1
|
Miceli G, Basso MG, Pintus C, Pennacchio AR, Cocciola E, Cuffaro M, Profita M, Rizzo G, Tuttolomondo A. Molecular Pathways of Vulnerable Carotid Plaques at Risk of Ischemic Stroke: A Narrative Review. Int J Mol Sci 2024; 25:4351. [PMID: 38673936 PMCID: PMC11050267 DOI: 10.3390/ijms25084351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The concept of vulnerable carotid plaques is pivotal in understanding the pathophysiology of ischemic stroke secondary to large-artery atherosclerosis. In macroscopic evaluation, vulnerable plaques are characterized by one or more of the following features: microcalcification; neovascularization; lipid-rich necrotic cores (LRNCs); intraplaque hemorrhage (IPH); thin fibrous caps; plaque surface ulceration; huge dimensions, suggesting stenosis; and plaque rupture. Recognizing these macroscopic characteristics is crucial for estimating the risk of cerebrovascular events, also in the case of non-significant (less than 50%) stenosis. Inflammatory biomarkers, such as cytokines and adhesion molecules, lipid-related markers like oxidized low-density lipoprotein (LDL), and proteolytic enzymes capable of degrading extracellular matrix components are among the key molecules that are scrutinized for their associative roles in plaque instability. Through their quantification and evaluation, these biomarkers reveal intricate molecular cross-talk governing plaque inflammation, rupture potential, and thrombogenicity. The current evidence demonstrates that plaque vulnerability phenotypes are multiple and heterogeneous and are associated with many highly complex molecular pathways that determine the activation of an immune-mediated cascade that culminates in thromboinflammation. This narrative review provides a comprehensive analysis of the current knowledge on molecular biomarkers expressed by symptomatic carotid plaques. It explores the association of these biomarkers with the structural and compositional attributes that characterize vulnerable plaques.
Collapse
Affiliation(s)
- Giuseppe Miceli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Maria Grazia Basso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Chiara Pintus
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Andrea Roberta Pennacchio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Elena Cocciola
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Mariagiovanna Cuffaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Martina Profita
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Giuliana Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
2
|
Amontree M, Deasy S, Turner RS, Conant K. Matrix disequilibrium in Alzheimer's disease and conditions that increase Alzheimer's disease risk. Front Neurosci 2023; 17:1188065. [PMID: 37304012 PMCID: PMC10250680 DOI: 10.3389/fnins.2023.1188065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 06/13/2023] Open
Abstract
Alzheimer's Disease (AD) and related dementias are a leading cause of death globally and are predicted to increase in prevalence. Despite this expected increase in the prevalence of AD, we have yet to elucidate the causality of the neurodegeneration observed in AD and we lack effective therapeutics to combat the progressive neuronal loss. Throughout the past 30 years, several non-mutually exclusive hypotheses have arisen to explain the causative pathologies in AD: amyloid cascade, hyper-phosphorylated tau accumulation, cholinergic loss, chronic neuroinflammation, oxidative stress, and mitochondrial and cerebrovascular dysfunction. Published studies in this field have also focused on changes in neuronal extracellular matrix (ECM), which is critical to synaptic formation, function, and stability. Two of the greatest non-modifiable risk factors for development of AD (aside from autosomal dominant familial AD gene mutations) are aging and APOE status, and two of the greatest modifiable risk factors for AD and related dementias are untreated major depressive disorder (MDD) and obesity. Indeed, the risk of developing AD doubles for every 5 years after ≥ 65, and the APOE4 allele increases AD risk with the greatest risk in homozygous APOE4 carriers. In this review, we will describe mechanisms by which excess ECM accumulation may contribute to AD pathology and discuss pathological ECM alterations that occur in AD as well as conditions that increase the AD risk. We will discuss the relationship of AD risk factors to chronic central nervous system and peripheral inflammation and detail ECM changes that may follow. In addition, we will discuss recent data our lab has obtained on ECM components and effectors in APOE4/4 and APOE3/3 expressing murine brain lysates, as well as human cerebrospinal fluid (CSF) samples from APOE3 and APOE4 expressing AD individuals. We will describe the principal molecules that function in ECM turnover as well as abnormalities in these molecular systems that have been observed in AD. Finally, we will communicate therapeutic interventions that have the potential to modulate ECM deposition and turnover in vivo.
Collapse
Affiliation(s)
- Matthew Amontree
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Samantha Deasy
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - R. Scott Turner
- Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| | - Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
3
|
ADAMTS4 is involved in the production of the Alzheimer disease amyloid biomarker APP669-711. Mol Psychiatry 2023; 28:1802-1812. [PMID: 36721026 DOI: 10.1038/s41380-023-01946-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 02/02/2023]
Abstract
Amyloid-β (Aβ) deposition in the brain parenchyma is one of the pathological hallmarks of Alzheimer disease (AD). We have previously identified amyloid precursor protein (APP)669-711 (a.k.a. Aβ(-3)-40) in human plasma using immunoprecipitation combined with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (IP-MALDI-MS). Furthermore, we found that the level of a composite biomarker, i.e., a combination of APP669-711/Aβ1-42 ratio and Aβ1-40/Aβ1-42 ratio in human plasma, correlates with the amyloid PET status of AD patients. However, the production mechanism of APP669-711 has remained unclear. Using in vitro and in vivo assays, we identified A Disintegrin and Metalloproteinase with a Thrombospondin type 1 motif, type 4 (ADAMTS4) as a responsible enzyme for APP669-711 production. ADAMTS4 cleaves APP directly to generate the C-terminal stub c102, which is subsequently proteolyzed by γ-secretase to release APP669-711. Genetic knockout of ADAMTS4 reduced the production of endogenous APP669-711 by 30% to 40% in cultured cells as well as mouse plasma, irrespectively of Aβ levels. Finally, we found that the endogenous murine APP669-711/Aβ1-42 ratio was increased in aged AD model mice, which shows Aβ deposition as observed in human patients. These data suggest that ADAMTS4 is involved in the production of APP669-711, and a plasma biomarker determined by IP-MALDI-MS can be used to estimate the level of Aβ deposition in the brain of mouse models.
