1
|
Ge XY, Han X, Zhao YL, Cui GS, Yang YG. An insight into planarian regeneration. Cell Prolif 2022; 55:e13276. [PMID: 35811385 PMCID: PMC9436907 DOI: 10.1111/cpr.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background Planarian has attracted increasing attentions in the regeneration field for its usefulness as an important biological model organism attributing to its strong regeneration ability. Both the complexity of multiple regulatory networks and their coordinate functions contribute to the maintenance of normal cellular homeostasis and the process of regeneration in planarian. The polarity, size, location and number of regeneration tissues are regulated by diverse mechanisms. In this review we summarize the recent advances about the importance genetic and molecular mechanisms for regeneration control on various tissues in planarian. Methods A comprehensive literature search of original articles published in recent years was performed in regards to the molecular mechanism of each cell types during the planarian regeneration, including neoblast, nerve system, eye spot, excretory system and epidermal. Results Available molecular mechanisms gave us an overview of regeneration process in every tissue. The sense of injuries and initiation of regeneration is regulated by diverse genes like follistatin and ERK signaling. The Neoblasts differentiate into tissue progenitors under the regulation of genes such as egfr‐3. The regeneration polarity is controlled by Wnt pathway, BMP pathway and bioelectric signals. The neoblast within the blastema differentiate into desired cell types and regenerate the missing tissues. Those tissue specific genes regulate the tissue progenitor cells to differentiate into desired cell types to complete the regeneration process. Conclusion All tissue types in planarian participate in the regeneration process regulated by distinct molecular factors and cellular signaling pathways. The neoblasts play vital roles in tissue regeneration and morphology maintenance. These studies provide new insights into the molecular mechanisms for regulating planarian regeneration.
Collapse
Affiliation(s)
- Xin-Yang Ge
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Xiao Han
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong-Liang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Guan-Shen Cui
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| |
Collapse
|
2
|
Elchaninov A, Sukhikh G, Fatkhudinov T. Evolution of Regeneration in Animals: A Tangled Story. Front Ecol Evol 2021; 9. [DOI: 10.3389/fevo.2021.621686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The evolution of regenerative capacity in multicellular animals represents one of the most complex and intriguing problems in biology. How could such a seemingly advantageous trait as self-repair become consistently attenuated by the evolution? This review article examines the concept of the origin and nature of regeneration, its connection with the processes of embryonic development and asexual reproduction, as well as with the mechanisms of tissue homeostasis. The article presents a variety of classical and modern hypotheses explaining different trends in the evolution of regenerative capacity which is not always beneficial for the individual and notably for the species. Mechanistically, these trends are driven by the evolution of signaling pathways and progressive restriction of differentiation plasticity with concomitant advances in adaptive immunity. Examples of phylogenetically enhanced regenerative capacity are considered as well, with appropriate evolutionary reasoning for the enhancement and discussion of its molecular mechanisms.
Collapse
|
3
|
Molecular impact of launch related dynamic vibrations and static hypergravity in planarians. NPJ Microgravity 2020; 6:25. [PMID: 32964111 PMCID: PMC7478964 DOI: 10.1038/s41526-020-00115-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Although many examples of simulated and real microgravity demonstrating their profound effect on biological systems are described in literature, few reports deal with hypergravity and vibration effects, the levels of which are severely increased during the launch preceding the desired microgravity period. Here, we used planarians, flatworms that can regenerate any body part in a few days. Planarians are an ideal model to study the impact of launch-related hypergravity and vibration during a regenerative process in a "whole animal" context. Therefore, planarians were subjected to 8.5 minutes of 4 g hypergravity (i.e. a human-rated launch level) in the Large Diameter Centrifuge (LDC) and/or to vibrations (20-2000 Hz, 11.3 G rms) simulating the conditions of a standard rocket launch. The transcriptional levels of genes (erg-1, runt-1, fos, jnk, and yki) related with the early stress response were quantified through qPCR. The results show that early response genes are severely deregulated after static and dynamic loads but more so after a combined exposure of dynamic (vibration) and static (hypergravity) loads, more closely simulating real launch exposure profiles. Importantly, at least four days after the exposure, the transcriptional levels of those genes are still deregulated. Our results highlight the deep impact that short exposures to hypergravity and vibration have in organisms, and thus the implications that space flight launch could have. These phenomena should be taken into account when planning for well-controlled microgravity studies.
