1
|
Gonzalez-Garcia LN, Rodríguez-Guzmán AM, Vargas-León CM, Aponte S, Bonilla-Valbuena LA, Matiz-González JM, Clavijo-Vanegas AM, Duarte-Olaya GA, Aguilar-Buitrago C, Urrea DA, Duitama J, Echeverry MC. Genomic characterization of Leishmania (V.) braziliensis associated with antimony therapeutic failure and variable in vitro tolerance to amphotericin B. Sci Rep 2025; 15:12973. [PMID: 40234696 PMCID: PMC12000620 DOI: 10.1038/s41598-025-96849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
Leishmaniasis, a vector-borne disease caused by protozoa from the Leishmania genus, presents a wide range of clinical manifestations in humans and varying responses to treatments. The main clinical presentations correspond with visceral leishmaniasis (VL), cutaneous leishmaniasis (CL), and mucosal leishmaniasis (ML). Amphotericin B (AmB) is a second-line therapeutic option in all forms of leishmaniasis with treatment failure or contraindication for Antimony derivates (SbV) therapy and in geographical regions with a high prevalence of SbV-resistant parasites. This study delves into the genomic features of thirteen L. (V.) braziliensis clinical isolates from CL patients who experienced therapeutic failure to SbV treatment. The isolates were categorized based on their AmB in vitro susceptibility in the amastigote stage, the intracellular parasitic form found in the vertebrate host. The whole genome sequences of the isolates were analyzed and compared with the reference genomes of L. (V.) braziliensis (MHOM/BR/75/M2904 and M2903). The average number of heterozygous SNPs in clinical isolates is at least 75% higher than the reference genomes, and the allele dosages suggest an overall ploidy of two, except in chromosome 31. The main mutations associated with AmB resistance previously reported in experimental cell lines from L. (L.) infantum, L. (L.) mexicana, and L. (L.) donovani were not found in this study. However, there were found mutations referred by other authors in parasites resistant to antileishmanial drugs in proteins such as GP63 (leishmanolysin), NADH-ubiquinone oxidoreductase- ESSS subunit- (putative), quinonoid dihydropteridine reductase, 20s proteasome beta 7 subunit- (putative), biopterin transporter- (putative), and common hypothetical proteins. CNV analysis revealed that the isolates most tolerant to AmB present duplications of genomic regions encompassing genes involved in N-Glycan biosynthesis and biopterin/folate transport and metabolism. Therefore, the present study uncovers previously undescribed metabolic pathways that could be involved in the natural AmB tolerance in Leishmania, which need to be functionally evaluated. These findings highlight the need for further drug response studies in field isolates.
Collapse
Grants
- 71090-Contract 80740-441-2020 Ministerio de Ciencia ,Tecnología e inovación, Colombia
- 71090-Contract 80740-441-2020 Ministerio de Ciencia ,Tecnología e inovación, Colombia
- 71090-Contract 80740-441-2020 Ministerio de Ciencia ,Tecnología e inovación, Colombia
- 71090-Contract 80740-441-2020 Ministerio de Ciencia ,Tecnología e inovación, Colombia
- 71090-Contract 80740-441-2020 Ministerio de Ciencia ,Tecnología e inovación, Colombia
- 71090-Contract 80740-441-2020 Ministerio de Ciencia ,Tecnología e inovación, Colombia
- 71090-Contract 80740-441-2020 Ministerio de Ciencia ,Tecnología e inovación, Colombia
- Universidad Nacional de Colombia
- Universidad del Tolima,Colombia
- Universidad de los Andes, Colombia
Collapse
Affiliation(s)
| | | | - Carolina M Vargas-León
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia - Sede Bogotá, Bogotá, Colombia
| | - Samanda Aponte
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia - Sede Bogotá, Bogotá, Colombia
| | - Liliana A Bonilla-Valbuena
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia - Sede Bogotá, Bogotá, Colombia
| | - J Manuel Matiz-González
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia - Sede Bogotá, Bogotá, Colombia
| | - Ana M Clavijo-Vanegas
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia - Sede Bogotá, Bogotá, Colombia
| | - Germán Andrés Duarte-Olaya
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Catherine Aguilar-Buitrago
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia - Sede Bogotá, Bogotá, Colombia
| | - Daniel Alfonso Urrea
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Maria C Echeverry
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia - Sede Bogotá, Bogotá, Colombia.
- Universidad Nacional de Colombia, Of. 303-Edif 471- Cr 30 45 - 03, Bogotá, Colombia.
| |
Collapse
|
2
|
Bessa IA, D’Amato DL, C. Souza AB, Levita DP, Mello CC, da Silva AFM, dos Santos TC, Ronconi CM. Innovating Leishmaniasis Treatment: A Critical Chemist's Review of Inorganic Nanomaterials. ACS Infect Dis 2024; 10:2485-2506. [PMID: 39001837 PMCID: PMC11320585 DOI: 10.1021/acsinfecdis.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Leishmaniasis, a critical Neglected Tropical Disease caused by Leishmania protozoa, represents a significant global health risk, particularly in resource-limited regions. Conventional treatments are effective but suffer from serious limitations, such as toxicity, prolonged treatment courses, and rising drug resistance. Herein, we highlight the potential of inorganic nanomaterials as an innovative approach to enhance Leishmaniasis therapy, aligning with the One Health concept by considering these treatments' environmental, veterinary, and public health impacts. By leveraging the adjustable properties of these nanomaterials─including size, shape, and surface charge, tailored treatments for various diseases can be developed that are less harmful to the environment and nontarget species. We review recent advances in metal-, oxide-, and carbon-based nanomaterials for combating Leishmaniasis, examining their mechanisms of action and their dual use as standalone treatments or drug delivery systems. Our analysis highlights a promising yet underexplored frontier in employing these materials for more holistic and effective disease management.