Collapse
|
4
|
Shi Y, Shi Y, He G, Wang G, Liu H, Shao X. Association of ADAMTS proteoglycanases downregulation with IVF-ET outcomes in patients with polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biol Endocrinol 2022; 20:169. [PMID: 36510316 PMCID: PMC9745937 DOI: 10.1186/s12958-022-01035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A disintegrin and metalloproteinase with thrombospondin-like motifs (ADAMTS) is involved in inflammation and fertility in women with polycystic ovary syndrome (PCOS). This study aims to assess the role of ADAMTS level in the outcomes of in vitro fertilization and embryo transfer (IVF-ET) in women with PCOS, using a meta-analytic approach. METHODS We systematically searched Web of Science, PubMed, EmBase, and the Cochrane library to identify potentially eligible studies from inception until December 2021. Study assess the role of ADAMTS levels in patients with PCOS was eligible in this study. The pooled effect estimates for the association between ADAMTS level and IVF-ET outcomes were calculated using the random-effects model. RESULTS Five studies involving a total of 181 patients, were selected for final analysis. We noted that ADAMTS-1 levels were positively correlated to oocyte maturity (r = 0.67; P = 0.004), oocyte recovery (r = 0.74; P = 0.006), and fertilization (r = 0.46; P = 0.041) rates. Moreover, ADAMTS-4 levels were positively correlated to oocyte recovery (r = 0.91; P = 0.001), and fertilization (r = 0.85; P = 0.017) rates. Furthermore, downregulation of ADAMTS-1, ADAMTS-4, ADAMTS-5, and ADAMTS-9 was associated with elevated follicle puncture (ADAMTS-1: weighted mean difference [WMD], 7.24, P < 0.001; ADAMTS-4: WMD, 7.20, P < 0.001; ADAMTS-5: WMD, 7.20, P < 0.001; ADAMTS-9: WMD, 6.38, P < 0.001), oocytes retrieval (ADAMTS-1: WMD, 1.61, P < 0.001; ADAMTS-4: WMD, 3.63, P = 0.004; ADAMTS-5: WMD, 3.63, P = 0.004; ADAMTS-9: WMD, 3.20, P = 0.006), and Germinal vesicle oocytes levels (ADAMTS-1: WMD, 2.89, P < 0.001; ADAMTS-4: WMD, 2.19, P < 0.001; ADAMTS-5: WMD, 2.19, P < 0.001; ADAMTS-9: WMD, 2.89, P < 0.001). Finally, the oocytes recovery rate, oocyte maturity rate, fertilization rate, cleavage rate, good-quality embryos rate, blastocyst formation rate, and clinical pregnancy rate were not affected by the downregulation of ADAMTS-1, ADAMTS-4, ADAMTS-5, and ADAMTS-9 (P > 0.05). CONCLUSIONS This study found that the outcomes of IVF-EF in patients with PCOS could be affected by ADAMTS-1 and ADAMTS-4; further large-scale prospective studies should be performed to verify these results.
Collapse
Affiliation(s)
- Yanbin Shi
- School of Public Health, China Medical University, Shenyang, China
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China
| | - Yang Shi
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China
| | - Guiyuan He
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China
| | - Guang Wang
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China
| | - Hongbo Liu
- School of Public Health, China Medical University, Shenyang, China.
| | - Xiaoguang Shao
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China.
| |
Collapse
|
5
|
Identification Markers of Carotid Vulnerable Plaques: An Update. Biomolecules 2022; 12:biom12091192. [PMID: 36139031 PMCID: PMC9496377 DOI: 10.3390/biom12091192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Vulnerable plaques have been a hot topic in the field of stroke and carotid atherosclerosis. Currently, risk stratification and intervention of carotid plaques are guided by the degree of luminal stenosis. Recently, it has been recognized that the vulnerability of plaques may contribute to the risk of stroke. Some classical interventions, such as carotid endarterectomy, significantly reduce the risk of stroke in symptomatic patients with severe carotid stenosis, while for asymptomatic patients, clinically silent plaques with rupture tendency may expose them to the risk of cerebrovascular events. Early identification of vulnerable plaques contributes to lowering the risk of cerebrovascular events. Previously, the identification of vulnerable plaques was commonly based on imaging technologies at the macroscopic level. Recently, some microscopic molecules pertaining to vulnerable plaques have emerged, and could be potential biomarkers or therapeutic targets. This review aimed to update the previous summarization of vulnerable plaques and identify vulnerable plaques at the microscopic and macroscopic levels.
Collapse
|
6
|
Synovial mesenchymal progenitor derived aggrecan regulates cartilage homeostasis and endogenous repair capacity. Cell Death Dis 2022; 13:470. [PMID: 35585042 PMCID: PMC9117284 DOI: 10.1038/s41419-022-04919-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022]
Abstract
Aggrecan is a critical component of the extracellular matrix of all cartilages. One of the early hallmarks of osteoarthritis (OA) is the loss of aggrecan from articular cartilage followed by degeneration of the tissue. Mesenchymal progenitor cell (MPC) populations in joints, including those in the synovium, have been hypothesized to play a role in the maintenance and/or repair of cartilage, however, the mechanism by which this may occur is unknown. In the current study, we have uncovered that aggrecan is secreted by synovial MPCs from healthy joints yet accumulates inside synovial MPCs within OA joints. Using human synovial biopsies and a rat model of OA, we established that this observation in aggrecan metabolism also occurs in vivo. Moreover, the loss of the "anti-proteinase" molecule alpha-2 macroglobulin (A2M) inhibits aggrecan secretion in OA synovial MPCs, whereas overexpressing A2M rescues the normal secretion of aggrecan. Using mice models of OA and cartilage repair, we have demonstrated that intra-articular injection of aggrecan into OA joints inhibits cartilage degeneration and stimulates cartilage repair respectively. Furthermore, when synovial MPCs overexpressing aggrecan were transplanted into injured joints, increased cartilage regeneration was observed vs. wild-type MPCs or MPCs with diminished aggrecan expression. Overall, these results suggest that aggrecan secreted from joint-associated MPCs may play a role in tissue homeostasis and repair of synovial joints.