Collapse
|
4
|
Williams KB, Bischof J, Lee FJ, Miller KA, LaPalme JV, Wolfe BE, Levin M. Regulation of axial and head patterning during planarian regeneration by a commensal bacterium. Mech Dev 2020; 163:103614. [PMID: 32439577 DOI: 10.1016/j.mod.2020.103614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
Some animals, such as planaria, can regenerate complex anatomical structures in a process regulated by genetic and biophysical factors, but additional external inputs into regeneration remain to be uncovered. Microbial communities inhabiting metazoan organisms are important for metabolic, immune, and disease processes, but their instructive influence over host structures remains largely unexplored. Here, we show that Aquitalea sp. FJL05, an endogenous commensal bacterium of Dugesia japonica planarians, and one of the small molecules it produces, indole, can influence axial and head patterning during regeneration, leading to regeneration of permanently two-headed animals. Testing the impact of indole on planaria tissues via RNA sequencing, we find that indole alters the regenerative outcomes in planarians through changes in expression to patterning genes, including a downregulation of Wnt pathway genes. These data provide a unique example of the product of a commensal bacterium modulating transcription of patterning genes to affect the host's anatomical structure during regeneration.
Collapse
Affiliation(s)
| | - Johanna Bischof
- Allen Discovery Center, Tufts University, Medford, MA, United States of America
| | - Frederick J Lee
- Allen Discovery Center, Tufts University, Medford, MA, United States of America
| | - Kelsie A Miller
- Allen Discovery Center, Tufts University, Medford, MA, United States of America
| | - Jennifer V LaPalme
- Allen Discovery Center, Tufts University, Medford, MA, United States of America
| | - Benjamin E Wolfe
- Allen Discovery Center, Tufts University, Medford, MA, United States of America
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, United States of America.
| |
Collapse
|
5
|
Cao Z, Liu H, Zhao B, Pang Q, Zhang X. Extreme Environmental Stress-Induced Biological Responses in the Planarian. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7164230. [PMID: 32596359 PMCID: PMC7305541 DOI: 10.1155/2020/7164230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022]
Abstract
Planarians are bilaterally symmetric metazoans of the phylum Platyhelminthes. They have well-defined anteroposterior and dorsoventral axes and have a highly structured true brain which consists of all neural cell types and neuropeptides found in a vertebrate. Planarian flatworms are famous for their strong regenerative ability; they can easily regenerate any part of the body including the complete neoformation of a functional brain within a few days and can survive a series of extreme environmental stress. Nowadays, they are an emerging model system in the field of developmental, regenerative, and stem cell biology and have offered lots of helpful information for these realms. In this review, we will summarize the response of planarians to some typical environmental stress and hope to shed light on basic mechanisms of how organisms interact with extreme environmental stress and survive it, such as altered gravity, temperature, and oxygen, and this information will help researchers improve the design in future studies.
Collapse
Affiliation(s)
- Zhonghong Cao
- School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo 255049, China
| | - Hongjin Liu
- School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo 255049, China
| | - Bosheng Zhao
- School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo 255049, China
| | - Qiuxiang Pang
- School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo 255049, China
| | - Xiufang Zhang
- School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo 255049, China
| |
Collapse
|
6
|
Levin M, Pietak AM, Bischof J. Planarian regeneration as a model of anatomical homeostasis: Recent progress in biophysical and computational approaches. Semin Cell Dev Biol 2019; 87:125-144. [PMID: 29635019 PMCID: PMC6234102 DOI: 10.1016/j.semcdb.2018.04.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022]
Abstract
Planarian behavior, physiology, and pattern control offer profound lessons for regenerative medicine, evolutionary biology, morphogenetic engineering, robotics, and unconventional computation. Despite recent advances in the molecular genetics of stem cell differentiation, this model organism's remarkable anatomical homeostasis provokes us with truly fundamental puzzles about the origin of large-scale shape and its relationship to the genome. In this review article, we first highlight several deep mysteries about planarian regeneration in the context of the current paradigm in this field. We then review recent progress in understanding of the physiological control of an endogenous, bioelectric pattern memory that guides regeneration, and how modulating this memory can permanently alter the flatworm's target morphology. Finally, we focus on computational approaches that complement reductive pathway analysis with synthetic, systems-level understanding of morphological decision-making. We analyze existing models of planarian pattern control and highlight recent successes and remaining knowledge gaps in this interdisciplinary frontier field.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States; Biology Department, Tufts University, Medford, MA 02155, United States.