Collapse
Affiliation(s)
- Isabela
A. A. Bessa
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Dayenny L. D’Amato
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Ana Beatriz C. Souza
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Daniel P. Levita
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Camille C. Mello
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Aline F. M. da Silva
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Thiago C. dos Santos
- Instituto
de Química, Universidade Federal
do Rio de Janeiro. Av. Athos da Silveira Ramos 149, CT, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Célia M. Ronconi
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| |
Collapse
|
3
|
Antileishmanial Activity and In Silico Molecular Docking Studies of Malachra alceifolia Jacq. Fractions against Leishmania mexicana Amastigotes. Trop Med Infect Dis 2023; 8:tropicalmed8020115. [PMID: 36828531 PMCID: PMC9960462 DOI: 10.3390/tropicalmed8020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Malachra alceifolia Jacq. (family Malvaceae), known as "malva," is a medicinal plant used as a traditional therapy in many regions of America, Africa and Asia. Traditionally, this plant is used in the form of extracts, powder and paste by populations for treating fever, stomachache, inflammation, and parasites. However, the ethnopharmacological validation of M. alceifolia has been scarcely researched. This study showed that the chloroform fraction (MA-IC) and subfraction (MA-24F) of the leaves of M. alceifolia exhibited a potential antileishmanial activity against axenic amastigotes of Leishmania mexicana pifanoi (MHOM/VE/60/Ltrod) and had high and moderate cytotoxic effects on the viability and morphology of macrophages RAW 264.7. This study reports, for the first time, possible terpenoid metabolites and derivatives present in M. alceifolia with activity against some biosynthetic pathways in L. mexicana amastigotes. The compounds from the subfractions MA-24F were highly active and were analyzed by gas chromatography-mass spectrometry (GC-MS) and by a molecular docking study in L. mexicana target protein. This study demonstrates the potential modes of interaction and the theoretical affinity energy of the metabolites episwertenol, α-amyrin and methyl commate A, which are present in the active fraction MA-24F, at allosteric sites of the pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase, triose phosphate isomerase, aldolase, phosphoglucose isomerase, transketolase, arginase and cysteine peptidases A, target proteins in some vital biosynthetic pathways were responsible for the survival of L. mexicana. Some phytoconstituents of M. alceifolia can be used for the search for potential new drugs and molecular targets for treating leishmaniases and infectious diseases. Furthermore, contributions to research and the validation and conservation of traditional knowledge of medicinal plants are needed globally.
Collapse
|
4
|
Synthesis and Biological Evaluation of Amphotericin B Formulations Based on Organic Salts and Ionic Liquids against Leishmania infantum. Antibiotics (Basel) 2022; 11:antibiotics11121841. [PMID: 36551498 PMCID: PMC9774544 DOI: 10.3390/antibiotics11121841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Nowadays, organic salts and ionic liquids (OSILs) containing active pharmaceutical ingredients (APIs) are being explored as drug delivery systems in modern therapies (OSILs-API). In that sense, this work is focused on the development of novel OSILs-API based on amphotericin B through an innovative procedure and the evaluation of the respective biological activity against Leishmania infantum. Several ammonium, methylimidazolium, pyridinium and phosphonium organic cations combined with amphotericin B as anion were synthesized in moderate to high yields and high purities by the water-reduced buffer neutralization method. All prepared compounds were characterized to confirm the desired chemical structure and the specific optical rotation ([α]D25) was also determined. The biological assays performed on L. infantum promastigotes showed increased activity against this parasitic disease when compared with the starting chloride forms and amphotericin B alone, highlighting [P6,6,6,14][AmB] as the most promising formulation. Possible synergism in the antiprotozoal activity was also evaluated for [P6,6,6,14][AmB], since it was proven to be the compound with the highest toxicity. This work reported a simple synthetic method, which can be applied to prepare other organic salts based on molecules containing fragile chemical groups, demonstrating the potential of these OSILs-AmB as possible agents against leishmaniasis.
Collapse
|
5
|
Kumar P, Kumar P, Singh N, Khajuria S, Patel R, Rajana VK, Mandal D, Velayutham R. Limitations of current chemotherapy and future of nanoformulation-based AmB delivery for visceral leishmaniasis-An updated review. Front Bioeng Biotechnol 2022; 10:1016925. [PMID: 36588956 PMCID: PMC9794769 DOI: 10.3389/fbioe.2022.1016925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
Visceral leishmaniasis (VL) is the most lethal of all leishmaniasis diseasesand the second most common parasiticdisease after malaria and,still, categorized as a neglected tropical disease (NTD). According to the latest WHO study, >20 Leishmania species spread 0.7-1.0 million new cases of leishmaniasis each year. VL is caused by the genus, Leishmania donovani (LD), which affects between 50,000 and 90,000 people worldwide each year. Lack of new drug development, increasing drug resistance, toxicity and high cost even with the first line of treatmentof Amphotericin B (AmB), demands new formulation for treatment of VLFurther the lack of a vaccine, allowedthe researchers to develop nanofomulation-based AmB for improved delivery. The limitation of AmB is its kidney and liver toxicity which forced the development of costly liposomal AmB (AmBisome) nanoformulation. Success of AmBisome have inspired and attracted a wide range of AmB nanoformulations ranging from polymeric, solid lipid, liposomal/micellar, metallic, macrophage receptor-targetednanoparticles (NP) and even with sophisticated carbon/quantum dot-based AmBnano delivery systems. Notably, NP-based AmB delivery has shown increased efficacy due to increased uptake, on-target delivery and synergistic impact of NP and AmB. In this review, we have discussed the different forms of leishmaniasis disease and their current treatment options with limitations. The discovery, mechanism of action of AmB, clinical status of AmB and improvement with AmBisome over fungizone (AmB-deoxycholate)for VL treatment was further discussed. At last, the development of various AmB nanoformulation was discussed along with its adavantages over traditional chemotherapy-based delivery.