Collapse
|
7
|
Matsuyama A, Kalargyrou AA, Smith AJ, Ali RR, Pearson RA. A comprehensive atlas of Aggrecan, Versican, Neurocan and Phosphacan expression across time in wildtype retina and in retinal degeneration. Sci Rep 2022; 12:7282. [PMID: 35508614 PMCID: PMC9068689 DOI: 10.1038/s41598-022-11204-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/07/2022] [Indexed: 11/08/2022] Open
Abstract
As photoreceptor cells die during retinal degeneration, the surrounding microenvironment undergoes significant changes that are increasingly recognized to play a prominent role in determining the efficacy of therapeutic interventions. Chondroitin Sulphate Proteoglycans (CSPGs) are a major component of the extracellular matrix that have been shown to inhibit neuronal regrowth and regeneration in the brain and spinal cord, but comparatively little is known about their expression in retinal degeneration. Here we provide a comprehensive atlas of the expression patterns of four individual CSPGs in three models of inherited retinal degeneration and wildtype mice. In wildtype mice, Aggrecan presented a biphasic expression, while Neurocan and Phosphacan expression declined dramatically with time and Versican expression remained broadly constant. In degeneration, Aggrecan expression increased markedly in Aipl1-/- and Pde6brd1/rd1, while Versican showed regional increases in the periphery of Rho-/- mice. Conversely, Neurocan and Phosphacan broadly decrease with time in all models. Our data reveal significant heterogeneity in the expression of individual CSPGs. Moreover, there are striking differences in the expression patterns of specific CSPGs in the diseased retina, compared with those reported following injury elsewhere in the CNS. Better understanding of the distinct distributions of individual CSPGs will contribute to creating more permissive microenvironments for neuro-regeneration and repair.
Collapse
Affiliation(s)
- A Matsuyama
- Ocular Cell and Gene therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, 8th Floor, Tower Wing, Guy's Hospital, London, SE1 9RT, UK.
- University College London Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK.
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan.
| | - A A Kalargyrou
- Ocular Cell and Gene therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, 8th Floor, Tower Wing, Guy's Hospital, London, SE1 9RT, UK
- University College London Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - A J Smith
- Ocular Cell and Gene therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, 8th Floor, Tower Wing, Guy's Hospital, London, SE1 9RT, UK
- University College London Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - R R Ali
- Ocular Cell and Gene therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, 8th Floor, Tower Wing, Guy's Hospital, London, SE1 9RT, UK
- University College London Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - R A Pearson
- Ocular Cell and Gene therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, 8th Floor, Tower Wing, Guy's Hospital, London, SE1 9RT, UK.
- University College London Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
8
|
Elsadek BEM, Abdelghany AA, Abd El-Aziz MA, Madkor HR, Abd Elrady Ahmed A, Abd-Elghaffar SK, Elsadek AAM. Validation of the Diagnostic and Prognostic Values of ADAMTS5 and FSTL1 in Osteoarthritis Rat Model. Cartilage 2021; 13:1263S-1273S. [PMID: 31177809 PMCID: PMC8804805 DOI: 10.1177/1947603519852405] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a global public health problem and a leading cause of morbidity and disability. Due to lack of sensitive and specific tools for early OA diagnosis and predicting prognosis, the availability of new reliable and sensitive biomarkers is a widely appreciated need to identify patients at risk for incident disease or disease progression. Accordingly, our study was conducted to validate the usefulness of disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and follistatin-like protein 1 (FSTL1) to achieve this goal. DESIGN Fifty-four male Wistar rats were randomized into 3 groups; 24 rats were subjected to medial meniscal tear (MMT) surgery on the right knee joint (OA group), 24 rats were subjected to sham surgery (sham group), and 6 healthy rats (negative control group). Six animals from each group were sacrificed every 2 weeks. At each time point, the right knee joint of each animal was visualized radiologically, a blood sample was collected, and cartilage tissues were isolated for histopathological and western blot analysis. RESULTS We found that the expression levels of ADAMTS5 and FSTL1 significantly increased with OA progression, especially at weeks 4, 6, and 8 after surgery. Notably, the serum levels of ADAMTS5 and FSTL1 showed significant positive correlations with each other and with the studied inflammatory markers. CONCLUSIONS Our findings suggest that ADAMTS5 and FSTL1 can serve as important and informative serological markers of disease activity in OA. However, further research is needed to validate their use for improving the diagnosis and prognosis of OA in humans.
Collapse
Affiliation(s)
- Bakheet E M Elsadek
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Ahmed A Abdelghany
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Mohamed A Abd El-Aziz
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Hafez R Madkor
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Ahmed Abd Elrady Ahmed
- Department of Radiology, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Sary Kh Abd-Elghaffar
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Amer Alkot Mostafa Elsadek
- Department of Orthopaedic and Trauma Surgery, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut, Egypt
| |
Collapse
|
9
|
Gohari Taban S, Amiri I, Saidijam M, Soleimani Asl S, Yavangi M, Khanlarzadeh E, Mohammadpour N, Artimani T. ADAMTS proteoglycanases downregulation with impaired oocyte quality in PCOS. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:60-66. [PMID: 33444494 PMCID: PMC10528703 DOI: 10.20945/2359-3997000000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/29/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS-4) and ADAMTS-5 normal expression levels are essential for ovulation and subsequent fertilization. The objective of the present study was to assess expression pattern of these genes in cumulus cells (CCs) taken from patients with polycystic ovary syndrome (PCOS) and to investigate any possible relationship with the oocyte quality. METHODS ADAMTS-4 and -5 expression levels within CCs containing oocytes at the metaphase II (MII) and germinal vesicle (GV) stages, taken from 35 patients with PCOS and 35 women with normal ovarian function, were investigated using RT-qPCR. Moreover, possible correlations between ADAMTS-4, ADAMTS-5, and progesterone receptors (PRs) expression as well as oocyte quality were evaluated. RESULTS ADAMTS-4 and -5 expression levels were dramatically diminished in the CCs of the PCOS patients when compared to the controls. ADAMTS-4 and -5 expression levels were correlated with each other and with the oocyte quality. Furthermore, lower expression levels of ADAMTS-4 and -5 in the PCOS patients were strongly correlated with the diminished PRs expression levels. CONCLUSION Downregulation of ADAMTS-4 and -5 in the human CCs of the PCOS patients correlated with the decline in the PRs expression, and impaired oocyte quality may cause lower oocyte recovery, maturation, and fertilization rate.
