1
|
Myeong S, Lee YY, Yun J. Optimization and Bioreactor Scale-Up of Cellulase Production in Trichoderma sp. KMF006 for Higher Yield and Performance. Int J Mol Sci 2025; 26:3731. [PMID: 40332326 PMCID: PMC12027645 DOI: 10.3390/ijms26083731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
This study optimized operating parameters to enhance cellulase production and evaluated scale-up feasibility in submerged fermentation (SmF) using Trichoderma sp. KMF006. Flask-scale experiments assessed the effects of Avicel:cellulose ratios (4:0-0:4), agitation speeds (150-210 rpm), and turbulence (baffled vs. non-baffled flasks), with optimized conditions applied to a 10 L bioreactor. A 3:1 Avicel:cellulose ratio (A3C1) significantly accelerated cellulase production, reaching peak activity 6 days earlier than Avicel alone. An agitation speed of 180 rpm was optimal, balancing enzyme activity and energy efficiency. Turbulence enhanced cellulase yields, with baffled flasks increasing EG, BGL, and CBH activities 19.9-, 6.2-, and 8.9-fold, respectively, compared to the control. Biochar further improved cellulase production but only under turbulent conditions, demonstrating a synergistic effect. At the bioreactor scale, the A3-180_Imp (A3C1, 180 rpm, impeller-induced turbulence) achieved the highest enzymatic activity (33.60 U/mL EG, 3.46 U/mL BGL, and 0.63 U/mL CBH). The filter paper unit (FPU) was 84 FPU/mL, a two-fold increase compared to the control. However, excessive turbulence at 210 rpm reduced enzyme stability, emphasizing the importance of balancing shear stress. These findings provide a systematic framework for optimizing SmF conditions, highlighting the significance of balancing hydrodynamic conditions for efficient cellulase production at an industrial scale.
Collapse
Affiliation(s)
| | | | - Jeonghee Yun
- Department of Forest Products and Biotechnology, Kookmin University, Seoul 02707, Republic of Korea; (S.M.); (Y.-Y.L.)
| |
Collapse
|
2
|
Kovács E, Szűcs C, Farkas A, Szuhaj M, Maróti G, Bagi Z, Rákhely G, Kovács KL. Pretreatment of lignocellulosic biogas substrates by filamentous fungi. J Biotechnol 2022; 360:160-170. [PMID: 36273669 DOI: 10.1016/j.jbiotec.2022.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/12/2022] [Accepted: 10/16/2022] [Indexed: 11/19/2022]
Abstract
Decomposition of lignocellulosic plant biomass by four filamentous fungi was carried out to facilitate subsequent anaerobic degradation and biogas formation. Agricultural side products, wheat straw and corn stover and forestry energy plant willow chips were selected as plant biomass sources. The substrates were confronted by pure cultures of Penicillium aurantiogriseum (new isolate from rumen), Trichoderma reesei (DSM768), Gilbertella persicaria (SZMC11086) and Rhizomucor miehei (SZMC11005). In addition to total cellulolytic filter paper degradation activity, the production of endoglucanase, cellobiohydrolase, β-glucosidase enzymes were followed during the pretreatment period, which lasted for 10 days at 37 °C. The products of pretreatments were subsequently tested for mesophilic biogas production in batch reactors. All 4 strains effectively pretreated the lignocellulosic substrates albeit in varying degrees, which was related to the level of the tested hydrolytic enzyme activities. Penicillium aurantiogriseum showed outstanding hydrolytic enzyme production and highest biogas yield from the partially degraded substrates. Corn stover was the best substrate for biomass decomposition and biogas production. Scanning electron microscopy confirmed the deep penetration of fungal hyphae into the lignocellulosic substrate in all cases.
