1
|
Synthesis, characterization, in vitro biological evaluation and molecular docking studies of newly synthesized mononuclear lanthanum(III) complexes of N,N'-bis(2-aminoethyl)oxamide and phenanthroline bases. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Synthesis, Characterization, DFT Studies and Biological Activity of Ru(III), La(III) and Ce(III) Triphenylphosphine Complexes Containing 2-Aminothiazole and 2-Aminotriazole. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01492-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Wang W, Huang X, Yang H, Niu X, Li D, Yang C, Li L, Zou L, Qiu Z, Wu S, Li Y. Antibacterial Activity and Anti-Quorum Sensing Mediated Phenotype in Response to Essential Oil from Melaleuca bracteata Leaves. Int J Mol Sci 2019; 20:E5696. [PMID: 31739398 PMCID: PMC6887945 DOI: 10.3390/ijms20225696] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/03/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022] Open
Abstract
The prominent antibacterial and quorum sensing (QS) inhibition activity of aromatic plants can be used as a novel intervention strategy for attenuating bacterial pathogenicity. In the present work, a total of 29 chemical components were identified in the essential oil (EO) of Melaleuca bracteata leaves by gas chromatography-mass spectrometry (GC-MS). The principal component was methyleugenol, followed by methyl trans-cinnamate, with relative contents of 90.46% and 4.25%, respectively. Meanwhile, the antibacterial activity and the QS inhibitory activity of M. bracteata EO were first evaluated here. Antibacterial activity assay and MIC detection against seven pathogens (Dickeya dadantii Onc5, Staphylococcus aureus ATCC25933, Pseudomonas spp., Escherichia coli ATCC25922, Serratia marcescens MG1, Pseudomonas aeruginosa PAO1 and Chromobacterium violaceum ATCC31532) demonstrated that S. aureus ATCC25933 and S. marcescens MG1 had the higher sensitivity to M. bracteata EO, while P. aeruginosa PAO1 displayed the strongest resistance to M. bracteata EO. An anti-QS (anti-quorum sensing) assay revealed that at sub-minimal inhibitory concentrations (sub-MICs), M. bracteata EO strongly interfered with the phenotype, including violacein production, biofilm biomass, and swarming motility, as well as N-hexanoyl-L-homoserine lactone (C6-HSL) production (i.e., a signaling molecule in C. violaceum ATCC31532) of C. violaceum. Detection of C6-HSL indicated that M. bracteata EO was capable of not only inhibiting C6-HSL production in C. violaceum, but also degrading the C6-HSL. Importantly, changes of exogenous C6-HSL production in C. violaceum CV026 revealed a possible interaction between M. bracteata EO and a regulatory protein (cviR). Additionally, quantitative real-time polymerase chain reaction (RT-qPCR) analysis demonstrated that the expression of QS-related genes (cviI, cviR, vioABCDE, hmsNR, lasA-B, pilE1, pilE3, and hcnB) was significantly suppressed. Conclusively, these results indicated that M. bracteata EO can act as a potential antibacterial agent and QS inhibitor (QSI) against pathogens, preventing and controlling bacterial contamination.
Collapse
Affiliation(s)
- Wenting Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| | - Xiaoqin Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| | - Huixiang Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| | - Xianqian Niu
- Fujian Institute of Tropical Crops, Zhangzhou 363001, China;
| | - Dongxiang Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| | - Chao Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| | - Liang Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| | - Liting Zou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| | - Ziwen Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| | - Shaohua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| | - Yongyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.W.); (X.H.); (H.Y.); (D.L.); (C.Y.); (L.L.); (L.Z.); (Z.Q.)
| |
Collapse
|
4
|
Wang W, Li D, Huang X, Yang H, Qiu Z, Zou L, Liang Q, Shi Y, Wu Y, Wu S, Yang C, Li Y. Study on Antibacterial and Quorum-Sensing Inhibition Activities of Cinnamomum camphora Leaf Essential Oil. Molecules 2019; 24:molecules24203792. [PMID: 31640286 PMCID: PMC6832878 DOI: 10.3390/molecules24203792] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/22/2022] Open
Abstract
Many essential oils (EOs) regulate the quorum-sensing (QS) system of pathogens and inhibit the virulence expression. Interference with QS can potentially reduce bacterial multidrug resistance and aid the biological control of bacterial disease. In the present work, the antibacterial and anti-QS activities of Cinnamomum camphora leaf EO were investigated. A total of 23 chemical components with relative levels ≥0.11%, including a large number of terpene compounds, were identified in C. camphora leaf EO by gas chromatography-mass spectrometry (GC-MS). The principal component was linalool, followed by eucalyptol, with relative levels of 51.57% and 22.07%, respectively. The minimum inhibitory concentration (MIC) and antibacterial activity of C. camphora EO were examined, and P. aeruginosa and E. coli ATCC25922 showed the highest and lowest sensitivity to C. camphora EO, respectively. Tests of QS inhibitory activity revealed that C. camphora EO significantly decreased the production of violacein and biofilm biomass in C. violaceum, with the maximum inhibition rates of 63% and 77.64%, respectively, and inhibited the biofilm formation and swarming movement, independent of affecting the growth of C. violaceum. Addition of C. camphora EO also resulted in downregulation of the expression of the acyl-homoserine lactones (AHL) synthesis gene (cviI) and transcription regulator (cviR), and inhibited the expression of QS-regulated virulence genes, including vioA, vioB, vioC, vioD, vioE, lasA, lasB, pilE3, and hmsHNFR. Collectively, the prominent antibacterial activity and anti-QS activities clearly support that C. camphora EO acts as a potential antibacterial agent and QS inhibitor in the prevention of bacterial contamination.