Collapse
Affiliation(s)
- Sepide Gohari Taban
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahnaz Yavangi
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Nooshin Mohammadpour
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tayebe Artimani
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran,
| |
Collapse
|
10
|
Fontanil T, Mohamedi Y, Espina-Casado J, Obaya ÁJ, Cobo T, Cal S. Hyalectanase Activities by the ADAMTS Metalloproteases. Int J Mol Sci 2021; 22:ijms22062988. [PMID: 33804223 PMCID: PMC8000579 DOI: 10.3390/ijms22062988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
The hyalectan family is composed of the proteoglycans aggrecan, versican, brevican and neurocan. Hyalectans, also known as lecticans, are components of the extracellular matrix of different tissues and play essential roles in key biological processes including skeletal development, and they are related to the correct maintenance of the vascular and central nervous system. For instance, hyalectans participate in the organization of structures such as perineural nets and in the regulation of neurite outgrowth or brain recovery following a traumatic injury. The ADAMTS (A Disintegrin and Metalloprotease domains, with thrombospondin motifs) family consists of 19 secreted metalloproteases. These enzymes also perform important roles in the structural organization and function of the extracellular matrix through interactions with other matrix components or as a consequence of their catalytic activity. In this regard, some of their preferred substrates are the hyalectans. In fact, ADAMTSs cleave hyalectans not only as a mechanism for clearance or turnover of proteoglycans but also to generate bioactive fragments which display specific functions. In this article we review some of the physiological and pathological effects derived from cleavages of hyalectans mediated by ADAMTSs.
Collapse
Affiliation(s)
- Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
- Departamento de Investigación, Instituto Ordóñez, 33012 Oviedo, Spain
| | - Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
| | - Jorge Espina-Casado
- Departamento de Química Física y Analítica, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Álvaro J. Obaya
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Asturiano de Odontología, 33006 Oviedo, Spain
- Correspondence: (T.C.); (S.C.); Tel.: +34-985966014 (T.C.); +34-985106282 (S.C.)
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Spain
- Correspondence: (T.C.); (S.C.); Tel.: +34-985966014 (T.C.); +34-985106282 (S.C.)
| |
Collapse
|
11
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Niland S, Eble JA. Hold on or Cut? Integrin- and MMP-Mediated Cell-Matrix Interactions in the Tumor Microenvironment. Int J Mol Sci 2020; 22:ijms22010238. [PMID: 33379400 PMCID: PMC7794804 DOI: 10.3390/ijms22010238] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) has become the focus of interest in cancer research and treatment. It includes the extracellular matrix (ECM) and ECM-modifying enzymes that are secreted by cancer and neighboring cells. The ECM serves both to anchor the tumor cells embedded in it and as a means of communication between the various cellular and non-cellular components of the TME. The cells of the TME modify their surrounding cancer-characteristic ECM. This in turn provides feedback to them via cellular receptors, thereby regulating, together with cytokines and exosomes, differentiation processes as well as tumor progression and spread. Matrix remodeling is accomplished by altering the repertoire of ECM components and by biophysical changes in stiffness and tension caused by ECM-crosslinking and ECM-degrading enzymes, in particular matrix metalloproteinases (MMPs). These can degrade ECM barriers or, by partial proteolysis, release soluble ECM fragments called matrikines, which influence cells inside and outside the TME. This review examines the changes in the ECM of the TME and the interaction between cells and the ECM, with a particular focus on MMPs.
Collapse
|
13
|
Satz-Jacobowitz B, Hubmacher D. The quest for substrates and binding partners: A critical barrier for understanding the role of ADAMTS proteases in musculoskeletal development and disease. Dev Dyn 2020; 250:8-26. [PMID: 32875613 DOI: 10.1002/dvdy.248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
Secreted ADAMTS metalloproteases are involved in the sculpting, remodeling, and erosion of connective tissues throughout the body, including in the musculoskeletal system. ADAMTS proteases contribute to musculoskeletal development, pathological tissue destruction, and are mutated in congenital musculoskeletal disorders. Examples include versican cleavage by ADAMTS9 which is required for interdigital web regression during limb development, ADAMTS5-mediated aggrecan degradation in osteoarthritis resulting in joint erosion, and mutations in ADAMTS10 or ADAMTS17 that cause Weill-Marchesani syndrome, a short stature syndrome with bone, joint, muscle, cardiac, and eye involvement. Since the function of ADAMTS proteases and proteases in general is primarily defined by the molecular consequences of proteolysis of their respective substrates, it is paramount to identify all physiological substrates for each individual ADAMTS protease. Here, we review the current knowledge of ADAMTS proteases and their involvement in musculoskeletal development and disease, focusing on some of their known physiological substrates and the consequences of substrate cleavage. We further emphasize the critical need for the identification and validation of novel ADAMTS substrates and binding partners by describing the principles of mass spectrometry-based approaches and by emphasizing strategies that need to be considered for validating the physiological relevance for ADAMTS-mediated proteolysis of novel putative substrates.
Collapse
Affiliation(s)
- Brandon Satz-Jacobowitz
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dirk Hubmacher
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
14
|
Protein Degradome of Spinal Cord Injury: Biomarkers and Potential Therapeutic Targets. Mol Neurobiol 2020; 57:2702-2726. [PMID: 32328876 DOI: 10.1007/s12035-020-01916-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
Degradomics is a proteomics sub-discipline whose goal is to identify and characterize protease-substrate repertoires. With the aim of deciphering and characterizing key signature breakdown products, degradomics emerged to define encryptic biomarker neoproteins specific to certain disease processes. Remarkable improvements in structural and analytical experimental methodologies as evident in research investigating cellular behavior in neuroscience and cancer have allowed the identification of specific degradomes, increasing our knowledge about proteases and their regulators and substrates along with their implications in health and disease. A physiologic balance between protein synthesis and degradation is sought with the activation of proteolytic enzymes such as calpains, caspases, cathepsins, and matrix metalloproteinases. Proteolysis is essential for development, growth, and regeneration; however, inappropriate and uncontrolled activation of the proteolytic system renders the diseased tissue susceptible to further neurotoxic processes. In this article, we aim to review the protease-substrate repertoires as well as emerging therapeutic interventions in spinal cord injury at the degradomic level. Several protease substrates and their breakdown products, essential for the neuronal structural integrity and functional capacity, have been characterized in neurotrauma including cytoskeletal proteins, neuronal extracellular matrix glycoproteins, cell junction proteins, and ion channels. Therefore, targeting exaggerated protease activity provides a potentially effective therapeutic approach in the management of protease-mediated neurotoxicity in reducing the extent of damage secondary to spinal cord injury.