Collapse
Affiliation(s)
- Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Pawan Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Nidhi Singh
- National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Salil Khajuria
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Rahul Patel
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Vinod Kumar Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India,*Correspondence: Ravichandiran Velayutham, ; Debabrata Mandal,
| | - Ravichandiran Velayutham
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India,National Institute of Pharmaceutical Education and Research, Kolkata, India,*Correspondence: Ravichandiran Velayutham, ; Debabrata Mandal,
| |
Collapse
|
6
|
Alpizar-Sosa EA, Ithnin NRB, Wei W, Pountain AW, Weidt SK, Donachie AM, Ritchie R, Dickie EA, Burchmore RJS, Denny PW, Barrett MP. Amphotericin B resistance in Leishmania mexicana: Alterations to sterol metabolism and oxidative stress response. PLoS Negl Trop Dis 2022; 16:e0010779. [PMID: 36170238 PMCID: PMC9581426 DOI: 10.1371/journal.pntd.0010779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/19/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Amphotericin B is increasingly used in treatment of leishmaniasis. Here, fourteen independent lines of Leishmania mexicana and one L. infantum line were selected for resistance to either amphotericin B or the related polyene antimicrobial, nystatin. Sterol profiling revealed that, in each resistant line, the predominant wild-type sterol, ergosta-5,7,24-trienol, was replaced by other sterol intermediates. Broadly, two different profiles emerged among the resistant lines. Whole genome sequencing then showed that these distinct profiles were due either to mutations in the sterol methyl transferase (C24SMT) gene locus or the sterol C5 desaturase (C5DS) gene. In three lines an additional deletion of the miltefosine transporter gene was found. Differences in sensitivity to amphotericin B were apparent, depending on whether cells were grown in HOMEM, supplemented with foetal bovine serum, or a serum free defined medium (DM). Metabolomic analysis after exposure to AmB showed that a large increase in glucose flux via the pentose phosphate pathway preceded cell death in cells sustained in HOMEM but not DM, indicating the oxidative stress was more significantly induced under HOMEM conditions. Several of the lines were tested for their ability to infect macrophages and replicate as amastigote forms, alongside their ability to establish infections in mice. While several AmB resistant lines showed reduced virulence, at least two lines displayed heightened virulence in mice whilst retaining their resistance phenotype, emphasising the risks of resistance emerging to this critical drug.
Collapse
Affiliation(s)
- Edubiel A. Alpizar-Sosa
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Nur Raihana Binti Ithnin
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Medical Microbiology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wenbin Wei
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Andrew W. Pountain
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute for Computational Medicine, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Stefan K. Weidt
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Anne M. Donachie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ryan Ritchie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Emily A. Dickie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Richard J. S. Burchmore
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Paul W. Denny
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Kumari D, Perveen S, Sharma R, Singh K. Advancement in leishmaniasis diagnosis and therapeutics: An update. Eur J Pharmacol 2021; 910:174436. [PMID: 34428435 DOI: 10.1016/j.ejphar.2021.174436] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is regarded as a neglected tropical disease by World Health Organization (WHO) and is ranked next to malaria as the deadliest protozoan disease. The primary causative agents of the disease comprise of diverse leishmanial species sharing clinical features ranging from skin abrasions to lethal infection in the visceral organs. As several Leishmania species are involved in infection, the role of accurate diagnosis becomes pivotal in adding new dimensions to anti-leishmanial therapy. Diagnostic methods must be fast, reliable, easy to perform, highly sensitive, and specific to differentiate among similar parasitic diseases. Herein, we present the conventional and recent approaches impended for the disease diagnosis and their sensitivity, specificity, and clinical application in parasite detection. Furthermore, we have also elaborated various new methods to cure leishmaniasis, which include host-directed therapies, drug repurposing, nanotechnology, and combinational therapy. This review addresses novel techniques and innovations in leishmaniasis, which can aid in unraveling new strategies to fight against the deadly infection.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Crepaldi F, de Toledo JS, do Carmo AO, Ferreira Marques Machado L, de Brito DDV, Serufo AV, Almeida APM, de Oliveira LG, Ricotta TQN, Moreira DDS, Murta SMF, Diniz AB, Menezes GB, López-Gonzálvez Á, Barbas C, Fernandes AP. Mapping Alterations Induced by Long-Term Axenic Cultivation of Leishmania amazonensis Promastigotes With a Multiplatform Metabolomic Fingerprint Approach. Front Cell Infect Microbiol 2019; 9:403. [PMID: 31867285 PMCID: PMC6904349 DOI: 10.3389/fcimb.2019.00403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022] Open
Abstract
Leishmaniases are widespread neglected diseases with an incidence of 1.6 million new cases and 40 thousand deaths per year. Leishmania parasites may show distinct, species-specific patterns of virulence that lead to different clinical manifestations. It is well known that successive in vitro passages (SIVP) lead to the attenuation of virulence, but neither the metabolism nor the pathways involved in these processes are well understood. Herein, promastigotes of a virulent L. amazonensis strain recently isolated from mice was compared to SIVP derived and attenuated promastigotes, submitted to 10, 40, and 60 axenic passages and named R10, R40, and R60, respectively. In vitro assays and in vivo tests were performed to characterize and confirmed the attenuation profiles. A metabolomic fingerprint comparison of R0, R10, and R60 was performed by means of capillary electrophoresis, liquid and gas chromatography coupled to mass spectrometry. To validate the metabolomic data, qPCR for selected loci, flow cytometry to measure aPS exposure, sensitivity to antimony tartrate and ROS production assays were conducted. The 65 identified metabolites were clustered in biochemical categories and mapped in eight metabolic pathways: ABC transporters; fatty acid biosynthesis; glycine, serine and threonine metabolism; β-alanine metabolism; glutathione metabolism; oxidative phosphorylation; glycerophospholipid metabolism and lysine degradation. The obtained metabolomic data correlated with previous proteomic findings of the SVIP parasites and the gene expression of 13 selected targets. Late SIVP cultures were more sensitive to SbIII produced more ROS and exposed less phosphatidylserine in their surface. The correspondent pathways were connected to build a biochemical map of the most significant alterations involved with the process of attenuation of L. amazonensis. Overall, the reported data pointed out to a very dynamic and continuous metabolic reprogramming process, accompanied by changes in energetic, lipid and redox metabolisms, membrane remodeling and reshaping of parasite-host cells interactions, causing impacts in chemotaxis, host inflammatory responses and infectivity at the early stages of infection.
