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Sara Zamani Amirabad
- Department of Chemical Engineering, Faculty of Engineering, Yasouj University, Yasouj 75918-74934, Iran
| | - Mohammad Hasan Shoormeij
- Emergency Medicine Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Forough Mahdavinezhad
- Anatomy Department, School of Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
- Department of Infertility, Velayat Hospital, Qazvin University of Medical Sciences, Qazvin 34199-15315, Iran
| | - Simin Momeni
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 83151-61355, Iran
| | - Fatemeh Moradbeygi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - John G. Hardy
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
- Materials Science Institute, Lancaster University, Lancaster LA1 4YW, UK
| | - Amir Mostafaei
- Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, 10 W 32nd Street, Chicago, IL 60616, USA
| |
Collapse
|
4
|
Kuffler DP. Can lithium enhance the extent of axon regeneration and neurological recovery following peripheral nerve trauma? Neural Regen Res 2021; 17:948-952. [PMID: 34558506 PMCID: PMC8552832 DOI: 10.4103/1673-5374.324830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The clinical “gold standard” technique for attempting to restore function to nerves with a gap is to bridge the gap with sensory autografts. However, autografts induce good to excellent recovery only across short nerve gaps, in young patients, and when repairs are performed a short time post nerve trauma. Even under the best of conditions, < 50% of patients recover good recovery. Although many alternative techniques have been tested, none is as effective as autografts. Therefore, alternative techniques are required that increase the percentage of patients who recover function and the extent of their recovery. This paper examines the actions of lithium, and how it appears to trigger all the cellular and molecular events required to promote axon regeneration, and how both in animal models and clinically, lithium administration enhances both the extent of axon regeneration and neurological recovery. The paper proposes more extensive clinical testing of lithium for its ability and reliability to increase the extent of axon regeneration and functional recovery.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| |
Collapse
|
5
|
Fond G, Pauly V, Bege T, Orleans V, Braunstein D, Leone M, Boyer L. Trauma-related mortality of patients with severe psychiatric disorders: population-based study from the French national hospital database. Br J Psychiatry 2020; 217:568-574. [PMID: 31217045 DOI: 10.1192/bjp.2019.139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Most research on mortality in people with severe psychiatric disorders has focused on natural causes of death. Little is known about trauma-related mortality, although bipolar disorder and schizophrenia have been associated with increased risk of self-administered injury and road accidents. AIMS To determine if 30-day in-patient mortality from traumatic injury was increased in people with bipolar disorder and schizophrenia compared with those without psychiatric disorders. METHOD A French national 2016 database of 144 058 hospital admissions for trauma was explored. Patients with bipolar disorder and schizophrenia were selected and matched with mentally healthy controls in a 1:3 ratio according to age, gender, social deprivation and region of residence. We collected the following data: sociodemographic characteristics, comorbidities, trauma severity characteristics and trauma circumstances. Study outcome was 30-day in-patient mortality. RESULTS The study included 1059 people with bipolar disorder, 1575 people with schizophrenia and their respective controls (n = 3177 and n = 4725). The 30-day mortality was 5.7% in bipolar disorder, 5.1% in schizophrenia and 3.3 and 3.8% in the controls, respectively. Only bipolar disorder was associated with increased mortality in univariate analyses. This association remained significant after adjustment for sociodemographic characteristics and comorbidities but not after adjustment for trauma severity. Self-administered injuries were associated with increased mortality independent of the presence of a psychiatric diagnosis. CONCLUSIONS Patients with bipolar disorder are at higher risk of 30-day mortality, probably through increased trauma severity. A self-administered injury is predictive of a poor survival prognosis regardless of psychiatric diagnosis.
