1
|
Feng ZG, Cai-Rang XD, Tan XY, Li CY, Zeng SY, Liu Y, Zhang Y. Processing methods and the underlying detoxification mechanisms for toxic medicinal materials used by ethnic minorities in China: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116126. [PMID: 36610672 DOI: 10.1016/j.jep.2022.116126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Various toxic medicinal materials have been used by different ethnic minorities in China for thousands of years because of their extraordinary pharmacological activities. However, the improper use and complex toxicity-efficacy relationship could cause poisoning and even death. Therefore, the study of toxicity-attenuating methods and mechanisms is necessary. AIM OF THE STUDY This review aims to summarize commonly used toxic ethnomedicines and their processing methods as well as the underlying mechanisms to potentially reduce toxicity and even enhance or preserve efficacy. Prospective for possible future investigations is also discussed. MATERIALS AND METHODS Processing methods and mechanisms are investigated mainly through literature review. RESULTS Processing methods with heating (boiling, stir frying, and steaming, etc.) and without heating (soaking) are usually used by Chinese ethnic minorities to attenuate the toxicity of ethnomedicines. Wheat bran, vinegar, wine, and herbal decoction are commonly used processing excipients. The mechanisms of detoxification by processing can be briefly summarized into three major categories: (1) direct elimination of impurities or reduction of toxic constituents' contents of ethnomedicines by cutting, washing, soaking or frosting; (2) chemical structure transformation of toxic constituents, such as alkaloids, glycosides, toxic proteins, animal toxicants, and mineral components, during heating and/or soaking; and (3) biological synergism or antagonism effects between the chemical constituents of processing excipients and ethnomedicines in vivo, to reduce toxicity and protect target organs. CONCLUSION Toxic ethnomedicines have long been used in China, and detoxification by processing is the prerequisite for their safe clinical application. However, understanding on the special processing methods and detoxification mechanisms of ethnomedicines in China remains insufficient. Investigations on quality control of toxic ethnomedicines, as well as evaluation of processing methods and studies of the corresponding mechanisms should be further strengthened for safe and effective clinical application.
Collapse
Affiliation(s)
- Zi-Ge Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Southwest Minzu University, Chengdu, 610225, China
| | - Xia-Dao Cai-Rang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Yan Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cong-Ying Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shang-Yu Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Zhang T, Liu Z, Sun X, Liu Z, Zhang L, Zhang Q, Peng W, Wu C. Botany, traditional uses, phytochemistry, pharmacological and toxicological effects of Croton tiglium Linn.: a comprehensive review. J Pharm Pharmacol 2022; 74:1061-1084. [PMID: 35723937 DOI: 10.1093/jpp/rgac040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 05/17/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Croton tiglium Linn. (Euphorbiaceae) is an ancient medicinal plant that has been used for a long time, which is widely distributed in tropical and subtropical regions. And it is widely used for defecation, induced labour, treatment of gastrointestinal diseases, headache, as well as rheumatoid arthritis. KEY FINDINGS Approximately 150 compounds have been isolated and identified from the seeds, stems, leaves and branches of C. tiglium, including fatty acids, terpenoids, alkaloids, the plants proteins and other types of components. Based on a wide range of biological properties, C. tiglium has a wide range of pharmacological effects, such as antitumor, anti-HIV, analgesic, anti-inflammatory and antibacterial effects. SUMMARY The review aims to provide a critical and comprehensive evaluation of the botany, phytochemistry, pharmacology and toxicity of C. tiglium, with a vision for promoting further pharmaceutical research to explore its complete potential for better clinical application. The tigliane diterpenoids have been the most studied compounds isolated from C. tiglium, which showing a variety of biological activities, but there is insufficient evidence to explain the mechanism of action. In addition, C. tiglium may have potential toxic effects, and it is necessary to reduce the toxic effects to ensure the safety of clinical medication, which may promote the discovery and development of new drugs.
