1
|
Yarahmadi A, Dorri Giv M, Hosseininejad R, Rezaie A, Mohammadi N, Afkhami H, Farokhi A. Mesenchymal stem cells and their extracellular vesicle therapy for neurological disorders: traumatic brain injury and beyond. Front Neurol 2025; 16:1472679. [PMID: 39974358 PMCID: PMC11835705 DOI: 10.3389/fneur.2025.1472679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025] Open
Abstract
Traumatic brain injury (TBI) is a complex condition involving mechanisms that lead to brain dysfunction and nerve damage, resulting in significant morbidity and mortality globally. Affecting ~50 million people annually, TBI's impact includes a high death rate, exceeding that of heart disease and cancer. Complications arising from TBI encompass concussion, cerebral hemorrhage, tumors, encephalitis, delayed apoptosis, and necrosis. Current treatment methods, such as pharmacotherapy with dihydropyridines, high-pressure oxygen therapy, behavioral therapy, and non-invasive brain stimulation, have shown limited efficacy. A comprehensive understanding of vascular components is essential for developing new treatments to improve blood vessel-related brain damage. Recently, mesenchymal stem cells (MSCs) have shown promising results in repairing and mitigating brain damage. Studies indicate that MSCs can promote neurogenesis and angiogenesis through various mechanisms, including releasing bioactive molecules and extracellular vesicles (EVs), which help reduce neuroinflammation. In research, the distinctive characteristics of MSCs have positioned them as highly desirable cell sources. Extensive investigations have been conducted on the regulatory properties of MSCs and their manipulation, tagging, and transportation techniques for brain-related applications. This review explores the progress and prospects of MSC therapy in TBI, focusing on mechanisms of action, therapeutic benefits, and the challenges and potential limitations of using MSCs in treating neurological disorders.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Masoumeh Dorri Giv
- Nuclear Medicine Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Hosseininejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azin Rezaie
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Narges Mohammadi
- Department of Molecular Cell Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Arastoo Farokhi
- Department of Anesthesiology, Kermanshah University of Medical Sciences, Imam Reza Hospital, Kermanshah, Iran
| |
Collapse
|
2
|
Xu J, Xu D, Yu Z, Fu Z, Lv Z, Meng L, Zhao X. Exosomal miR-150 partially attenuated acute lung injury by mediating microvascular endothelial cells and MAPK pathway. Biosci Rep 2022; 42:BSR20203363. [PMID: 34750610 PMCID: PMC8703023 DOI: 10.1042/bsr20203363] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 10/12/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a respiratory disease with high morbidity and mortality rates. Currently, there is no effective treatment to complement mechanical ventilation. Exosomes and microRNAs (miRNAs) are promising agents for the management of this disease. METHODS Exosomes were isolated from mouse bone marrow stromal stem cells (BMSCs). The levels of two miRNAs, miR-542-3P and miR-150, in exosomes were determined using RT-PCR, and miR-150 was selected for further study. ALI model was established in mice using lipopolysaccharides, and then, they were treated with saline, exosomes, miRNA agomirs, or miRNA antagomirs. The concentrations of TNF-α, IL-6, and IL-1β and the number of neutrophils and macrophages in the bronchoalveolar lavage fluid were measured. The wet/dry weight ratio of the lung tissue was calculated, and tissue pathology and apoptosis were observed using hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. CD34 and VE-cadherin expression was detected using immunofluorescence. Proteins associated with apoptosis and MAPK signaling were detected using Western blotting, and miR-150 expression in lung tissue was evaluated using RT-PCR. RESULTS We successfully isolated BMSCs and exosomes and showed that the level of miR-150 was significantly higher than that of miR-542-3p. Exosomes and miR-150 reduced inflammation and lung edema while maintaining the integrity of the alveolar structure. They also mitigated microvascular endothelial cell injury by regulating the caspase-3, Bax/Bcl-2, and MAPK signaling. CONCLUSIONS Exosomal miR-150 attenuates lipopolysaccharide-induced ALI through the MAPK pathway.