Collapse
Affiliation(s)
- Wenting Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Dongxiang Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoqin Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Huixiang Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ziwen Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Liting Zou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Qin Liang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yu Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yingxiang Wu
- Qingyuan Agricultural Science and Technology Extension Service Center, Qingyuan 511518, China.
| | - Shaohua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chao Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yongyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
|
6
|
Spectroscopic, thermal, quantum chemical calculations and in vitro biological studies of titanium/zirconium(IV) complexes of mono-and disubstituted aryldithiocarbonates. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.10.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Andotra S, Kumar S, Kour M, Sharma V, Jaglan S, Pandey SK. Synthesis, spectroscopic, DFT and in vitro biological studies of vanadium(III) complexes of aryldithiocarbonates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 180:127-137. [PMID: 28284158 DOI: 10.1016/j.saa.2017.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
Vanadium(III) tris(dithiocarbonates), [(ROCS2)3V] (R=o-, m-, p-CH3C6H4 and 4-Cl-3-CH3C6H3) and donor stabilized addition complexes [(ROCS2)2V(Cl)·L] [L=NC5H5 or P(C6H5)3] were synthesized and characterized by elemental analyses, IR, mass, TGA/DTA, SEM magnetic susceptibility and heteronuclear NMR (1H, 13C and 31P) spectroscopic studies. The cytotoxicity of the complexes was measured in vitro using the cultivated human cell lines. In addition, the antioxidant activities of the ligands and its vanadium complexes were also investigated through their scavenging effect on DPPH radicals. The antimicrobial activity of ligands and some complexes has been conducted against three bacterial strains and fungus. The density functional theory (DFT) calculations of ligands and vanadium complexes were performed by the DFT/B3LYP/LANL2DZ method to obtain the optimized molecular geometry, vibrational frequencies, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), thermodynamic properties and various other quantum-mechanical parameters.
Collapse
Affiliation(s)
- Savit Andotra
- Department of Chemistry, University of Jammu, Baba Sahib Ambedkar Road, Jammu 180006 (J&K), India
| | - Sandeep Kumar
- Department of Chemistry, University of Jammu, Baba Sahib Ambedkar Road, Jammu 180006 (J&K), India
| | - Mandeep Kour
- Department of Chemistry, University of Jammu, Baba Sahib Ambedkar Road, Jammu 180006 (J&K), India
| | - Vishal Sharma
- Quality Control and Quality Assurance Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sundeep Jaglan
- Quality Control and Quality Assurance Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sushil K Pandey
- Department of Chemistry, University of Jammu, Baba Sahib Ambedkar Road, Jammu 180006 (J&K), India.
| |
Collapse
|
8
|
Larionov SV, Bryleva YA. Coordination compounds of lanthanides with 1,1-dithiolate ligands. RUSS J COORD CHEM+ 2016. [DOI: 10.1134/s1070328416050031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Jeremias L, Nečas M, Moravec Z, Trávníček Z, Novosad J. Syntheses and X-ray structures of heteroleptic octahedral Mn(II)-xanthato complexes involving N-donor ligands. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- L. Jeremias
- Faculty of Science, Department of Chemistry, Masaryk University, Brno, Czech Republic
| | - M. Nečas
- Faculty of Science, Department of Chemistry, Masaryk University, Brno, Czech Republic
- Research Group (Synthesis and Analysis of Nanostructures Structure of Biosystems and Molecular Materials), CEITEC – Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Z. Moravec
- Faculty of Science, Department of Chemistry, Masaryk University, Brno, Czech Republic
| | - Z. Trávníček
- Faculty of Science, Department of Inorganic Chemistry, Palacký University, Olomouc, Czech Republic
| | - J. Novosad
- Faculty of Science, Department of Chemistry, Masaryk University, Brno, Czech Republic
| |
Collapse
|