Collapse
|
15
|
Santamaria S. ADAMTS-5: A difficult teenager turning 20. Int J Exp Pathol 2020; 101:4-20. [PMID: 32219922 DOI: 10.1111/iep.12344] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/28/2019] [Accepted: 01/19/2020] [Indexed: 12/13/2022] Open
Abstract
A Disintegrin And Metalloproteinase with ThromboSpondin motif (ADAMTS)-5 was identified in 1999 as one of the enzymes responsible for cleaving aggrecan, the major proteoglycan in articular cartilage. Studies in vitro, ex vivo and in vivo have validated ADAMTS-5 as a target in osteoarthritis (OA), a disease characterized by extensive degradation of aggrecan. For this reason, it attracted the interest of many research groups aiming to develop a therapeutic treatment for OA patients. However, ADAMTS-5 proteoglycanase activity is not only involved in the dysregulated aggrecan proteolysis, which occurs in OA, but also in the physiological turnover of other related proteoglycans. In particular, versican, a major ADAMTS-5 substrate, plays an important structural role in heart and blood vessels and its proteolytic processing by ADAMTS-5 must be tightly regulated. On the occasion of the 20th anniversary of the discovery of ADAMTS-5, this review looks at the evidence for its detrimental role in OA, as well as its physiological turnover of cardiovascular proteoglycans. Moreover, the other potential functions of this enzyme are highlighted. Finally, challenges and emerging trends in ADAMTS-5 research are discussed.
Collapse
|
16
|
Mohamedi Y, Fontanil T, Cobo T, Cal S, Obaya AJ. New Insights into ADAMTS Metalloproteases in the Central Nervous System. Biomolecules 2020; 10:biom10030403. [PMID: 32150898 PMCID: PMC7175268 DOI: 10.3390/biom10030403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Components of the extracellular matrix (ECM) are key players in regulating cellular functions throughout the whole organism. In fact, ECM components not only participate in tissue organization but also contribute to processes such as cellular maintenance, proliferation, and migration, as well as to support for various signaling pathways. In the central nervous system (CNS), proteoglycans of the lectican family, such as versican, aggrecan, brevican, and neurocan, are important constituents of the ECM. In recent years, members of this family have been found to be involved in the maintenance of CNS homeostasis and to participate directly in processes such as the organization of perineural nets, the regulation of brain plasticity, CNS development, brain injury repair, axonal guidance, and even the altering of synaptic responses. ADAMTSs are a family of “A disintegrin and metalloproteinase with thrombospondin motifs” proteins that have been found to be involved in a multitude of processes through the degradation of lecticans and other proteoglycans. Recently, alterations in ADAMTS expression and activity have been found to be involved in neuronal disorders such as stroke, neurodegeneration, schizophrenia, and even Alzheimer’s disease, which in turn may suggest their potential use as therapeutic targets. Herein, we summarize the different roles of ADAMTSs in regulating CNS events through interactions and the degradation of ECM components (more specifically, the lectican family of proteoglycans).
Collapse
Affiliation(s)
- Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain; (Y.M.); (T.F.); (S.C.)
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain; (Y.M.); (T.F.); (S.C.)
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Departamento de Investigación, Instituto Ordóñez, 33012 Oviedo, Asturias, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain;
- Instituto Asturiano de Odontología, 33006 Oviedo, Asturias, Spain
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain; (Y.M.); (T.F.); (S.C.)
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Alvaro J. Obaya
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Correspondence:
| |
Collapse
|
17
|
Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis 2019; 36:171-198. [PMID: 30972526 DOI: 10.1007/s10585-019-09966-1] [Citation(s) in RCA: 367] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) constitutes the scaffold of tissues and organs. It is a complex network of extracellular proteins, proteoglycans and glycoproteins, which form supramolecular aggregates, such as fibrils and sheet-like networks. In addition to its biochemical composition, including the covalent intermolecular cross-linkages, the ECM is also characterized by its biophysical parameters, such as topography, molecular density, stiffness/rigidity and tension. Taking these biochemical and biophysical parameters into consideration, the ECM is very versatile and undergoes constant remodeling. This review focusses on this remodeling of the ECM under the influence of a primary solid tumor mass. Within this tumor stroma, not only the cancer cells but also the resident fibroblasts, which differentiate into cancer-associated fibroblasts (CAFs), modify the ECM. Growth factors and chemokines, which are tethered to and released from the ECM, as well as metabolic changes of the cells within the tumor bulk, add to the tumor-supporting tumor microenvironment. Metastasizing cancer cells from a primary tumor mass infiltrate into the ECM, which variably may facilitate cancer cell migration or act as barrier, which has to be proteolytically breached by the infiltrating tumor cell. The biochemical and biophysical properties therefore determine the rates and routes of metastatic dissemination. Moreover, primed by soluble factors of the primary tumor, the ECM of distant organs may be remodeled in a way to facilitate the engraftment of metastasizing cancer cells. Such premetastatic niches are responsible for the organotropic preference of certain cancer entities to colonize at certain sites in distant organs and to establish a metastasis. Translational application of our knowledge about the cancer-primed ECM is sparse with respect to therapeutic approaches, whereas tumor-induced ECM alterations such as increased tissue stiffness and desmoplasia, as well as breaching the basement membrane are hallmark of malignancy and diagnostically and histologically harnessed.
Collapse
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| |
Collapse
|
18
|
Rogerson FM, Last K, Golub SB, Gauci SJ, Stanton H, Bell KM, Fosang AJ. ADAMTS-9 in Mouse Cartilage Has Aggrecanase Activity That Is Distinct from ADAMTS-4 and ADAMTS-5. Int J Mol Sci 2019; 20:ijms20030573. [PMID: 30699963 PMCID: PMC6387038 DOI: 10.3390/ijms20030573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/14/2019] [Accepted: 01/24/2019] [Indexed: 01/18/2023] Open
Abstract
A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 are the principal aggrecanases in mice and humans; however, mice lacking the catalytic domain of both enzymes (TS-4/5∆cat) have no skeletal phenotype, suggesting there is an alternative aggrecanase for modulating normal growth and development in these mice. We previously identified aggrecanase activity that (a) cleaved at E↓G rather than E↓A bonds in the aggrecan core protein, and (b) was upregulated by retinoic acid but not IL-1α. The present study aimed to identify the alternative aggrecanase. Femoral head cartilage explants from TS-4/5∆cat mice were stimulated with IL-1α or retinoic acid and total RNA was analysed by microarray. In addition to ADAMTS-5 and matrix metalloproteinase (MMP)-13, which are not candidates for the novel aggrecanase, the microarray analyses identified MMP-11, calpain-5 and ADAMTS-9 as candidate aggrecanases upregulated by retinoic acid. When calpain-5 and MMP-11 failed to meet subsequent criteria, ADAMTS-9 emerged as the most likely candidate for the novel aggrecanase. Immunohistochemistry revealed ADAMTS-9 expression throughout the mouse growth plate and strong expression, particularly in the proliferative zone of the TS-4/5-∆cat mice. In conclusion, ADAMTS-9 has a novel specificity for aggrecan, cleaving primarily at E↓G rather than E↓A bonds in mouse cartilage. ADAMTS-9 might have more important roles in normal skeletal development compared with ADAMTS-4 and ADAMTS-5, which have key roles in joint pathology.