Collapse
Affiliation(s)
- Jiaxin Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhizhong Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhaohui Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Lv
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Meng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Zhao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Huang Q, Cheng X, Luo C, Yang S, Li S, Wang B, Yuan X, Yang Y, Wen Y, Liu R, Tang L, Sun H. Placental chorionic plate-derived mesenchymal stem cells ameliorate severe acute pancreatitis by regulating macrophage polarization via secreting TSG-6. Stem Cell Res Ther 2021; 12:337. [PMID: 34112260 PMCID: PMC8193892 DOI: 10.1186/s13287-021-02411-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) hold promising potential to treat systemic inflammatory diseases including severe acute pancreatitis (SAP). In our previous study, placental chorionic plate-derived MSCs (CP-MSCs) were found to possess superior immunoregulatory capability. However, the therapeutic efficacy of CP-MSCs on SAP and their underlying mechanism remain unclear. METHODS The survival and colonization of exogenous CP-MSCs were observed by bioluminescence imaging and CM-Dil labeling in rodent animal models of SAP. The therapeutic efficacy of CP-MSCs on SAP rats was evaluated by pathology scores, the levels of pancreatitis biomarkers as well as the levels of inflammatory factors in the pancreas and serum. The potential protective mechanism of CP-MSCs in SAP rats was explored by selectively depleting M1 or M2 phenotype macrophages and knocking down the expression of TSG-6. RESULTS Exogenous CP-MSCs could survive and colonize in the injured tissue of SAP such as the lung, pancreas, intestine, and liver. Meanwhile, we found that CP-MSCs alleviated pancreatic injury and systemic inflammation by inducing macrophages to polarize from M1 to M2 in SAP rats. Furthermore, our data suggested that CP-MSCs induced M2 polarization of macrophages by secreting TSG-6, and TSG-6 played a vital role in alleviating pancreatic injury and systemic inflammation in SAP rats. Notably, we found that a high inflammation environment could stimulate CP-MSCs to secrete TSG-6. CONCLUSION Exogenous CP-MSCs tended to colonize in the injured tissue and reduced pancreatic injury and systemic inflammation in SAP rats through inducing M2 polarization of macrophages by secreting TSG-6. Our study provides a new treatment strategy for SAP and initially explains the potential protective mechanism of CP-MSCs on SAP rats.
Collapse
Affiliation(s)
- Qilin Huang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China.,Tianjin Medical University, Tianjin, 300070, China
| | - Xiumei Cheng
- XinDu Hospital of Traditional Chinese Medicine & Chengdu 2nd Hospital of Traditional Chinese Medicine, Chengdu, 610500, China
| | - Chen Luo
- Division of Hepatobiliary Pancreatic Surgery, Panzhihua Central Hospital, Sichuan Province, Panzhihua, 617017, China
| | - Shuxu Yang
- Tianjin Medical University, Tianjin, 300070, China
| | - Shuai Li
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Bing Wang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Xiaohui Yuan
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Yi Yang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Yi Wen
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Ruohong Liu
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Lijun Tang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China.
| | - Hongyu Sun
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China. .,Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, 610031, China.