Collapse
Affiliation(s)
- Guillaume Fond
- Lecturer, CEReSS, Health Service Research and Quality of Life Center, School of Medicine - La Timone Medical, Aix-Marseille University.,Physician, Department of Medical Information and Public Health, Assistance Publique des Hôpitaux de Marseille (AP-HM), Aix-Marseille University, France
| | - Vanessa Pauly
- Lecturer, CEReSS, Health Service Research and Quality of Life Center, School of Medicine - La Timone Medical, Aix-Marseille University.,Statistician, Department of Medical Information and Public Health, AP-HM, Aix-Marseille University, France
| | - Thierry Bege
- Lecturer and Physician, Department of General Surgery, AP-HM, Aix-Marseille University, France
| | - Veronica Orleans
- Data Manager, Department of Medical Information and Public Health, AP-HM, Aix-Marseille University, France
| | - David Braunstein
- Lecturer, CEReSS, Health Service Research and Quality of Life Center, School of Medicine - La Timone Medical, Aix-Marseille University.,Physician, Department of Medical Information and Public Health, AP-HM, Aix-Marseille University, France
| | - Marc Leone
- Lecturer, IHU, Méditerranée Infection, Microbes Evolution Phylogenie et Infections, AP-HM, Institution publique Française de Recherche, Aix-Marseille University; and Physician, Service d'Anesthésie et de Réanimation, Centre Hospitalo-Universitaire Hôpital Nord, AP-HM, Aix-Marseille University, France
| | - Laurent Boyer
- Lecturer, CEReSS, Health Service Research and Quality of Life Center, School of Medicine - La Timone Medical, Aix-Marseille University.,Physician, Department of Medical Information and Public Health, AP-HM, Aix-Marseille University, France
| |
Collapse
|
6
|
Gu XK, Li XR, Lu ML, Xu H. Lithium promotes proliferation and suppresses migration of Schwann cells. Neural Regen Res 2020; 15:1955-1961. [PMID: 32246645 PMCID: PMC7513976 DOI: 10.4103/1673-5374.280324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/05/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Schwann cell proliferation, migration and remyelination of regenerating axons contribute to regeneration after peripheral nervous system injury. Lithium promotes remyelination by Schwann cells and improves peripheral nerve regeneration. However, whether lithium modulates other phenotypes of Schwann cells, especially their proliferation and migration remains elusive. In the current study, primary Schwann cells from rat sciatic nerve stumps were cultured and exposed to 0, 5, 10, 15, or 30 mM lithium chloride (LiCl) for 24 hours. The effects of LiCl on Schwann cell proliferation and migration were examined using the Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, Transwell and wound healing assays. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays showed that 5, 10, 15, and 30 mM LiCl significantly increased the viability and proliferation rate of Schwann cells. Transwell-based migration assays and wound healing assays showed that 10, 15, and 30 mM LiCl suppressed the migratory ability of Schwann cells. Furthermore, the effects of LiCl on the proliferation and migration phenotypes of Schwann cells were mostly dose-dependent. These data indicate that lithium treatment significantly promotes the proliferation and inhibits the migratory ability of Schwann cells. This conclusion will inform strategies to promote the repair and regeneration of peripheral nerves. All of the animal experiments in this study were ethically approved by the Administration Committee of Experimental Animal Center of Nantong University, China (approval No. 20170320-017) on March 2, 2017.
Collapse
Affiliation(s)
- Xiao-Kun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xin-Rui Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Mei-Ling Lu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Hui Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
7
|
Abdanipour A, Moradi F, Fakheri F, Ghorbanlou M, Nejatbakhsh R. The effect of lithium chloride on BDNF, NT3, and their receptor mRNA levels in the spinal contusion rat models. Neurol Res 2019; 41:577-583. [DOI: 10.1080/01616412.2019.1588507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Alireza Abdanipour
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Farzaneh Fakheri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Young Researchers and Elite Club, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mehrdad Ghorbanlou
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Reza Nejatbakhsh
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| |
Collapse
|
8
|
Xiao B, Cui LQ, Ding C, Wang H. Effects of Lithium and 2,4-Dichlorophenol on Zebrafish: Circadian Rhythm Disorder and Molecular Effects. Zebrafish 2017; 14:209-215. [DOI: 10.1089/zeb.2016.1389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Bo Xiao
- Key Laboratory for Ecology and Pollution Control of Coastal Wetlands, School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Li-Qiang Cui
- Key Laboratory for Ecology and Pollution Control of Coastal Wetlands, School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Cheng Ding
- Key Laboratory for Ecology and Pollution Control of Coastal Wetlands, School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Han Wang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Small-molecule GSK-3 inhibitor rescued apoptosis and neurodegeneration in anesthetics-injured dorsal root ganglion neurons. Biomed Pharmacother 2016; 84:395-402. [DOI: 10.1016/j.biopha.2016.08.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/24/2016] [Indexed: 01/01/2023] Open
|
10
|
Fang XY, Zhang WM, Zhang CF, Wong WM, Li W, Wu W, Lin JH. Lithium accelerates functional motor recovery by improving remyelination of regenerating axons following ventral root avulsion and reimplantation. Neuroscience 2016; 329:213-25. [PMID: 27185485 DOI: 10.1016/j.neuroscience.2016.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/12/2016] [Accepted: 05/06/2016] [Indexed: 01/14/2023]
Abstract
Brachial plexus injury (BPI) often involves the complete or partial avulsion of one or more of the cervical nerve roots, which leads to permanent paralysis of the innervated muscles. Reimplantation surgery has been attempted as a clinical treatment for brachial plexus root avulsion but has failed to achieve complete functional recovery. Lithium is a mood stabilizer drug that is used to treat bipolar disorder; however, its effects on spinal cord or peripheral nerve injuries have also been reported. The purpose of this study was to investigate whether lithium can improve functional motor recovery after ventral root avulsion and reimplantation in a rat model of BPI. The results showed that systemic treatment with a clinical dose of lithium promoted motor neuron outgrowth and increased the efficiency of motor unit regeneration through enhanced remyelination. An analysis of myelin-associated genes showed that the effects of lithium started during the early phase of remyelination and persisted through the late stage of the process. Efficient remyelination of the regenerated axons in the lithium-treated rats led to an earlier functional recovery. Therefore, we demonstrated that lithium might be a potential clinical treatment for BPI in combination with reimplantation surgery.