Collapse
Affiliation(s)
- Fraser M Rogerson
- University of Melbourne Department of Paediatrics, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
- Royal Melbourne Institute of Technology, 124 La Trobe Street, Melbourne, Victoria 3000, Australia.
| | - Karena Last
- University of Melbourne Department of Paediatrics, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| | - Suzanne B Golub
- University of Melbourne Department of Paediatrics, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| | - Stephanie J Gauci
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| | - Heather Stanton
- University of Melbourne Department of Paediatrics, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| | - Katrina M Bell
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| | - Amanda J Fosang
- University of Melbourne Department of Paediatrics, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| |
Collapse
|
19
|
Proteolytic Remodeling of Perineuronal Nets: Effects on Synaptic Plasticity and Neuronal Population Dynamics. Neural Plast 2018. [PMID: 29531525 PMCID: PMC5817213 DOI: 10.1155/2018/5735789] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The perineuronal net (PNN) represents a lattice-like structure that is prominently expressed along the soma and proximal dendrites of parvalbumin- (PV-) positive interneurons in varied brain regions including the cortex and hippocampus. It is thus apposed to sites at which PV neurons receive synaptic input. Emerging evidence suggests that changes in PNN integrity may affect glutamatergic input to PV interneurons, a population that is critical for the expression of synchronous neuronal population discharges that occur with gamma oscillations and sharp-wave ripples. The present review is focused on the composition of PNNs, posttranslation modulation of PNN components by sulfation and proteolysis, PNN alterations in disease, and potential effects of PNN remodeling on neuronal plasticity at the single-cell and population level.
Collapse
|
20
|
Stromal Versican Regulates Tumor Growth by Promoting Angiogenesis. Sci Rep 2017; 7:17225. [PMID: 29222454 PMCID: PMC5722896 DOI: 10.1038/s41598-017-17613-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023] Open
Abstract
The proteoglycan versican is implicated in growth and metastases of several cancers. Here we investigated a potential contribution of stromal versican to tumor growth and angiogenesis. We initially determined versican expression by several cancer cell lines. Among these, MDA-MB231 and B16F10 had none to minimal expression in contrast to Lewis lung carcinoma (LLC). Notably, tumors arising from these cell lines had higher versican levels than the cell lines themselves suggesting a contribution from the host-derived tumor stroma. In LLC-derived tumors, both the tumor and stroma expressed versican at high levels. Thus, tumor stroma can make a significant contribution to tumor versican content. Versican localized preferentially to the vicinity of tumor vasculature and macrophages in the tumor. However, an ADAMTS protease-generated versican fragment uniquely localized to vascular endothelium. To specifically determine the impact of host/stroma-derived versican we therefore compared growth of tumors from B16F10 cells, which produced littleversican, in Vcan hdf/+ mice and wild-type littermates. Tumors in Vcan hdf/+ mice had reduced growth with a lower capillary density and accumulation of capillaries at the tumor periphery. These findings illustrate the variability of tumor cell line expression of versican, and demonstrate that versican is consistently contributed by the stromal tissue, where it contributes to tumor angiogenesis.
Collapse
|
21
|
Relationship between ADAMTS4 and carotid atherosclerotic plaque vulnerability in humans. J Vasc Surg 2017; 67:1120-1126. [PMID: 29153440 DOI: 10.1016/j.jvs.2017.08.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/13/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Rupture of atherosclerotic plaques and the resulting thrombosis are vital causes of clinical ischemic events. Recent studies have shown that ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4) is a pathogenic factor of plaque vulnerability in mice. However, the relationship between ADAMTS4 and carotid atherosclerotic vulnerable plaques in humans remains unclear. METHODS Forty-eight carotid atherosclerotic plaque specimens were obtained from 48 carotid artery stenosis inpatients undergoing carotid endarterectomy. We performed hematoxylin and eosin and Movat pentachrome staining for histologic characteristics; immunohistochemical staining for ADAMTS4, versican, and macrophages; and serologic tests for ADAMTS4. Patients were divided into stable and vulnerable groups on the basis of histologic characterization according to the classification criteria of the American Heart Association. Comparison between the groups was carried out using SPSS 17.0 (SPSS Inc, Chicago, Ill). RESULTS Expression of ADAMTS4 in the plaque and its serum concentration were significantly higher in the vulnerable group compared with the stable one (P = .004 and P = .021, respectively), whereas the expression of versican was lower in the vulnerable group than in the stable group (P = .015). Univariate analysis revealed that the incidence of symptomatic cerebral ischemic events and ADAMTS4 serum levels were statistically higher in the vulnerable group compared with the stable group (P = .021 and P = .029, respectively). Multivariate analysis showed that ADAMTS4 was an independent risk factor (odds ratio, 1.14; P = .038). CONCLUSIONS Our study revealed that ADAMTS4 expression was upregulated during carotid atherosclerotic plaque development. Serum levels of ADAMTS4 were associated with increased plaque vulnerability in both symptomatic and asymptomatic patients with carotid artery stenosis. ADAMTS4 may be a potential biomarker for plaque vulnerability.