| |
Collapse
|
4
|
Oliveira M, Lira R, Freire T, Luna C, Martins M, Almeida A, Carvalho S, Cortez E, Stumbo AC, Thole A, Carvalho L. Bone marrow mononuclear cell transplantation rescues the glomerular filtration barrier and epithelial cellular junctions in a renovascular hypertension model. Exp Physiol 2019; 104:740-754. [DOI: 10.1113/ep087330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/19/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Mariana Oliveira
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rafaelle Lira
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thiago Freire
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Camila Luna
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcela Martins
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Aline Almeida
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Simone Carvalho
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Erika Cortez
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Carolina Stumbo
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alessandra Thole
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lais Carvalho
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Sphingosine 1-Phosphate Receptor 1 Is Required for MMP-2 Function in Bone Marrow Mesenchymal Stromal Cells: Implications for Cytoskeleton Assembly and Proliferation. Stem Cells Int 2018; 2018:5034679. [PMID: 29713350 PMCID: PMC5866864 DOI: 10.1155/2018/5034679] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cell- (BM-MSC-) based therapy is a promising option for regenerative medicine. An important role in the control of the processes influencing the BM-MSC therapeutic efficacy, namely, extracellular matrix remodelling and proliferation and secretion ability, is played by matrix metalloproteinase- (MMP-) 2. Therefore, the identification of paracrine/autocrine regulators of MMP-2 function may be of great relevance for improving BM-MSC therapeutic potential. We recently reported that BM-MSCs release the bioactive lipid sphingosine 1-phosphate (S1P) and, here, we demonstrated an impairment of MMP-2 expression/release when the S1P receptor subtype S1PR1 is blocked. Notably, active S1PR1/MMP-2 signalling is required for F-actin structure assembly (lamellipodia, microspikes, and stress fibers) and, in turn, cell proliferation. Moreover, in experimental conditions resembling the damaged/regenerating tissue microenvironment (hypoxia), S1P/S1PR1 system is also required for HIF-1α expression and vinculin reduction. Our findings demonstrate for the first time the trophic role of S1P/S1PR1 signalling in maintaining BM-MSCs' ability to modulate MMP-2 function, necessary for cytoskeleton reorganization and cell proliferation in both normoxia and hypoxia. Altogether, these data provide new perspectives for considering S1P/S1PR1 signalling a pharmacological target to preserve BM-MSC properties and to potentiate their beneficial potential in tissue repair.
Collapse
|
6
|
Liu HM, Liu YT, Zhang J, Ma LJ. Bone marrow mesenchymal stem cells ameliorate lung injury through anti-inflammatory and antibacterial effect in COPD mice. ACTA ACUST UNITED AC 2017; 37:496-504. [PMID: 28786060 DOI: 10.1007/s11596-017-1763-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/01/2017] [Indexed: 01/08/2023]
Abstract
The anti-inflammatory and antibacterial mechanisms of bone marrow mesenchymal stem cells (MSCs) ameliorating lung injury in chronic obstructive pulmonary disease (COPD) mice induced by cigarette smoke and Haemophilus Parainfluenza (HPi) were studied. The experiment was divided into four groups in vivo: control group, COPD group, COPD+HPi group, and COPD+HPi+MSCs group. The indexes of emphysematous changes, inflammatory reaction and lung injury score, and antibacterial effects were evaluated in all groups. As compared with control group, emphysematous changes were significantly aggravated in COPD group, COPD+HPi group and COPD+HPi+MSCs group (P<0.01), the expression of necrosis factor-kappaB (NF-κB) signal pathway and proinflammatory cytokines in bronchoalveolar lavage fluid (BALF) were increased (P<0.01), and the phagocytic activity of alveolar macrophages was downregulated (P<0.01). As compared with COPD group, lung injury score, inflammatory cells and proinflammatory cytokines were significantly increased in the BALF of COPD+HPi group and COPD+HPi+MSCs group (P<0.01). As compared with COPD+HPi group, the expression of tumor necrosis factor-α stimulated protein/gene 6 (TSG-6) was increased, the NF-κB signal pathway was depressed, proinflammatory cytokine was significantly reduced, the anti-inflammatory cytokine IL-10 was increased, and lung injury score was significantly reduced in COPD+HPi+MSCs group. Meanwhile, the phagocytic activity of alveolar macrophages was significantly enhanced and bacterial counts in the lung were decreased. The results indicated cigarette smoke caused emphysematous changes in mice and the phagocytic activity of alveolar macrophages was decreased. The lung injury of acute exacerbation of COPD mice induced by cigarette smoke and HPi was alleviated through MSCs transplantation, which may be attributed to the fact that MSCs could promote macrophages into anti-inflammatory phenotype through secreting TSG-6, inhibit NF-кB signaling pathway, and reduce inflammatory response through reducing proinflammatory cytokines and promoting the expression of the anti-inflammatory cytokine. Simultaneously, MSCs could enhance phagocytic activity of macrophages and bacterial clearance. Meanwhile, we detected anti-inflammatory and antibacterial activity of macrophages regulated by MSCs in vitro. As compared with RAW264.7+HPi+CSE group, the expression of NF-кB p65, IL-1β, IL-6 and TNF-α was significantly reduced, and the phagocytic activity of macrophages was significantly increased in RAW264.7+HPi+CSE+MSCs group (P<0.01). The result indicated the macrophages co-cultured with MSCs may inhibit NF-кB signaling pathway and promote phagocytosis by paracrine mechanism.