| | - Alexis M Pietak
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States
| | - Johanna Bischof
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States; Biology Department, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
7
|
de Sousa N, Rodriguez-Esteban G, Colagè I, D'Ambrosio P, van Loon JJWA, Saló E, Adell T, Auletta G. Transcriptomic Analysis of Planarians under Simulated Microgravity or 8 g Demonstrates That Alteration of Gravity Induces Genomic and Cellular Alterations That Could Facilitate Tumoral Transformation. Int J Mol Sci 2019; 20:E720. [PMID: 30743987 PMCID: PMC6386889 DOI: 10.3390/ijms20030720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/01/2022] Open
Abstract
The possibility of humans to live outside of Earth on another planet has attracted the attention of numerous scientists around the world. One of the greatest difficulties is that humans cannot live in an extra-Earth environment without proper equipment. In addition, the consequences of chronic gravity alterations in human body are not known. Here, we used planarians as a model system to test how gravity fluctuations could affect complex organisms. Planarians are an ideal system, since they can regenerate any missing part and they are continuously renewing their tissues. We performed a transcriptomic analysis of animals submitted to simulated microgravity (Random Positioning Machine, RPM) (s-µg) and hypergravity (8 g), and we observed that the transcriptional levels of several genes are affected. Surprisingly, we found the major differences in the s-µg group. The results obtained in the transcriptomic analysis were validated, demonstrating that our transcriptomic data is reliable. We also found that, in a sensitive environment, as under Hippo signaling silencing, gravity fluctuations potentiate the increase in cell proliferation. Our data revealed that changes in gravity severely affect genetic transcription and that these alterations potentiate molecular disorders that could promote the development of multiple diseases such as cancer.
Collapse
Affiliation(s)
- Nídia de Sousa
- Department of Genetics, Microbiology and Statistics, and Institute of Biomedicine, University of Barcelona, Catalonia, 08028 Barcelona, Spain.
| | - Gustavo Rodriguez-Esteban
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain.
| | - Ivan Colagè
- Pontifical University Antonianum, via Merulana 124, 00185 Rome, Italy.
- Pontifical University of the Holy Cross, DISF Centre, Via dei Pianellari 41, 00186 Rome, Italy.
| | - Paolo D'Ambrosio
- Pontifical University Antonianum, via Merulana 124, 00185 Rome, Italy.
- University of Cassino, Via Zamosch 43, 03043 Cassino, Italy.
| | - Jack J W A van Loon
- Dutch Experiment Support Center (DESC), Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC location VU University Medical Center & Academic Centre for Dentistry Amsterdam (ACTA), 1081 LA Amsterdam, The Netherlands.
- European Space Agency-ESA-Technology Center-ESTEC, TEC-MMG-Lab, 2200 AG Noordwijk, The Netherlands.
| | - Emili Saló
- Department of Genetics, Microbiology and Statistics, and Institute of Biomedicine, University of Barcelona, Catalonia, 08028 Barcelona, Spain.
| | - Teresa Adell
- Department of Genetics, Microbiology and Statistics, and Institute of Biomedicine, University of Barcelona, Catalonia, 08028 Barcelona, Spain.
| | - Gennaro Auletta
- University of Cassino, Via Zamosch 43, 03043 Cassino, Italy.
- Pontifical Gregorian University, Piazza della Pilotta 4, 00187 Roma, Italy.
| |
Collapse
|
8
|
Abstract
This article serves as a brief primer on planaria for behavior scientists. In the 1950s and 1960s, McConnell's planarian laboratory posited that conditioned behavior could transfer after regeneration, and through cannibalization of trained planaria. These studies, the responses, and replications have been collectively referred to as the "planarian controversy." Successful behavioral assays still require refinement with this organism, but they could add valuable insight into our conceptualization of memory and learning. We discuss how the planarian's distinctive biology enables an examination of biobehavioral interaction models, and what behavior scientists must consider if they are to advance behavioral research with this organism. Suggestions for academics interested in building planaria learning laboratories are offered.