Collapse
|
22
|
Li Y, Chen Y, Tan L, Pan JY, Lin WW, Wu J, Hu W, Chen X, Wang XD. RNAi-mediated ephrin-B2 silencing attenuates astroglial-fibrotic scar formation and improves spinal cord axon growth. CNS Neurosci Ther 2017; 23:779-789. [PMID: 28834283 DOI: 10.1111/cns.12723] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/23/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022] Open
Abstract
AIMS Astroglial-fibrotic scar formation following central nervous system injury can help repair blood-brain barrier and seal the lesion, whereas it also represents a strong barrier for axonal regeneration. Intensive preclinical efforts have been made to eliminate/reduce the inhibitory part and, in the meantime, preserve the beneficial role of astroglial-fibrotic scar. METHODS In this study, we established an in vitro system, in which coculture of astrocytes and meningeal fibroblasts was treated with exogenous transforming growth factor-β1 (TGF-β1) to form astroglial-fibrotic scar-like cell clusters, and thereby evaluated the efficacy of RNAi targeting ephrin-B2 in preventing scar formation from the very beginning. We further tested the effect of RNAi-based mitigation of astroglial-fibrotic scar on spinal axon outgrowth on a custom-made microfluidic platform. RESULTS We found that siRNA targeting ephrin-B2 significantly reduced both the number and the diameter of cell clusters induced by TGF-β1 and diminished the expression of aggrecan and versican in the coculture, and allowed for significantly longer extension of outgrowing spinal cord axons into astroglial-fibrotic scar as assessed on the microfluidic platform. CONCLUSIONS These results suggest that astroglial-fibrotic scar formation and particularly the expression of aggrecan and versican could be mitigated by ephrin-B2 specific siRNA, thus improving the microenvironment for spinal axon regeneration.
Collapse
Affiliation(s)
- Yi Li
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, China
| | - Ying Chen
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, China
| | - Ling Tan
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, China
| | - Jing-Ying Pan
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, China
| | - Wei-Wei Lin
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, China
| | - Jian Wu
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, China
| | - Wen Hu
- Key Laboratory for Neuroregeneration of Ministry of Education and Co-innovation Center for Neuroregeneration of Jiangsu Province, Nantong University, Nantong, China
| | - Xue Chen
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, China.,Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Xiao-Dong Wang
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, China.,Key Laboratory for Neuroregeneration of Ministry of Education and Co-innovation Center for Neuroregeneration of Jiangsu Province, Nantong University, Nantong, China
| |
Collapse
|
23
|
Miyata S, Kitagawa H. Formation and remodeling of the brain extracellular matrix in neural plasticity: Roles of chondroitin sulfate and hyaluronan. Biochim Biophys Acta Gen Subj 2017. [PMID: 28625420 DOI: 10.1016/j.bbagen.2017.06.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The extracellular matrix (ECM) of the brain is rich in glycosaminoglycans such as chondroitin sulfate (CS) and hyaluronan. These glycosaminoglycans are organized into either diffuse or condensed ECM. Diffuse ECM is distributed throughout the brain and fills perisynaptic spaces, whereas condensed ECM selectively surrounds parvalbumin-expressing inhibitory neurons (PV cells) in mesh-like structures called perineuronal nets (PNNs). The brain ECM acts as a non-specific physical barrier that modulates neural plasticity and axon regeneration. SCOPE OF REVIEW Here, we review recent progress in understanding of the molecular basis of organization and remodeling of the brain ECM, and the involvement of several types of experience-dependent neural plasticity, with a particular focus on the mechanism that regulates PV cell function through specific interactions between CS chains and their binding partners. We also discuss how the barrier function of the brain ECM restricts dendritic spine dynamics and limits axon regeneration after injury. MAJOR CONCLUSIONS The brain ECM not only forms physical barriers that modulate neural plasticity and axon regeneration, but also forms molecular brakes that actively controls maturation of PV cells and synapse plasticity in which sulfation patterns of CS chains play a key role. Structural remodeling of the brain ECM modulates neural function during development and pathogenesis. GENERAL SIGNIFICANCE Genetic or enzymatic manipulation of the brain ECM may restore neural plasticity and enhance recovery from nerve injury. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Shinji Miyata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Kobe 658-8558, Japan.
| |
Collapse
|
24
|
Song I, Dityatev A. Crosstalk between glia, extracellular matrix and neurons. Brain Res Bull 2017; 136:101-108. [PMID: 28284900 DOI: 10.1016/j.brainresbull.2017.03.003] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 12/29/2022]
Abstract
Extracellular matrix (ECM) molecules in the central nervous system form highly organized ECM structures around cell somata, axon initial segments, and synapses and play prominent roles in early development by guiding cell migration, neurite outgrowth and synaptogenesis, and by regulating closure of the critical period of development, synaptic plasticity and stability, cognitive flexibility, and axonal regeneration in adults. Major components of neural ECM, including chondroitin sulfate proteoglycans (CSPGs), tenascin-R and hyaluronic acid, are synthesized by both neurons and glial cells. The expression of these molecules is dynamically regulated during brain development in physiological conditions, shaping both neuronal and glial functions through multitude of molecular mechanisms. Upregulation of particular CSPGs and other ECM molecules, in particular by reactive astrocytes, after CNS injuries, during aging, neuroinflammation, and neurodegeneration on the one hand results in formation of growth-impermissive environment and impaired synaptic plasticity. On the other hand, ECM appeared to have a neuroprotective effect, at least in the form of perineuronal nets. CSPGs-degrading matrix metalloproteinases (MMPs) and several members of the disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family of proteases are secreted by neurons and glia and may drive neural ECM remodeling in physiological conditions as well as after brain injury and other brain disorders. Thus, targeting expression of specific ECM molecules, associated glycans and degrading enzymes may lead to development of new therapeutic strategies promoting regeneration and synaptic plasticity.
Collapse
Affiliation(s)
- Inseon Song
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany.
| |
Collapse
|
25
|
Lemarchant S, Wojciechowski S, Vivien D, Koistinaho J. ADAMTS-4 in central nervous system pathologies. J Neurosci Res 2017; 95:1703-1711. [DOI: 10.1002/jnr.24021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/23/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Sighild Lemarchant
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| | - Sara Wojciechowski
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| | - Denis Vivien
- INSERM, INSERM UMR-S 919, “Serine Proteases and Pathophysiology of the Neurovascular Unit”; University of Caen Basse-Normandie; GIP Cyceron, Bd H. Becquerel, BP 5229 14074 Caen Cedex France
| | - Jari Koistinaho
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| |
Collapse
|
26
|
Wei Y, Bai L. Recent advances in the understanding of molecular mechanisms of cartilage degeneration, synovitis and subchondral bone changes in osteoarthritis. Connect Tissue Res 2016; 57:245-61. [PMID: 27285430 DOI: 10.1080/03008207.2016.1177036] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteoarthritis (OA), the most common form of degenerative joint disease, is linked to high morbidity. It is predicted to be the single greatest cause of disability in the general population by 2030. The development of disease-modifying therapy for OA currently face great obstacle mainly because the onset and development of the disease involve complex molecular mechanisms. In this review, we will comprehensively summarize biological and pathological mechanisms of three key aspects: degeneration of articular cartilage, synovial immunopathogenesis, and changes in subchondral bone. For each tissue, we will focus on the molecular receptors, cytokines, peptidases, related cell, and signal pathways. Agents that specifically block mechanisms involved in synovial inflammation, degeneration of articular cartilage, and subchondral bone remodeling can potentially be exploited to produce targeted therapy for OA. Such new comprehensive agents will benefit affected patients and bring exciting new hope for the treatment of OA.