Collapse
Affiliation(s)
- Hong-Mei Liu
- Department of Respiratory Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China.
| | - Yi-Tong Liu
- Department of Respiratory Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Jing Zhang
- Department of Respiratory Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Li-Jun Ma
- Department of Respiratory Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| |
Collapse
|
7
|
Bian P, Ye C, Zheng X, Yang J, Ye W, Wang Y, Zhou Y, Ma H, Han P, Zhang H, Zhang Y, Zhang F, Lei Y, Jia Z. Mesenchymal stem cells alleviate Japanese encephalitis virus-induced neuroinflammation and mortality. Stem Cell Res Ther 2017; 8:38. [PMID: 28209182 PMCID: PMC5314473 DOI: 10.1186/s13287-017-0486-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/30/2016] [Accepted: 01/21/2017] [Indexed: 12/11/2022] Open
Abstract
Background Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis in Asia. Japanese encephalitis (JE) caused by JEV is characterized by extensive inflammatory cytokine secretion, microglia activation, blood-brain barrier (BBB) breakdown, and neuronal death, all of which contribute to the vicious cycle of inflammatory damage. There are currently no effective treatments for JE. Mesenchymal stem cells (MSCs) have been demonstrated to have a therapeutic effect on many central nervous system (CNS) diseases by regulating inflammation and other mechanisms. Methods In vivo, 8- to 10-week-old mice were infected intraperitoneally with JEV and syngeneic bone marrow MSCs were administered through the caudal vein at 1 and 3 days post-infection. The mortality, body weight, and behavior were monitored daily. Brains from each group were harvested at the indicated times for hematoxylin and eosin staining, immunohistochemical observation, flow cytometric analysis, TUNEL staining, Western blot, quantitative real-time polymerase chain reaction, and BBB permeability assays. In vitro, co-culture and mixed culture experiments of MSCs with either microglia or neurons were performed, and then the activation state of microglia and survival rate of neurons were tested 48 h post-infection. Results MSC treatment reduced JEV-induced mortality and improved the recovery from JE in our mouse model. The inflammatory response, microglia activation, neuronal damage, BBB destruction, and viral load (VL) were significantly decreased in the MSC-treated group. In co-culture experiments, MSCs reprogrammed M1-to-M2 switching in microglia and improved neuron survival. Additionally, the VL was decreased in Neuro2a cells in the presence of MSCs accompanied by increased expression of interferon-α/β. Conclusion MSC treatment alleviated JEV-induced inflammation and mortality in mice. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0486-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peiyu Bian
- Department of Infectious Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Xuyang Zheng
- Department of Infectious Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Jing Yang
- Department of Microbiology, School of Preclinical Medicine, the Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Ye
- Department of Microbiology, School of Preclinical Medicine, the Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, the Fourth Military Medical University, Xi'an, 710032, China
| | - Yun Zhou
- Department of Infectious Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Hongwei Ma
- Department of Microbiology, School of Preclinical Medicine, the Fourth Military Medical University, Xi'an, 710032, China
| | - Peijun Han
- Department of Microbiology, School of Preclinical Medicine, the Fourth Military Medical University, Xi'an, 710032, China
| | - Hai Zhang
- Laboratory Animal Center, the Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Zhang
- Department of Infectious Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, the Fourth Military Medical University, Xi'an, 710032, China
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, the Fourth Military Medical University, Xi'an, 710032, China.