Collapse
Affiliation(s)
- Xin-Yu Fang
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Wen-Ming Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chao-Fan Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; Department of Orthopedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Wai-Man Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Wen Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region; Joint Laboratory for CNS Regeneration, Jinan University and The University of Hong Kong, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China.
| | - Jian-Hua Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
11
|
Natale G, Lenzi P, Lazzeri G, Falleni A, Biagioni F, Ryskalin L, Fornai F. Compartment-dependent mitochondrial alterations in experimental ALS, the effects of mitophagy and mitochondriogenesis. Front Cell Neurosci 2015; 9:434. [PMID: 26594150 PMCID: PMC4635226 DOI: 10.3389/fncel.2015.00434] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/15/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by massive loss of motor neurons. Data from ALS patients and experimental models indicate that mitochondria are severely damaged within dying or spared motor neurons. Nonetheless, recent data indicate that mitochondrial preservation, although preventing motor neuron loss, fails to prolong lifespan. On the other hand, the damage to motor axons plays a pivotal role in determining both lethality and disease course. Thus, in the present article each motor neuron compartment (cell body, central, and peripheral axons) of G93A SOD-1 mice was studied concerning mitochondrial alterations as well as other intracellular structures. We could confirm the occurrence of ALS-related mitochondrial damage encompassing total swelling, matrix dilution and cristae derangement along with non-pathological variations of mitochondrial size and number. However, these alterations occur to a different extent depending on motor neuron compartment. Lithium, a well-known autophagy inducer, prevents most pathological changes. However, the efficacy of lithium varies depending on which motor neuron compartment is considered. Remarkably, some effects of lithium are also evident in wild type mice. Lithium is effective also in vitro, both in cell lines and primary cell cultures from the ventral spinal cord. In these latter cells autophagy inhibition within motor neurons in vitro reproduced ALS pathology which was reversed by lithium. Muscle and glial cells were analyzed as well. Cell pathology was mostly severe within peripheral axons and muscles of ALS mice. Remarkably, when analyzing motor axons of ALS mice a subtotal clogging of axoplasm was described for the first time, which was modified under the effects of lithium. The effects induced by lithium depend on several mechanisms such as direct mitochondrial protection, induction of mitophagy and mitochondriogenesis. In this study, mitochondriogenesis induced by lithium was confirmed in situ by a novel approach using [2-3H]-adenosine.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Italy
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Italy
| | - Alessandra Falleni
- Department of Clinical and Experimental Medicine, University of Pisa Italy
| | | | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Italy ; I.R.C.C.S., Neuromed Pozzilli, Italy
| |
Collapse
|
12
|
Dong BT, Tu GJ, Han YX, Chen Y. Lithium enhanced cell proliferation and differentiation of mesenchymal stem cells to neural cells in rat spinal cord. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:2473-2483. [PMID: 26045753 PMCID: PMC4440062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/22/2015] [Indexed: 06/04/2023]
Abstract
Lithium has been shown to inhibit apoptosis of neural progenitor cells (NPCs) and promote differentiation of NPCs. However, there was rare data to discuss the effects of lithium on neural differentiation of mesenchymal stem cells (MSCs). Here, we investigated the potential promotion of lithium to MSC proliferation and neural differentiation in vitro and after transplanted into the ventral horn of rat spinal cord in vivo. We found that lithium possesses the ability to promote proliferation of GFP-MSCs in a dose dependent manner as verified by growth curve and bromodeoxyuridine (BrdU) incorporation assays; While in neural induction medium, lithium (0.1 mM) promotes neural differentiation of GFP-MSCs as verified by immunostaining and quantitative analysis. After transplantation of GFP-MSCs into the rat spinal cord, lithium treatment enhanced cell survival and neural differentiation after transplantation as verified by immunohistochemistry. These data suggested that lithium could be a potential drug to augment the therapeutic efficiency of MSCs transplantation therapy in central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Bao-Tie Dong
- Department of Orthopaedic, First Affiliated Hospital of China Medical University Shenyang 110001, China
| | - Guan-Jun Tu
- Department of Orthopaedic, First Affiliated Hospital of China Medical University Shenyang 110001, China
| | - Ya-Xin Han
- Department of Orthopaedic, First Affiliated Hospital of China Medical University Shenyang 110001, China
| | - Yi Chen
- Department of Orthopaedic, First Affiliated Hospital of China Medical University Shenyang 110001, China
| |
Collapse
|