Collapse
Affiliation(s)
- Etelka Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Csilla Szűcs
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Attila Farkas
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Márk Szuhaj
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Zoltán Bagi
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary; Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary; Institute of Biophysics, Biological Research Center, Szeged, Hungary; Department of Oral Biology and Experimental Dentistry, University of Szeged, Szeged, Hungary.
| |
Collapse
|
3
|
Tanaka D, Ohnishi KI, Watanabe S, Suzuki S. Isolation of cellulase-producing Microbulbifer sp. from marine teleost blackfish (Girella melanichthys) intestine and the enzyme characterization. J GEN APPL MICROBIOL 2021; 67:47-53. [PMID: 33250506 DOI: 10.2323/jgam.2020.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Most animals cannot digest cellulose but have symbiotic microbes that degrade the matrix polysaccharides of plant matter. Herbivorous and omnivorous marine fish are similarly expected to rely on symbiotic microbes, but reports to date on cellulase-producing bacteria in fish intestines are limited. Here, we report the isolation of new cellulase-producing bacteria from the marine omnivorous teleost, blackfish (Girella melanichthys), and the characterization of cellulase activity. Three strains of cellulase-producing bacteria sp. were isolated from the hindgut of wild G. melanichthys. The strains of cellulase-producing bacteria grew in medium with artificial seawater but not in NaCl alone. Growth was optimum at 20-35°C, but there was no growth at 40°C, suggesting adaptation in a marine environment at a low temperature. Isolates were identified to Microbulbifer sp., among which GL-2 strain produced a high enzyme activity. The GL-2 strain was further used for enzyme characterization with carboxymethyl cellulose (CMC) as the substrate. Maximum activity of the cellulase was observed at 60°C, and activity was more than 30% at 20°C, while commercial cellulase Enthiron showed an optimum activity at 50°C and 17% activity at 20°C. Hydrolytic products by GL-2 cellulase were cellobiose but not glucose, suggesting a deficiency of β-glucosidase activity. Active gel electrophoresis containing CMC showed five bands, suggesting several cellulolytic enzymes. The GL-2 strain and its enzyme are potential probiotics for aquaculture fish and the industrial production of cellobiose.
Collapse
Affiliation(s)
- Daiki Tanaka
- Center for Marine Environmental Studies, Ehime University.,Graduate School of Agriculture, Ehime University
| | | | - Seiya Watanabe
- Center for Marine Environmental Studies, Ehime University.,Graduate School of Agriculture, Ehime University
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University.,Graduate School of Agriculture, Ehime University.,Food and Health Sciences Research Center, Ehime University
| |
Collapse
|
4
|
Ogunyewo OA, Randhawa A, Joshi M, Jain KK, Wadekar P, Odaneth AA, Lali AM, Yazdani SS. Engineered Penicillium funiculosum produces potent lignocellulolytic enzymes for saccharification of various pretreated biomasses. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Abdel-Azeem AM, Hasan GA, Mohesien MT. Biodegradation of Agricultural Wastes by Chaetomium Species. Fungal Biol 2020. [DOI: 10.1007/978-3-030-31612-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Champreda V, Mhuantong W, Lekakarn H, Bunterngsook B, Kanokratana P, Zhao XQ, Zhang F, Inoue H, Fujii T, Eurwilaichitr L. Designing cellulolytic enzyme systems for biorefinery: From nature to application. J Biosci Bioeng 2019; 128:637-654. [PMID: 31204199 DOI: 10.1016/j.jbiosc.2019.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/06/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022]
Abstract
Cellulolytic enzymes play a key role on conversion of lignocellulosic plant biomass to biofuels and biochemicals in sugar platform biorefineries. In this review, we survey composite carbohydrate-active enzymes (CAZymes) among groups of cellulolytic fungi and bacteria that exist under aerobic and anaerobic conditions. Recent advances in designing effective cellulase mixtures are described, starting from the most complex microbial consortium-based enzyme preparations, to single-origin enzymes derived from intensively studied cellulase producers such as Trichoderma reesei, Talaromyces cellulolyticus, and Penicellium funiculosum, and the simplest minimal enzyme systems comprising selected sets of mono-component enzymes tailor-made for specific lignocellulosic substrates. We provide a comprehensive update on studies in developing high-performance cellulases for biorefineries.
Collapse
Affiliation(s)
- Verawat Champreda
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand.