| | - Zhansheng Jia
- Department of Infectious Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
8
|
Shi S, Peng Q, Shao X, Xie J, Lin S, Zhang T, Li Q, Li X, Lin Y. Self-Assembled Tetrahedral DNA Nanostructures Promote Adipose-Derived Stem Cell Migration via lncRNA XLOC 010623 and RHOA/ROCK2 Signal Pathway. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19353-63. [PMID: 27403707 DOI: 10.1021/acsami.6b06528] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Sirong Shi
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Qiang Peng
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoru Shao
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Jing Xie
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Shiyu Lin
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Qianshun Li
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaolong Li
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
9
|
Wei P, Yang Y, Ding Q, Li X, Sun H, Liu Z, Huang J, Gong Y. Oral delivery of Bifidobacterium longum expressing α-melanocyte-stimulating hormone to combat ulcerative colitis. J Med Microbiol 2015; 65:160-168. [PMID: 26567174 DOI: 10.1099/jmm.0.000197] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
α-Melanocyte-stimulating hormone (α-MSH) is a tridecapeptide derived from pro-opiomelanocortin that exhibits potent anti-inflammatory properties by regulating the production of inflammatory mediators. This peptide has been well established in several inflammatory models, including inflammatory bowel disease (IBD). However, its extremely short duration in vivo limits its clinical application. To address this limitation, Bifidobacterium was used here as a carrier to deliver α-MSH. We utilized α-MSH-engineered Bifidobacterium against IBD, which is closely linked to immune and intestinal microbiota dysfunction. First, we constructed a Bifidobacterium longum secreting α-MSH (B. longum-α-MSH). We then tested the recombinant α-MSH expression and determined its bioactivity in HT-29 cells. To assess its effectiveness, B. longum-α-MSH was used against an ulcerative colitis (UC) model in rats induced by dextran sulfate sodium. The data showed that α-MSH expression in B. longum-α-MSH was effective, and its biological activity was similar to the synthesized one. This UC model experiment indicated that B. longum-α-MSH successfully colonized the intestinal gut, expressed bioactive α-MSH and had a significant anti-inflammatory effect. The results demonstrate the feasibility of preventing IBD by using B. longum-α-MSH.
Collapse
Affiliation(s)
- Pijin Wei
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yan Yang
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Qing Ding
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Xiuying Li
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Hanxiao Sun
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Zhaobing Liu
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Junli Huang
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yahui Gong
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| |
Collapse
|
10
|
Lauterboeck L, Hofmann N, Mueller T, Glasmacher B. Active control of the nucleation temperature enhances freezing survival of multipotent mesenchymal stromal cells. Cryobiology 2015; 71:384-90. [PMID: 26499840 DOI: 10.1016/j.cryobiol.2015.10.145] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 02/03/2023]
Abstract
Cryopreservation is a technique that has been extensively used for storage of multipotent mesenchymal stromal cells (MSCs) in regenerative medicine. Therefore, improving current cryopreservation procedures in terms of increasing cell viability and functionality is important. In this study, we optimized the cryopreservation protocol of MSCs derived from the common marmoset Callithrix jacchus (cj), which can be used as a non-human primate model in various pathological and transplantation studies and have a great potential for regenerative medicine. We have investigated the effect of the active control of the nucleation temperature using induced nucleation at a broad range of temperatures and two different dimethylsulfoxide concentrations (Me2SO, 5% (v/v) and 10%, (v/v)) to evaluate the overall effect on the viability, metabolic activity and recovery of cells after thawing. Survival rate and metabolic activity displayed an optimum when ice formation was induced at -10 °C. Cryomicroscopy studies indicated differences in ice crystal morphologies as well as differences in intracellular ice formation with different nucleation temperatures. High subzero nucleation temperatures resulted in larger extracellular ice crystals and cellular dehydration, whereas low subzero nucleation temperatures resulted in smaller ice crystals and intracellular ice formation.
Collapse
Affiliation(s)
- L Lauterboeck
- Institute for Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany.
| | - N Hofmann
- Institute for Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany.
| | - T Mueller
- Service Unit Embryonic Stem Cells, Institute for Transfusion Medicine, Medical School Hannover, Germany.
| | - B Glasmacher
- Institute for Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany.
| |
Collapse
|
11
|
Histological study on the role of bone marrow-derived mesenchymal stem cells on the sciatic nerve and the gastrocnemius muscle in a model of sciatic nerve crush injury in albino rats. ACTA ACUST UNITED AC 2015. [DOI: 10.1097/01.ehx.0000470653.67231.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|