Collapse
Affiliation(s)
- Ting Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Zibo Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xue Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Ziqi Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Lilin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| |
Collapse
|
3
|
Aboulthana WM, Ibrahim NES, Osman NM, Seif MM, Hassan AK, Youssef AM, El-Feky AM, Madboli AA. Evaluation of the Biological Efficiency of Silver Nanoparticles Biosynthesized Using Croton tiglium L. Seeds Extract against Azoxymethane Induced Colon Cancer in Rats. Asian Pac J Cancer Prev 2020; 21:1369-1389. [PMID: 32458646 PMCID: PMC7541879 DOI: 10.31557/apjcp.2020.21.5.1369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is considered as the most common type of gastrointestinal cancers. Chemotherapy became limited due to the adverse side effects. Therefore, the most effective Croton tiglium extract was selected to be incorporated by silver nanoparticles (Ag-NPs) then evaluated against colon cancer induced by azoxymethane (AOM) in rats. METHODS Different hematological and biochemical measurements were quantified in addition to markers of oxidative stress. Specific tumor and inflammatory markers were assayed. Colonic tissues were examined histopathologically in addition to immunohistochemistry (IHC). Native proteins and isoenzymes patterns were electrophoretically assayed beside expression of Tumor Protein P53 (TP53) and Adenomatous Polyposis Coli (APC) genes in colonic tissues. RESULTS It was found that AOM caused significant (P≤0.05) elevation in the hematological and biochemical measurements. C. tiglium nano-extract restored these measurements to normalcy. Tumor and inflammatory markers elevated significantly (P≤0.05) in sera of AOM induced colon cancer group in addition to increasing peroxidation products with decline in antioxidant enzymes activities in colon tissues. Nano-extract restored these measurements to normalcy in post-treated group. Histopathological study revealed that nano-extract minimized severity of inflammatory reactions in all nano-extract treated groups and prevented anti-Keratin 20 antibody expression in post-treated group. The lowest similarity index (SI%) values were noticed with electrophoretic protein (SI=71.43%), lipid (SI=0.00%) and calcium (SI=75.00%) moieties of protein patterns, catalase (SI=85.71%), peroxidase (SI=85.71%), α-esterase (SI=50.00%) and β-esterase (SI=50.00%) isoenzymes in colon cancer group. Furthermore, AOM altered the relative quantities of total native bands. The nano-extract prevented the alterations that occurred qualitatively in nano-extract post-treated group and quantitatively in all nano-extract treated groups. Levels of TP53 and APC gene expression increased in AOM injected group and nano-extract restored their levels to normalcy in the post-treated group. CONCLUSION C. tiglium nano-extract exhibited ameliorative effect against the biochemical and molecular alterations induced by AOM in nano-extract post-treated group.
Collapse
Affiliation(s)
- Wael Mahmoud Aboulthana
- Biochemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt.
- For Correspondence:
| | - Noha El-Sayed Ibrahim
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt.
| | - Noha Mohamed Osman
- Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt.
| | - Mohamed Mahmoud Seif
- Toxicology and Food contaminants, Food Industry and Nutrition Division, National Research Center, Dokki, Giza, Egypt.
| | - Amgad Kamal Hassan
- Biochemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt.
| | | | - Amal Mostafa El-Feky
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza, Egypt.
| | - A A Madboli
- Animal Reproduction and Artificial Insemination Department, Veterinary Division, National Research Centre, Dokki, Giza, Egypt .