Collapse
Affiliation(s)
- Yingliang Wei
- a Department of Orthopedic Surgery, Sheng-Jing Hospital , China Medical University , ShenYang , China
| | - Lunhao Bai
- a Department of Orthopedic Surgery, Sheng-Jing Hospital , China Medical University , ShenYang , China
| |
Collapse
|
27
|
Miyata S, Kitagawa H. Chondroitin 6-Sulfation Regulates Perineuronal Net Formation by Controlling the Stability of Aggrecan. Neural Plast 2016; 2016:1305801. [PMID: 27057358 PMCID: PMC4738747 DOI: 10.1155/2016/1305801] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/29/2015] [Indexed: 01/24/2023] Open
Abstract
Perineuronal nets (PNNs) are lattice-like extracellular matrix structures composed of chondroitin sulfate proteoglycans (CSPGs). The appearance of PNNs parallels the decline of neural plasticity, and disruption of PNNs reactivates neural plasticity in the adult brain. We previously reported that sulfation patterns of chondroitin sulfate (CS) chains on CSPGs influenced the formation of PNNs and neural plasticity. However, the mechanism of PNN formation regulated by CS sulfation remains unknown. Here we found that overexpression of chondroitin 6-sulfotransferase-1 (C6ST-1), which catalyzes 6-sulfation of CS chains, selectively decreased aggrecan, a major CSPG in PNNs, in the aged brain without affecting other PNN components. Both diffuse and PNN-associated aggrecans were reduced by overexpression of C6ST-1. C6ST-1 increased 6-sulfation in both the repeating disaccharide region and linkage region of CS chains. Overexpression of 6-sulfation primarily impaired accumulation of aggrecan in PNNs, whereas condensation of other PNN components was not affected. Finally, we found that increased 6-sulfation accelerated proteolysis of aggrecan by a disintegrin and metalloproteinase domain with thrombospondin motif (ADAMTS) protease. Taken together, our results indicate that sulfation patterns of CS chains on aggrecan influenced the stability of the CSPG, thereby regulating formation of PNNs and neural plasticity.
Collapse
Affiliation(s)
- Shinji Miyata
- Institute for Advanced Research, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Kobe 658-8558, Japan
| |
Collapse
|
28
|
The Function and Roles of ADAMTS-7 in Inflammatory Diseases. Mediators Inflamm 2015; 2015:801546. [PMID: 26696755 PMCID: PMC4677222 DOI: 10.1155/2015/801546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/19/2015] [Accepted: 11/18/2015] [Indexed: 12/11/2022] Open
Abstract
The ADAMTS proteinases are a group of multidomain and secreted metalloproteinases containing the thrombospondin motifs. ADAMTS-7 is a member of ADAMTS family and plays a crucial role in the pathogenesis of arthritis. Overexpression of ADAMTS-7 gene promotes the breakdown of cartilage oligomeric matrix protein (COMP) matrix and accelerates the progression of both surgically induced osteoarthritis and collagen-induced arthritis. Moreover, ADAMTS-7 and tumor necrosis factor-α (TNF-α) form a positive feedback loop in osteoarthritis. More significantly, granulin-epithelin precursor, a growth factor has important roles in bone development and bone-associated diseases, disturbs the interaction between ADAMTS-7 and COMP, and prevents COMP degradation. This review is based on our results and provides an overview of current knowledge of ADAMTS-7, including its structure, function, gene regulation, and inflammatory diseases involvement.
Collapse
|
29
|
Dubail J, Apte SS. Insights on ADAMTS proteases and ADAMTS-like proteins from mammalian genetics. Matrix Biol 2015; 44-46:24-37. [PMID: 25770910 DOI: 10.1016/j.matbio.2015.03.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/05/2023]
Abstract
The mammalian ADAMTS superfamily comprises 19 secreted metalloproteinases and 7 ADAMTS-like proteins, each the product of a distinct gene. Thus far, all appear to be relevant to extracellular matrix function or to cell-matrix interactions. Most ADAMTS functions first emerged from analysis of spontaneous human and animal mutations and genetically engineered animals. The clinical manifestations of Mendelian disorders resulting from mutations in ADAMTS2, ADAMTS10, ADAMTS13, ADAMTS17, ADAMTSL2 and ADAMTSL4 identified essential roles for each gene, but also suggested potential cooperative functions of ADAMTS proteins. These observations were extended by analysis of spontaneous animal mutations, such as in bovine ADAMTS2, canine ADAMTS10, ADAMTS17 and ADAMTSL2 and mouse ADAMTS20. These human and animal disorders are recessive and their manifestations appear to result from a loss-of-function mechanism. Genome-wide analyses have determined an association of some ADAMTS loci such as ADAMTS9 and ADAMTS7, with specific traits and acquired disorders. Analysis of genetically engineered rodent mutations, now achieved for over half the superfamily, has provided novel biological insights and animal models for the respective human genetic disorders and suggested potential candidate genes for related human phenotypes. Engineered mouse mutants have been interbred to generate combinatorial mutants, uncovering cooperative functions of ADAMTS proteins in morphogenesis. Specific genetic models have provided crucial insights on mechanisms of osteoarthritis (OA), a common adult-onset degenerative condition. Engineered mutants will facilitate interpretation of exome variants identified in isolated birth defects and rare genetic conditions, as well as in genome-wide screens for trait and disease associations. Mammalian forward and reverse genetics, together with genome-wide analysis, together constitute a powerful force for revealing the functions of ADAMTS proteins in physiological pathways and health disorders. Their continuing use, together with genome-editing technology and the ability to generate stem cells from mutants, presents numerous opportunities for advancing basic knowledge, human disease pathways and therapy.
Collapse
Affiliation(s)
- Johanne Dubail
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Suneel S Apte
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|