1
|
Miteva M, Mihaylova Z, Mitev V, Aleksiev E, Stanimirov P, Praskova M, Dimitrova VS, Vasileva A, Calenic B, Constantinescu I, Perlea P, Ishkitiev N. A Review of Stem Cell Attributes Derived from the Oral Cavity. Int Dent J 2024; 74:1129-1141. [PMID: 38582718 PMCID: PMC11561491 DOI: 10.1016/j.identj.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024] Open
Abstract
Oral cavity stem cells (OCSCs) have been the focus of intense scientific efforts due to their accessibility and stem cell properties. The present work aims to compare the different characteristics of 6 types of dental stem cells derived from the oral cavity: dental pulp stem cells (DPSC), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSC), stem cells from the apical papilla (SCAP), bone marrow mesenchymal stem cells (BMSC), and gingival mesenchymal stem cells (GMSC). Using immunofluorescence and real-time polymerase chain reaction techniques, we analysed the cells for stem cell, differentiation, adhesion, and extracellular matrix markers; the ability to proliferate in vitro; and multilineage differentiation potential. Markers such as vimentin, CD44, alkaline phosphatase, CD146, CD271, CD49f, Oct 3/4, Sox 9, FGF7, nestin, and BMP4 showed significant differences in expression levels, highlighting the heterogeneity and unique characteristics of each cell type. At the same time, we confirmed that all cell types successfully differentiated into osteogenic, chondrogenic, or adipose lineages, with different readiness. In conclusion, our study reveals the distinct properties and potential applications of various dental-derived stem cells. These findings contribute to a deeper understanding of OCSCs and their significance in future clinical applications.
Collapse
Affiliation(s)
- Marina Miteva
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Zornitsa Mihaylova
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Vanyo Mitev
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Evgeniy Aleksiev
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Pavel Stanimirov
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Maria Praskova
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Violeta S Dimitrova
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Anelia Vasileva
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Bogdan Calenic
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, University of Medicine and Farmacy "Carol Davila," Bucharest, Romania.
| | - Ileana Constantinescu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, University of Medicine and Farmacy "Carol Davila," Bucharest, Romania
| | - Paula Perlea
- Department of Endodontics, UMF Carol Davila, Bucharest, Romania.
| | - Nikolay Ishkitiev
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| |
Collapse
|
2
|
Chen Z, Chen L, Liu R, Lin Y, Chen S, Lu S, Lin Z, Chen Z, Wu C, Xiao Y. The osteoimmunomodulatory property of a barrier collagen membrane and its manipulation via coating nanometer-sized bioactive glass to improve guided bone regeneration. Biomater Sci 2018; 6:1007-1019. [PMID: 29485658 DOI: 10.1039/c7bm00869d] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Barrier membranes with nano-sized bioceramic coating can modulate the osteoimmune responses to stimulate osteogenesis.
Collapse
|
3
|
Surwase SS, Munot NM, Idage BB, Idage SB. Tailoring the properties of mPEG-PLLA nanoparticles for better encapsulation and tuned release of the hydrophilic anticancer drug. Drug Deliv Transl Res 2017; 7:416-427. [DOI: 10.1007/s13346-017-0372-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Zhou D, Sun J, Shao J, Bian X, Huang S, Li G, Chen X. Unusual crystallization and melting behavior induced by microphase separation in MPEG-b-PLLA diblock copolymer. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.10.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Haversath M, Hülsen T, Böge C, Tassemeier T, Landgraeber S, Herten M, Warwas S, Krauspe R, Jäger M. Osteogenic differentiation and proliferation of bone marrow-derived mesenchymal stromal cells on PDLLA + BMP-2-coated titanium alloy surfaces. J Biomed Mater Res A 2015; 104:145-54. [PMID: 26268470 DOI: 10.1002/jbm.a.35550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/29/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023]
Abstract
RhBMP-2 is clinically applied to enhance bone healing and used in combination with titanium fixation implants. The purpose of this in vitro study was to compare the osteogenic differentiation and proliferation of hMSC on native polished versus sandblasted titanium surfaces (TS) and to test their behavior on pure poly-D,L-lactide (PDLLA) coated as well as PDLLA + rhBMP-2 coated TS. Furthermore, the release kinetics of PDLLA + rhBMP-2-coated TS was investigated. Human bone marrow cells were obtained from three different donors (A: male, 16 yrs; B: male, 27 yrs, C: male, 49 yrs) followed by density gradient centrifugation and flow cytometry with defined antigens. The cells were seeded on native polished and sandblasted TS, PDLLA-coated TS and PDLLA + rhBMP-2-coated TS. Osteogenic differentiation (ALP specific activity via ALP and BCA assay) and proliferation (LDH cytotoxicity assay) was examined on day 7 and 14 and release kinetics of rhBMP-2 was investigated on day 3, 7, 10, and 14. We found significant higher ALP specific activity and LDH activity on native polished compared to native sandblasted surfaces. PDLLA led to decreased ALP specific and LDH activity on both surface finishes. Additional rhBMP-2 slightly diminished this effect. RhBMP-2-release from coated TS decreased nearly exponentially with highest concentrations at the beginning of the cultivation period. The results of this in vitro study suggest that native TS stimulate hMSC significantly stronger toward osteogenic differentiation and proliferation than rhBMP-2 + PDLLA-layered TS in the first 14 days of cultivation. The PDLLA-layer seems to inhibit local hMSC differentiation and proliferation.