Collapse
Affiliation(s)
- Frederico Crepaldi
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Juliano Simões de Toledo
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Anderson Oliveira do Carmo
- Laboratory of Biotechnology and Molecular Markers, General Biology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Daniela Diniz Viana de Brito
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Angela Vieira Serufo
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Paula Martins Almeida
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Leandro Gonzaga de Oliveira
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tiago Queiroga Nery Ricotta
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Ariane Barros Diniz
- Morphology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo Batista Menezes
- Morphology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ángeles López-Gonzálvez
- Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Ana Paula Fernandes
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Repurposing Butenafine as An Oral Nanomedicine for Visceral Leishmaniasis. Pharmaceutics 2019; 11:pharmaceutics11070353. [PMID: 31330776 PMCID: PMC6680852 DOI: 10.3390/pharmaceutics11070353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/28/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease affecting more than 12 million people worldwide, which in its visceral clinical form (VL) is characterised by the accumulation of parasites in the liver and spleen, and can lead to death if not treated. Available treatments are not well tolerated due to severe adverse effects, need for parenteral administration and patient hospitalisation, and long duration of expensive treatments. These treatment realities justify the search for new effective drugs, repurposing existing licensed drugs towards safer and non-invasive cost-effective medicines for VL. In this work, we provide proof of concept studies of butenafine and butenafine self-nanoemulsifying drug delivery systems (B-SNEDDS) against Leishmania infantum. Liquid B-SNEDDS were optimised using design of experiments, and then were spray-dried onto porous colloidal silica carriers to produce solid-B-SNEDDS with enhanced flow properties and drug stability. Optimal liquid B-SNEDDS consisted of Butenafine:Capryol 90:Peceol:Labrasol (3:49.5:24.2:23.3 w/w), which were then sprayed-dried with Aerosil 200 with a final 1:2 (Aerosil:liquid B-SNEDDS w/w) ratio. Spray-dried particles exhibited near-maximal drug loading, while maintaining excellent powder flow properties (angle of repose <10°) and sustained release in acidic gastrointestinal media. Solid-B-SNEDDS demonstrated greater selectivity index against promastigotes and L. infantum-infected amastigotes than butenafine alone. Developed oral solid nanomedicines enable the non-invasive and safe administration of butenafine as a cost-effective and readily scalable repurposed medicine for VL.
Collapse
|
10
|
Bremer Hinckel BC, Marlais T, Airs S, Bhattacharyya T, Imamura H, Dujardin JC, El-Safi S, Singh OP, Sundar S, Falconar AK, Andersson B, Litvinov S, Miles MA, Mertens P. Refining wet lab experiments with in silico searches: A rational quest for diagnostic peptides in visceral leishmaniasis. PLoS Negl Trop Dis 2019; 13:e0007353. [PMID: 31059497 PMCID: PMC6522066 DOI: 10.1371/journal.pntd.0007353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 05/16/2019] [Accepted: 04/01/2019] [Indexed: 11/19/2022] Open
Abstract
Background The search for diagnostic biomarkers has been profiting from a growing number of high quality sequenced genomes and freely available bioinformatic tools. These can be combined with wet lab experiments for a rational search. Improved, point-of-care diagnostic tests for visceral leishmaniasis (VL), early case detection and surveillance are required. Previous investigations demonstrated the potential of IgG1 as a biomarker for monitoring clinical status in rapid diagnostic tests (RDTs), although using a crude lysate antigen (CLA) as capturing antigen. Replacing the CLA by specific antigens would lead to more robust RDTs. Methodology Immunoblots revealed L. donovani protein bands detected by IgG1 from VL patients. Upon confident identification of these antigens by mass spectrometry (MS), we searched for evidence of constitutive protein expression and presence of antigenic domains or high accessibility to B-cells. Selected candidates had their linear epitopes mapped with in silico algorithms. Multiple high-scoring predicted epitopes from the shortlisted proteins were screened in peptide arrays. The most promising candidate was tested in RDT prototypes using VL and nonendemic healthy control (NEHC) patient sera. Results Over 90% of the proteins identified from the immunoblots did not satisfy the selection criteria and were excluded from the downstream epitope mapping. Screening of predicted epitope peptides from the shortlisted proteins identified the most reactive, for which the sensitivity for IgG1 was 84% (95% CI 60—97%) with Sudanese VL sera on RDT prototypes. None of the sera from NEHCs were positive. Conclusion We employed in silico searches to reduce drastically the output of wet lab experiments, focusing on promising candidates containing selected protein features. By predicting epitopes in silico we screened a large number of peptides using arrays, identifying the most promising one, for which IgG1 sensitivity and specificity, with limited sample size, supported this proof of concept strategy for diagnostics discovery, which can be applied to the development of more robust IgG1 RDTs for monitoring clinical status in VL. Visceral leishmaniasis (VL) is a neglected tropical disease caused by protozoan parasites of the Leishmania donovani complex. Without treatment, VL is fatal. Although diagnostic techniques, mainly based on the detection of anti-Leishmania antibodies are available, invasive procedures such as microscopy from spleen or bone marrow aspirates are still required for the diagnosis of seronegative VL suspects, for the detection of recurrent cases and to confirm cure after successful treatment. Previous investigations showed the potential of IgG1 as a biomarker of post-chemotherapeutic relapse for VL in rapid diagnostic tests (RDTs) sensitised with crude lysate antigen (CLA). Here we employed in silico tools to search for desired protein features in a large number of L. donovani antigens detected by human IgG1 in western blots. We then employed prediction algorithms to profile epitopes from the shortlisted proteins. We screened a panel of high-scoring peptides in a high-throughput manner using arrays, with low reagent consumption. The most reactive peptide was adapted to RDTs, showing promising results of both sensitivity and specificity. This peptide has the potential of replacing the CLAs in IgG1 RDTs. Thus we believe that in silico tools can be used to optimise wet lab experiments for a rational search of biomarkers.