| |
Collapse
|
4
|
Seeing the unseen of Chinese herbal medicine processing ( Paozhi): advances in new perspectives. Chin Med 2018; 13:4. [PMID: 29375653 PMCID: PMC5773022 DOI: 10.1186/s13020-018-0163-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/08/2018] [Indexed: 01/13/2023] Open
Abstract
Processing (Paozhi) represents a unique Chinese pharmaceutic technique to facilitate the use of Chinese herbal medicines (CHMs) for a specific clinical need in the guidance of Traditional Chinese Medicine (TCM) theory. Traditionally, most CHMs require a proper processing to meet the needs of specific clinical syndromes before being prescribed by TCM practitioners. During processing, significant changes in chemical profiles occur, which inevitably influence the associated pharmacological properties of a CHM. However, although processing is formed in a long-term practice, the underlying mechanisms remain unclear for most CHMs. The deepening understanding of the mechanism of processing would provide scientific basis for standardization of processing. This review introduced the role of processing in TCM and several typical methods of processing. We also summarized the up-to-date efforts on the mechanistic study of CHM processing. The processing mechanisms mainly include the following aspects: (i) directly reducing contents of toxic constituents; (ii) structural transformation of constituents; (iii) improving solubility of constituents; (iv) physically changing the existing form of constituents; (v) and influence by excipients. These progress may give new insights into future researches.
Collapse
|
5
|
Song HK, Lee GS, Park SH, Noh EM, Kim JM, Ryu DG, Jung SH, Youn HJ, Lee YR, Kwon KB. Crotonis Fructus Extract Inhibits 12-O-Tetradecanoylphorbol-13-Acetate-Induced Expression of Matrix Metalloproteinase-9 via the Activator Protein-1 Pathway in MCF-7 Cells. J Breast Cancer 2017; 20:234-239. [PMID: 28970848 PMCID: PMC5620437 DOI: 10.4048/jbc.2017.20.3.234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/05/2017] [Indexed: 12/14/2022] Open
Abstract
Purpose Metastatic cancers spread from the primary site of origin to other parts of the body. Matrix metalloproteinase-9 (MMP-9) is essential in metastatic cancers owing to its major role in cancer cell invasion. Crotonis fructus (CF), the mature fruits of Croton tiglium L., have been used for the treatment of gastrointestinal disturbance in Asia. In this study, the effect of the ethanol extract of CF (CFE) on MMP-9 activity and the invasion of 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated MCF-7 cells was examined. Methods The cell viability was evaluated using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The expression of MMP-9 was examined by Western blotting, zymography, and real-time polymerase chain reaction. An electrophoretic mobility gel shift assay was performed to detect activator protein-1 (AP-1) DNA binding activity and cell invasiveness was measured by an in vitro Matrigel invasion assay. Results CFE significantly suppressed MMP-9 expression and activation in a dose-dependent manner. Furthermore, CFE attenuated the TPA-induced activation of AP-1. Conclusion The results indicated that the inhibitory effects of CFE against TPA-induced MMP-9 expression and MCF-7 cell invasion were dependent on the protein kinase C δ/p38/c-Jun N-terminal kinase/AP-1 pathway. Therefore, CFE could restrict breast cancer invasiveness owing to its ability to inhibit MMP-9 activity.
Collapse
Affiliation(s)
- Hyun-Kyung Song
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| | - Guem-San Lee
- Department of Herbology, Wonkwang University School of Korean Medicine, Iksan, Korea
| | - Sueng Hyuk Park
- Department of Korean Physiology, Wonkwang University School of Korean Medicine, Iksan, Korea
| | - Eun-Mi Noh
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| | - Jeong-Mi Kim
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| | - Do-Gon Ryu
- Department of Korean Physiology, Wonkwang University School of Korean Medicine, Iksan, Korea
| | - Sung Hoo Jung
- Department of Surgery, Biomedical Research Institute of Chonbuk National University Hospital, Research Institute of Clinical Medicine of Chonbuk National University, Jeonju, Korea
| | - Hyun Jo Youn
- Department of Surgery, Biomedical Research Institute of Chonbuk National University Hospital, Research Institute of Clinical Medicine of Chonbuk National University, Jeonju, Korea
| | - Young-Rae Lee
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea.,Department of Oral Biochemistry and Institute of Biomaterials-Implant, Wonkwang University School of Dentistry, Iksan, Korea.,Integrated Omics Institute, Wonkwang University, Iksan, Korea
| | - Kang-Beom Kwon
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea.,Department of Korean Physiology, Wonkwang University School of Korean Medicine, Iksan, Korea
| |
Collapse
|