Collapse
Affiliation(s)
- Neil Deochand
- Health and Human Services Department, University of Cincinnati, 450H Teachers-Dyer Complex, Cincinnati, OH 45221 USA
| | - Mack S. Costello
- Department of Psychology, Rider University, 2083 Lawrenceville Road, Lawrenceville, NJ 08648 USA
| | | |
Collapse
|
9
|
Lu HM, Lu XL, Zhai JH, Zhou RB, Liu YM, Guo WH, Zhang CY, Shang P, Yin DC. Effects of large gradient high magnetic field (LG-HMF) on the long-term culture of aquatic organisms: Planarians example. Bioelectromagnetics 2018; 39:428-440. [PMID: 29873401 DOI: 10.1002/bem.22135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/18/2018] [Indexed: 11/10/2022]
Abstract
Large gradient high magnetic field (LG-HMF) is a powerful tool to study the effects of altered gravity on organisms. In our study, a platform for the long-term culture of aquatic organisms was designed based on a special superconducting magnet with an LG-HMF, which can provide three apparent gravity levels (µ g, 1 g, and 2 g), along with a control condition on the ground. Planarians, Dugesia japonica, were head-amputated and cultured for 5 days in a platform for head reconstruction. After planarian head regeneration, all samples were taken out from the superconducting magnet for a behavioral test under geomagnetic field and normal gravity conditions. To analyze differences among the four groups, four aspects of the planarians were considered, including head regeneration rate, phototaxis response, locomotor velocity, and righting behavior. Data showed that there was no significant difference in the planarian head regeneration rate under simulated altered gravity. According to statistical analysis of the behavioral test, all of the groups had normal functioning of the phototaxis response, while the planarians that underwent head reconstruction under the microgravity environment had significantly slower locomotor velocity and spent more time in righting behavior. Furthermore, histological staining and immunohistochemistry results helped us reveal that the locomotor system of planarians was affected by the simulated microgravity environment. We further demonstrated that the circular muscle of the planarians was weakened (hematoxylin and eosin staining), and the epithelial cilia of the planarians were reduced (anti-acetylated tubulin staining) under the simulated microgravity environment. Bioelectromagnetics. 2018;39:428-440. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hui-Meng Lu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Xiao-Li Lu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Jia-Hui Zhai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Ren-Bin Zhou
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Yong-Ming Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Wei-Hong Guo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Peng Shang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| |
Collapse
|
10
|
Morokuma J, Durant F, Williams KB, Finkelstein JM, Blackiston DJ, Clements T, Reed DW, Roberts M, Jain M, Kimel K, Trauger SA, Wolfe BE, Levin M. Planarian regeneration in space: Persistent anatomical, behavioral, and bacteriological changes induced by space travel. ACTA ACUST UNITED AC 2017; 4:85-102. [PMID: 28616247 PMCID: PMC5469732 DOI: 10.1002/reg2.79] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/27/2017] [Accepted: 04/21/2017] [Indexed: 12/14/2022]
Abstract
Regeneration is regulated not only by chemical signals but also by physical processes, such as bioelectric gradients. How these may change in the absence of the normal gravitational and geomagnetic fields is largely unknown. Planarian flatworms were moved to the International Space Station for 5 weeks, immediately after removing their heads and tails. A control group in spring water remained on Earth. No manipulation of the planaria occurred while they were in orbit, and space‐exposed worms were returned to our laboratory for analysis. One animal out of 15 regenerated into a double‐headed phenotype—normally an extremely rare event. Remarkably, amputating this double‐headed worm again, in plain water, resulted again in the double‐headed phenotype. Moreover, even when tested 20 months after return to Earth, the space‐exposed worms displayed significant quantitative differences in behavior and microbiome composition. These observations may have implications for human and animal space travelers, but could also elucidate how microgravity and hypomagnetic environments could be used to trigger desired morphological, neurological, physiological, and bacteriomic changes for various regenerative and bioengineering applications.
Collapse
Affiliation(s)
- Junji Morokuma
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Fallon Durant
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Katherine B Williams
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Joshua M Finkelstein
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Douglas J Blackiston
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Twyman Clements
- Kentucky Space LLC, 200 West Vine St., Suite 420 Lexington KY 40507 USA
| | - David W Reed
- NASA Kennedy Space Center Space Station Processing Facility Building M7-0360, Kennedy Space Center FL 32899 USA
| | - Michael Roberts
- Center for the Advancement of Science in Space (CASIS) 6905 N. Wickham Rd., Suite 500 Melbourne FL 32940 USA
| | - Mahendra Jain
- Kentucky Space LLC, 200 West Vine St., Suite 420 Lexington KY 40507 USA
| | - Kris Kimel
- Exomedicine Institute 200 West Vine St. Lexington KY 40507 USA
| | - Sunia A Trauger
- Harvard University Small Molecule Mass Spectrometry Facility 52 Oxford St. Cambridge MA 02138 USA
| | - Benjamin E Wolfe
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Michael Levin
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| |
Collapse
|