Collapse
Affiliation(s)
- Bruno Cesar Bremer Hinckel
- Coris BioConcept, Gembloux, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- * E-mail:
| | - Tegwen Marlais
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Stephanie Airs
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Hideo Imamura
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Sayda El-Safi
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Om Prakash Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | - Bjorn Andersson
- Department of Cell- and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
11
|
Terra R, Alves PJF, Lima AKC, Gomes SMR, Rodrigues LS, Salerno VP, Da-Silva SAG, Dutra PML. Immunomodulation From Moderate Exercise Promotes Control of Experimental Cutaneous Leishmaniasis. Front Cell Infect Microbiol 2019; 9:115. [PMID: 31131262 PMCID: PMC6510011 DOI: 10.3389/fcimb.2019.00115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Physical exercise has been described as an important tool in the prevention and treatment of numerous diseases as it promotes a range of responses and adaptations in several biological systems, including the immune system. Studies on the effect of exercise on the immune system could play a critical role in improving public health. Current literature suggests that moderate intensity exercise can modulate the Th1/Th2 dichotomy directing the immune system to a Th1 cellular immune response, which favors the resolution of infections caused by intracellular microorganisms. Leishmaniasis is a group of diseases presenting a wide spectrum of clinical manifestations that range from self-limiting lesions to visceral injuries whose severity can lead to death. The etiological agents responsible for this group of diseases are protozoa of the genus Leishmania. Infections by the parasite Leishmania major in mice (Balb/c) provide a prototype model for the polarization of CD4+ T cell responses of both Th1 (resistance) or Th2 (susceptibility), which determines the progression of infections. The aim of this study was to evaluate the effect of exercise on the development of L. major experimental infections by scanning the pattern of immune response caused by exercise. Groups of Balb/c mice infected with L. major were divided into groups that preformed a physical exercise of swimming three times a week or were sedentary along with treatment or not with the reference drug, meglumine antimoniate. Animals in groups submitted to physical exercise did not appear to develop lesions and presented a significantly lower parasite load independent of drug treatment. They also showed a positive delayed hypersensitivity response to a specific Leishmania antigen compared to control animals. The IFN-γ/IL-4 and IFN-γ/IL10 ratios in trained animals were clearly tilted to a Th1 response in lymph node cells. These data suggest that moderate intensity exercise is able to modulate the Th1 response that provides a protective effect against the development of leishmanial lesions.
Collapse
Affiliation(s)
- Rodrigo Terra
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro J. F. Alves
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana K. C. Lima
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Shayane M. R. Gomes
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana S. Rodrigues
- Discipline of General Pathology, Department of Pathology and Laboratories, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Verônica P. Salerno
- Laboratory of Exercise Biochemistry and Molecular Motors, School of Physical Education and Sports, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia A. G. Da-Silva
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia M. L. Dutra
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Hameury S, Borderie L, Monneuse JM, Skorski G, Pradines D. Prediction of skin anti-aging clinical benefits of an association of ingredients from marine and maritime origins: Ex vivo evaluation using a label-free quantitative proteomic and customized data processing approach. J Cosmet Dermatol 2019; 18:355-370. [PMID: 29797450 DOI: 10.1111/jocd.12528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND The application of ingredients from marine and maritime origins is increasingly common in skin care products, driven by consumer expectations for natural ingredients. However, these ingredients are typically studied for a few isolated in vitro activities. OBJECTIVES The purpose of this study was to carry out a comprehensive evaluation of the activity on the skin of an association of ingredients from marine and maritime origins using label-free quantitative proteomic analysis, in order to predict the clinical benefits if used in a skin care product. METHODS An aqueous gel containing 6.1% of ingredients from marine and maritime origins (amino acid-enriched giant kelp extract, trace element-enriched seawater, dedifferentiated sea fennel cells) was topically applied on human skin explants. The skin explants' proteome was analyzed in a label-free manner by high-performance liquid nano-chromatography coupled with tandem mass spectrometry. A specific data processing pipeline (CORAVALID) providing an objective and comprehensive interpretation of the statistically relevant biological activities processed the results. RESULTS Compared to untreated skin explants, 64 proteins were significantly regulated by the gel treatment (q-value ≤ 0.05). Computer data processing revealed an activity of the ingredients on the epidermis and the dermis. These significantly regulated proteins are involved in gene expression, cell survival and metabolism, inflammatory processes, dermal extracellular matrix synthesis, melanogenesis and keratinocyte proliferation, migration, and differentiation. CONCLUSIONS These results suggest that the tested ingredients could help to preserve a healthy epidermis and dermis, and possibly to prevent the visible signs of skin aging.
Collapse
Affiliation(s)
- Sebastien Hameury
- Research & Development Department, Laboratoires B.L.C. Thalgo Cosmetic S.A., Roquebrune-sur-Argens, France
| | | | | | | | - Dominique Pradines
- Research & Development Department, Laboratoires B.L.C. Thalgo Cosmetic S.A., Roquebrune-sur-Argens, France
| |
Collapse
|
13
|
Brilhante RSN, Pereira VS, Oliveira JS, Lopes RGP, Rodrigues AM, Camargo ZP, Pereira-Neto WA, Castelo-Branco DSCM, Cordeiro RA, Sidrim JJC, Rocha MFG. Pentamidine inhibits the growth of Sporothrix schenckii complex and exhibits synergism with antifungal agents. Future Microbiol 2018; 13:1129-1140. [DOI: 10.2217/fmb-2018-0070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: The purpose of this study was to evaluate the effects of the antileishmanials meglumine antimoniate and pentamidine against Sporothrix schenckii complex. Materials & methods: The antifungal activity of the two antileishmanials was assessed by broth microdilution. The interaction between the antileishmanials and antifungal drugs (amphotericin B, itraconazole and terbinafine) was evaluated by the checkerboard assay. The effect of prior exposure of Sporothrix spp. yeast cells to antileishmanials was evaluated by broth microdilution. Results: Only pentamidine showed antifungal activity against Sporothrix spp. Synergistic interactions were observed between pentamidine and the antifungals. Also, the pre-exposure to meglumine antimoniate reduced the susceptibility of Sardinella brasiliensis and S. schenckii sensu stricto to amphotericin B and itraconazole. Conclusion: Pentamidine showed antifungal activity against Sporothrix spp., indicating it is a possible therapeutic alternative for the treatment of sporotrichosis.