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Hataikarn Lekakarn
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Benjarat Bunterngsook
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Pattanop Kanokratana
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hiroyuki Inoue
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Hiroshima 739-0046, Japan
| | - Tatsuya Fujii
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Hiroshima 739-0046, Japan
| | - Lily Eurwilaichitr
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
7
|
|
8
|
Production of β-glucosidase from wheat bran and glycerol by Aspergillus niger in stirred tank and rotating fibrous bed bioreactors. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Zhang X, Zhu Y, Bao L, Gao L, Yao G, Li Y, Yang Z, Li Z, Zhong Y, Li F, Yin H, Qu Y, Qin Y. Putative methyltransferase LaeA and transcription factor CreA are necessary for proper asexual development and controlling secondary metabolic gene cluster expression. Fungal Genet Biol 2016; 94:32-46. [PMID: 27387217 DOI: 10.1016/j.fgb.2016.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 06/30/2016] [Accepted: 07/03/2016] [Indexed: 11/28/2022]
Abstract
The morphological development of fungi is a complex process and is often coupled with secondary metabolite production. In this study, we assessed the function of putative methyltransferase LaeA and transcription factor CreA in controlling asexual development and secondary metabolic gene cluster expression in Penicillium oxalicum. The deletion of laeA (ΔlaeA) impaired the conidiation in P. oxalicum, with a downregulated expression of brlA. Overexpression of P. oxalicum brlA in ΔlaeA could upregulate brlA and abaA remarkably, but could not rescue the conidiation defect; therefore, brlA and abaA expression were necessary but not sufficient for conidiation. Deletion of creA in ΔlaeA background (ΔlaeAΔcreA) blocked conidiation with a white fluffy phenotype. Nutrient-rich medium could not rescue developmental defects in ΔlaeAΔcreA mutant but could rescue defects in ΔlaeA. Expression of 10 genes, namely, albA/wA, abrB/yA, arpA, aygA, arpA-like, arpB, arpB-like, rodA, rodA-like, and rodB, for pigmentation and spore wall protein genes was silenced in ΔlaeAΔcreA, whereas only six of them were downregulated in ΔlaeA. Among the 28 secondary metabolism gene clusters in P. oxalicum, four secondary metabolism gene clusters were silenced in ΔlaeA and two were also silenced in ΔbrlA mutant. A total of 10 physically linked and coregulated genes were distributed over five chromosomes in ΔlaeA. Six of these genes were located in subtelomeric regions, thus demonstrating a positional bias for LaeA-regulated clusters toward subtelomeric regions. All of silenced clusters located in subtelomeric regions were derepressed in ΔlaeAΔcreA, hence showing that lack of CreA could remediate the repression of gene clusters in ΔlaeA background. Results show that both putative methyltransferase LaeA and transcription factor CreA are necessary for proper asexual development and controlling secondary metabolic gene cluster expression.
Collapse
Affiliation(s)
- Xiujun Zhang
- National Glycoengineering Research Center and State Key Lab of Microbial Technology, Shandong University, Jinan 250100, China; Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, China.
| | - Yingying Zhu
- National Glycoengineering Research Center and State Key Lab of Microbial Technology, Shandong University, Jinan 250100, China.
| | - Longfei Bao
- National Glycoengineering Research Center and State Key Lab of Microbial Technology, Shandong University, Jinan 250100, China.
| | - Liwei Gao
- National Glycoengineering Research Center and State Key Lab of Microbial Technology, Shandong University, Jinan 250100, China.
| | - Guangshan Yao
- National Glycoengineering Research Center and State Key Lab of Microbial Technology, Shandong University, Jinan 250100, China.
| | - Yanan Li
- National Glycoengineering Research Center and State Key Lab of Microbial Technology, Shandong University, Jinan 250100, China; Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, China.
| | - Zhifeng Yang
- School of Mathematics, Shandong University, Jinan 250100, China.
| | - Zhonghai Li
- National Glycoengineering Research Center and State Key Lab of Microbial Technology, Shandong University, Jinan 250100, China.
| | - Yaohua Zhong
- National Glycoengineering Research Center and State Key Lab of Microbial Technology, Shandong University, Jinan 250100, China.
| | - Fuli Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Heng Yin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yinbo Qu
- National Glycoengineering Research Center and State Key Lab of Microbial Technology, Shandong University, Jinan 250100, China.
| | - Yuqi Qin
- National Glycoengineering Research Center and State Key Lab of Microbial Technology, Shandong University, Jinan 250100, China; Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, China.
| |
Collapse
|
10
|
Co-Cultivation of Penicillium sp. AKB-24 and Aspergillus nidulans AKB-25 as a Cost-Effective Method to Produce Cellulases for the Hydrolysis of Pearl Millet Stover. FERMENTATION-BASEL 2016. [DOI: 10.3390/fermentation2020012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|