Collapse
Affiliation(s)
- Marcel Haversath
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| | - Tobias Hülsen
- Department of Orthopaedics, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Carolin Böge
- Department of Orthopaedics, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Tjark Tassemeier
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| | - Stefan Landgraeber
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| | - Monika Herten
- Department of Orthopaedics, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Warwas
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| | - Rüdiger Krauspe
- Department of Orthopaedics, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Marcus Jäger
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
6
|
Clinoenstatite coatings have high bonding strength, bioactive ion release, and osteoimmunomodulatory effects that enhance in vivo osseointegration. Biomaterials 2015; 71:35-47. [PMID: 26318815 DOI: 10.1016/j.biomaterials.2015.08.027] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 01/06/2023]
Abstract
A number of coating materials have been developed over past two decades seeking to improve the osseointegration of orthopedic metal implants. Despite the many candidate materials trialed, their low rate of translation into clinical applications suggests there is room for improving the current strategies for their development. We therefore propose that the ideal coating material(s) should possess the following three properties: (i) high bonding strength, (ii) release of functional ions, and (iii) favourable osteoimmunomodulatory effects. To test this proposal, we developed clinoenstatite (CLT, MgSiO3), which as a coating material has high bonding strength, cytocompability and immunomodulatory effects that are favourable for in vivo osteogenesis. The bonding strength of CLT coatings was 50.1 ± 3.2 MPa, more than twice that of hydroxyapatite (HA) coatings, at 23.5 ± 3.5 MPa. CLT coatings released Mg and Si ions, and compared to HA coatings, induced an immunomodulation more conducive for osseointegration, demonstrated by downregurelation of pro-inflammatory cytokines, enhancement of osteogenesis, and inhibition of osteoclastogenesis. In vivo studies demonstrated that CLT coatings improved osseointegration with host bone, as shown by the enhanced biomechanical strength and increased de novo bone formation, when compared with HA coatings. These results support the notion that coating materials with the proposed properties can induce an in vivo environment better suited for osseointegration. These properties could, therefore, be fundamental when developing high-performance coating materials.
Collapse
|
7
|
Chen Z, Yuen J, Crawford R, Chang J, Wu C, Xiao Y. The effect of osteoimmunomodulation on the osteogenic effects of cobalt incorporated β-tricalcium phosphate. Biomaterials 2015; 61:126-38. [PMID: 26001077 DOI: 10.1016/j.biomaterials.2015.04.044] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/30/2015] [Indexed: 12/26/2022]
Abstract
Osteoblast lineage cells are direct effectors of osteogenesis and are, therefore, commonly used to evaluate the in vitro osteogenic capacity of bone substitute materials. This method has served its purposes when testing novel bone biomaterials; however, inconsistent results between in vitro and in vivo studies suggest the mechanisms that govern a material's capacity to mediate osteogenesis are not well understood. The emerging field of osteoimmunology and immunomodulation has informed a paradigm shift in our view of bone biomaterials-from one of an inert to an osteoimmunomodulatory material-highlighting the importance of immune cells in materials-mediated osteogenesis. Neglecting the importance of the immune response during this process is a major shortcoming of the current evaluation protocol. In this study we evaluated a potential angiogenic bone substitute material cobalt incorporated with β-tricalcium phosphate (CCP), comparing the traditional "one cell type" approach with a "multiple cell types" approach to assess osteogenesis, the latter including the use of immune cells. We found that CCP extract by itself was sufficient to enhance osteogenic differentiation of bone marrow stem cells (BMSCs), whereas this effect was cancelled out when macrophages were involved. In response to CCP, the macrophage phenotype switched to the M1 extreme, releasing pro-inflammatory cytokines and bone catabolic factors. When the CCP materials were implanted into a rat femur condyle defect model, there was a significant increase of inflammatory markers and bone destruction, coupled with fibrous encapsulation rather than new bone formation. These findings demonstrated that the inclusion of immune cells (macrophages) in the in vitro assessment matched the in vivo tissue response, and that this method provides a more accurate indication of the essential role of immune cells when assessing materials-stimulated osteogenesis in vitro.
Collapse
Affiliation(s)
- Zetao Chen
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 60 Musk Ave, Kelvin Grove, Brisbane, Queensland 4059, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 60 Musk Ave, Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Jones Yuen
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 60 Musk Ave, Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 60 Musk Ave, Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Jiang Chang
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 60 Musk Ave, Kelvin Grove, Brisbane, Queensland 4059, Australia; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
| | - Chengtie Wu
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 60 Musk Ave, Kelvin Grove, Brisbane, Queensland 4059, Australia; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China.
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 60 Musk Ave, Kelvin Grove, Brisbane, Queensland 4059, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 60 Musk Ave, Kelvin Grove, Brisbane, Queensland 4059, Australia.
| |
Collapse
|