Collapse
Affiliation(s)
- Raimunda SN Brilhante
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology & Legal Medicine, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 – Rodolfo Teófilo – CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Vandbergue S Pereira
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology & Legal Medicine, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 – Rodolfo Teófilo – CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Jonathas S Oliveira
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology & Legal Medicine, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 – Rodolfo Teófilo – CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Raissa GP Lopes
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology & Legal Medicine, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 – Rodolfo Teófilo – CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Anderson M Rodrigues
- Cellular Biology Division, Department of Microbiology, Immunology & Parasitology, Federal University of São Paulo, Rua Botucatu, 862, 6th floor, Medical Sciences Building, CEP: 04023-062, São Paulo, São Paulo, Brazil
| | - Zoilo P Camargo
- Cellular Biology Division, Department of Microbiology, Immunology & Parasitology, Federal University of São Paulo, Rua Botucatu, 862, 6th floor, Medical Sciences Building, CEP: 04023-062, São Paulo, São Paulo, Brazil
| | - Waldemiro A Pereira-Neto
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology & Legal Medicine, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 – Rodolfo Teófilo – CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Débora SCM Castelo-Branco
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology & Legal Medicine, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 – Rodolfo Teófilo – CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Rossana A Cordeiro
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology & Legal Medicine, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 – Rodolfo Teófilo – CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - José JC Sidrim
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology & Legal Medicine, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 – Rodolfo Teófilo – CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Marcos FG Rocha
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology & Legal Medicine, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 – Rodolfo Teófilo – CEP: 60430-275, Fortaleza, Ceará, Brazil
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Campus do Itaperi, CEP: 60714-903, Fortaleza, Ceará, Brazil
| |
Collapse
|
14
|
Patino LH, Ramírez JD. RNA-seq in kinetoplastids: A powerful tool for the understanding of the biology and host-pathogen interactions. INFECTION GENETICS AND EVOLUTION 2017; 49:273-282. [PMID: 28179142 DOI: 10.1016/j.meegid.2017.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 12/31/2022]
Abstract
The kinetoplastids include a large number of parasites responsible for serious diseases in humans and animals (Leishmania and Trypanosoma brucei) considered endemic in several regions of the world. These parasites are characterized by digenetic life cycles that undergo morphological and genetic changes that allow them to adapt to different microenvironments on their vertebrates and invertebrates hosts. Recent advances in ´omics´ technology, specifically transcriptomics have allowed to reveal aspects associated with such molecular changes. So far, different techniques have been used to evaluate the gene expression profile during the various stages of the life cycle of these parasites and during the host-parasite interactions. However, some of them have serious drawbacks that limit the precise study and full understanding of their transcriptomes. Therefore, recently has been implemented the latest technology (RNA-seq), which overcomes the drawbacks of traditional methods. In this review, studies that so far have used RNA-seq are presented and allowed to expand our knowledge regarding the biology of these parasites and their interactions with their hosts.
Collapse
Affiliation(s)
- Luz Helena Patino
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Carrera 24# 63C-69, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Carrera 24# 63C-69, Bogotá, Colombia.
| |
Collapse
|
15
|
Fernandez-Prada C, Vincent IM, Brotherton MC, Roberts M, Roy G, Rivas L, Leprohon P, Smith TK, Ouellette M. Different Mutations in a P-type ATPase Transporter in Leishmania Parasites are Associated with Cross-resistance to Two Leading Drugs by Distinct Mechanisms. PLoS Negl Trop Dis 2016; 10:e0005171. [PMID: 27911896 PMCID: PMC5135041 DOI: 10.1371/journal.pntd.0005171] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022] Open
Abstract
Leishmania infantum is an etiological agent of the life-threatening visceral form of leishmaniasis. Liposomal amphotericin B (AmB) followed by a short administration of miltefosine (MF) is a drug combination effective for treating visceral leishmaniasis in endemic regions of India. Resistance to MF can be due to point mutations in the miltefosine transporter (MT). Here we show that mutations in MT are also observed in Leishmania AmB-resistant mutants. The MF-induced MT mutations, but not the AmB induced mutations in MT, alter the translocation/uptake of MF. Moreover, mutations in the MT selected by AmB or MF have a major impact on lipid species that is linked to cross-resistance between both drugs. These alterations include changes of specific phospholipids, some of which are enriched with cyclopropanated fatty acids, as well as an increase in inositolphosphoceramide species. Collectively these results provide evidence of the risk of cross-resistance emergence derived from current AmB-MF sequential or co-treatments for visceral leishmaniasis.
Collapse
Affiliation(s)
- Christopher Fernandez-Prada
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Isabel M. Vincent
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marie-Christine Brotherton
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Mathew Roberts
- Biomedical Sciences Research Complex (BSRC), Schools of Biology & Chemistry, The North Haugh, The University of St. Andrews, United Kingdom
| | - Gaétan Roy
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Luis Rivas
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Terry K. Smith
- Biomedical Sciences Research Complex (BSRC), Schools of Biology & Chemistry, The North Haugh, The University of St. Andrews, United Kingdom
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| |
Collapse
|
16
|
Kawakami NY, Tomiotto-Pellissier F, Cataneo AHD, Orsini TM, Thomazelli APFDS, Panis C, Conchon-Costa I, Pavanelli WR. Sodium nitroprusside has leishmanicidal activity independent of iNOS. Rev Soc Bras Med Trop 2016; 49:68-73. [DOI: 10.1590/0037-8682-0266-2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/04/2015] [Indexed: 12/27/2022] Open
|
17
|
Simão AMS, Bolean M, Cury TAC, Stabeli RG, Itri R, Ciancaglini P. Liposomal systems as carriers for bioactive compounds. Biophys Rev 2015; 7:391-397. [PMID: 28510100 DOI: 10.1007/s12551-015-0180-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/22/2015] [Indexed: 11/30/2022] Open
Abstract
Since the revolutionary discovery that phospholipids can form closed bilayered structures in aqueous systems, the study of liposomes has become a very interesting area of research. The versatility and amazing biocompatibility of liposomes has resulted in their wide-spread use in many scientific fields, and many of their applications, especially in medicine, have yielded breakthroughs in recent decades. Specifically, their easy preparation and various structural aspects have given rise to broadly usable methodologies to internalize different compounds, with either lipophilic or hydrophilic properties. The study of compounds with potential biotechnological application(s) is generally related to evaluation and risk assessment of the possible cytotoxic or therapeutic effects of the compound under study. In most cases, undesirable side-effects are associated with an interaction of the liposome with the cell membrane and/or its absorption and subsequent interaction with a cellular biomolecule. Liposomal carrier systems have an unprecedented potential for delivering bioactive substances to specific molecular targets due to their biocompatibility, biodegradability and low toxicity. Liposomes are therefore considered to be an invaluable asset in applied biotechnology studies due to their potential for interaction with both hydrophilic and lipophilic compounds.
Collapse
Affiliation(s)
- Ana Maria Sper Simão
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Maytê Bolean
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Thuanny Alexandra Campos Cury
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rodrigo Guerino Stabeli
- Centro de Nanotecnologia Aplicada a Saúde-Nanosus, Presidência da Fiocruz, Rua Prof. Algacyr Munhoz Mader, 3775, 81350-010, Curitiba, PR, Brazil.,Brasil e Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - Rosangela Itri
- Depto. Física Aplicada, Instituto de Física, IF-USP, São Paulo, SP, Brazil
| | - Pietro Ciancaglini
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
18
|
Chen D, Liu X, Yang Y, Yang H, Lu P. Systematic synergy modeling: understanding drug synergy from a systems biology perspective. BMC SYSTEMS BIOLOGY 2015; 9:56. [PMID: 26377814 PMCID: PMC4574089 DOI: 10.1186/s12918-015-0202-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/20/2015] [Indexed: 12/24/2022]
Abstract
Owing to drug synergy effects, drug combinations have become a new trend in combating complex diseases like cancer, HIV and cardiovascular diseases. However, conventional synergy quantification methods often depend on experimental dose–response data which are quite resource-demanding. In addition, these methods are unable to interpret the explicit synergy mechanism. In this review, we give representative examples of how systems biology modeling offers strategies toward better understanding of drug synergy, including the protein-protein interaction (PPI) network-based methods, pathway dynamic simulations, synergy network motif recognitions, integrative drug feature calculations, and “omic”-supported analyses. Although partially successful in drug synergy exploration and interpretation, more efforts should be put on a holistic understanding of drug-disease interactions, considering integrative pharmacology and toxicology factors. With a comprehensive and deep insight into the mechanism of drug synergy, systems biology opens a novel avenue for rational design of effective drug combinations.
Collapse
Affiliation(s)
- Di Chen
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Xi Liu
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yiping Yang
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Peng Lu
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
19
|
de Mattos CB, Argenta DF, Melchiades GDL, Sechini Cordeiro MN, Tonini ML, Moraes MH, Weber TB, Roman SS, Nunes RJ, Teixeira HF, Steindel M, Koester LS. Nanoemulsions containing a synthetic chalcone as an alternative for treating cutaneous leshmaniasis: optimization using a full factorial design. Int J Nanomedicine 2015; 10:5529-42. [PMID: 26366075 PMCID: PMC4562752 DOI: 10.2147/ijn.s83929] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nanoemulsions are drug delivery systems that may increase the penetration of lipophilic compounds through the skin, enhancing their topical effect. Chalcones are compounds of low water solubility that have been described as promising molecules for the treatment of cutaneous leishmaniasis (CL). In this context, the aim of this work was to optimize the development of a nanoemulsion containing a synthetic chalcone for CL treatment using a 2(2) full factorial design. The formulations were prepared by spontaneous emulsification and the experimental design studied the influence of two independent variables (type of surfactant - soybean lecithin or sorbitan monooleate and type of co-surfactants - polysorbate 20 or polysorbate 80) on the physicochemical characteristics of the nanoemulsions, as well as on the skin permeation/retention of the synthetic chalcone in porcine skin. In order to evaluate the stability of the systems, the antileishmanial assay was performed against Leishmania amazonensis 24 hours and 60 days after the preparation of the nanoemulsions. The formulation composed of soybean lecithin and polysorbate 20 presented suitable physicochemical characteristics (droplet size 171.9 nm; polydispersity index 0.14; zeta potential -39.43 mV; pH 5.16; and viscosity 2.00 cP), drug content (91.09%) and the highest retention in dermis (3.03 µg·g(-1)) - the main response of interest - confirmed by confocal microscopy. This formulation also presented better stability of leishmanicidal activity in vitro against L. amazonensis amastigote forms (half maximal inhibitory concentration value 0.32±0.05 µM), which confirmed the potential of the nanoemulsion soybean lecithin and polysorbate 20 for CL treatment.
Collapse
Affiliation(s)
- Cristiane Bastos de Mattos
- Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Débora Fretes Argenta
- Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriela de Lima Melchiades
- Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Maiko Luis Tonini
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Milene Hoehr Moraes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Tanara Beatriz Weber
- Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Rio Grande do Sul, Brazil
| | - Silvane Souza Roman
- Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Rio Grande do Sul, Brazil
| | - Ricardo José Nunes
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Helder Ferreira Teixeira
- Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mário Steindel
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Letícia Scherer Koester
- Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
20
|
Passalacqua TG, Torres FA, Nogueira CT, de Almeida L, Del Cistia ML, dos Santos MB, Regasini LO, Graminha MA, Marchetto R, Zottis A. The 2′,4′-dihydroxychalcone could be explored to develop new inhibitors against the glycerol-3-phosphate dehydrogenase from Leishmania species. Bioorg Med Chem Lett 2015; 25:3564-8. [DOI: 10.1016/j.bmcl.2015.06.085] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 02/05/2023]
|
21
|
Weatherhead JE, Woc-Colburn L. Therapeutic options and vaccine development in the treatment of leishmaniasis. World J Pharmacol 2015; 4:210-218. [DOI: 10.5497/wjp.v4.i2.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/28/2015] [Accepted: 04/02/2015] [Indexed: 02/07/2023] Open
Abstract
Early treatment of leishmaniasis is critical to achieve cure, prevent psychological and social distress, and prevent transmission of disease. Untreated Leishmaniasis-cutaneous leishmaniasis, mucocutaneous leishmaniasis and visceral leishmaniasis - results in disfiguring scars and high rates of morbidity and mortality in highly endemic regions of the world. However, cure rates with available therapeutics are limited due to cost, therapeutic toxicity and the growing rate of resistance. New therapeutic targets for medications and vaccine development are under investigation to provide improved healing and efficacy for the treatment of Leishmania spp.
Collapse
|
22
|
Cantacessi C, Dantas-Torres F, Nolan MJ, Otranto D. The past, present, and future of Leishmania genomics and transcriptomics. Trends Parasitol 2015; 31:100-8. [PMID: 25638444 PMCID: PMC4356521 DOI: 10.1016/j.pt.2014.12.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 01/31/2023]
Abstract
It has been nearly 10 years since the completion of the first entire genome sequence of a Leishmania parasite. Genomic and transcriptomic analyses have advanced our understanding of the biology of Leishmania, and shed new light on the complex interactions occurring within the parasite-host-vector triangle. Here, we review these advances and examine potential avenues for translation of these discoveries into treatment and control programs. In addition, we argue for a strong need to explore how disease in dogs relates to that in humans, and how an improved understanding in line with the 'One Health' concept may open new avenues for the control of these devastating diseases.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | - Filipe Dantas-Torres
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fiocruz-PE, Brazil; Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy
| | - Matthew J Nolan
- Royal Veterinary College, University of London, North Mymms, UK
| | - Domenico Otranto
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy
| |
Collapse
|
23
|
Mandal G, Mandal S, Sharma M, Charret KS, Papadopoulou B, Bhattacharjee H, Mukhopadhyay R. Species-specific antimonial sensitivity in Leishmania is driven by post-transcriptional regulation of AQP1. PLoS Negl Trop Dis 2015; 9:e0003500. [PMID: 25714343 PMCID: PMC4340957 DOI: 10.1371/journal.pntd.0003500] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/28/2014] [Indexed: 11/26/2022] Open
Abstract
Leishmania is a digenetic protozoan parasite causing leishmaniasis in humans. The different clinical forms of leishmaniasis are caused by more than twenty species of Leishmania that are transmitted by nearly thirty species of phlebotomine sand flies. Pentavalent antimonials (such as Pentostam or Glucantime) are the first line drugs for treating leishmaniasis. Recent studies suggest that pentavalent antimony (Sb(V)) acts as a pro-drug, which is converted to the more active trivalent form (Sb(III)). However, sensitivity to trivalent antimony varies among different Leishmania species. In general, Leishmania species causing cutaneous leishmaniasis (CL) are more sensitive to Sb(III) than the species responsible for visceral leishmaniasis (VL). Leishmania aquaglyceroporin (AQP1) facilitates the adventitious passage of antimonite down a concentration gradient. In this study, we show that Leishmania species causing CL accumulate more antimonite, and therefore exhibit higher sensitivity to antimonials, than the species responsible for VL. This species-specific differential sensitivity to antimonite is directly proportional to the expression levels of AQP1 mRNA. We show that the stability of AQP1 mRNA in different Leishmania species is regulated by their respective 3’-untranslated regions. The differential regulation of AQP1 mRNA explains the distinct antimonial sensitivity of each species. The degree of response to antimonial drugs varies widely between species and even among strains of the same species of the protozoan parasite Leishmania. However, the molecular mechanism(s) is unknown. In this study, we show that Leishmania aquaglyceroporin AQP1 drives this species-specific antimonial resistance. Aquaglyceroporins are channel proteins that facilitate the passage of small uncharged molecules, such as glycerol and water, across the biological membranes. AQP1 helps the parasite cope with the osmotic challenges it faces during its life cycle. Additionally, AQP1 is an adventitious facilitator of antimonite, the active form of pentavalent antimonial drugs. We show that AQP1 expression level is species-specific, and less AQP1 in visceral species compared to the cutaneous species results in increased resistance to antimonials. We also demonstrate that the 3’-untranslated regions (3’-UTR) of the AQP1 mRNA is a major determining factor of species-specific regulation of AQP1. Along with water homeostasis, aquaglyceroporins are also involved in directed cell migration. The variable levels of AQP1 in different Leishmania species may enable them to find their appropriate niches in vertebrate hosts and cope with the species-specific osmotic challenges during their life cycles.
Collapse
Affiliation(s)
- Goutam Mandal
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Florida, United States of America
| | - Srotoswati Mandal
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Florida, United States of America
| | - Mansi Sharma
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Florida, United States of America
| | - Karen Santos Charret
- CHU de Quebec Research Center and Department of Microbiology-Infectious Disease and Immunology, University Laval, Quebec, Canada
| | - Barbara Papadopoulou
- CHU de Quebec Research Center and Department of Microbiology-Infectious Disease and Immunology, University Laval, Quebec, Canada
| | - Hiranmoy Bhattacharjee
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Florida, United States of America
| | - Rita Mukhopadhyay
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Florida, United States of America
- * E-mail:
| |
Collapse
|