1
|
Mattei B, Colletti G, Negrello S, Anesi A, Sanna G, Nocini R. Treating head and neck venous malformations with cold helium plasma electrosurgical device: A 17 patients case series. J Craniomaxillofac Surg 2025:S1010-5182(25)00077-0. [PMID: 39988533 DOI: 10.1016/j.jcms.2025.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025] Open
Abstract
Venous malformations (VMs) are some of the most common vascular malformations. Their treatment varies from laser to sclerotherapy and surgery. For many years, radiofrequency and argon plasma devices have been used on soft tissues VMs. However, their use has been limited because of high thermal impact of nearby structures. The here described cold-helium plasma electrosurgical device carries intrinsic bio-technical advantages, as the helium plasma beam manages to move towards tissues with less impedance, such as VM vessels. The primary objective of this study was to assess if J-Plasma® could be effective on treating the superficial portion of VMs, in a single or multimodal approach. From January 2022 to January 2024, 17 patients affected by head and neck VM involving mucosa or skin were treated using J-Plasma®, in addition to sclerotherapy. More than 1 session was needed in all but 1 patient. All patients showed a progressive shrinkage of the venous chambers and thickening of the surface, while no major intraoperative and perioperative complications, such as necrosis or severe bleeding were observed. Minor complications like oedema or exfoliation were mild. All 17 patients had a complete healing of the mucosal surface one week after treatment. The grade of effectiveness and the stability of the results correlated with the complexity of the VMs. This research may serve as groundwork for future studies that may aim to explore the use of this device on other vascular malformations. LEVEL OF EVIDENCE: Case series: level 4.
Collapse
Affiliation(s)
- Benedetta Mattei
- Department of Medical and Surgical Sciences for Children & Adults, Cranio-Maxillo-Facial Surgery, University of Modena and Reggio Emilia, Largo del Pozzo, 71, 41124, Modena, Italy
| | - Giacomo Colletti
- Department of Medical and Surgical Sciences for Children & Adults, Cranio-Maxillo-Facial Surgery, University of Modena and Reggio Emilia, Largo del Pozzo, 71, 41124, Modena, Italy.
| | - Sara Negrello
- Department of Medical and Surgical Sciences for Children & Adults, Cranio-Maxillo-Facial Surgery, University of Modena and Reggio Emilia, Largo del Pozzo, 71, 41124, Modena, Italy
| | - Alexandre Anesi
- Department of Medical and Surgical Sciences for Children & Adults, Cranio-Maxillo-Facial Surgery, University of Modena and Reggio Emilia, Largo del Pozzo, 71, 41124, Modena, Italy
| | - Giangiacomo Sanna
- Department of Surgical and Odontostomatological Sciences for Children & Adults, University of Verona, Piazzale Aristide Stefani, 1, 37126, Verona, Italy
| | - Riccardo Nocini
- Head and Neck Department, Unit of Otolaringology, University of Verona, Piazzale Aristide Stefani, 1, 37126, Verona, Italy
| |
Collapse
|
2
|
Hao YY, Xiao WQ, Zhang HN, Yu NN, Park G, Han YH, Kwon T, Sun HN. Peroxiredoxin 1 modulates oxidative stress resistance and cell apoptosis through stemness in liver cancer under non-thermal plasma treatment. Biochem Biophys Res Commun 2024; 738:150522. [PMID: 39154551 DOI: 10.1016/j.bbrc.2024.150522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The role of peroxiredoxin 1 (PRDX1), a crucial enzyme that reduces reactive oxygen and nitrogen species levels in HepG2 human hepatocellular carcinoma (HCC) cells, in the regulation of HCC cell stemness under oxidative stress and the underlying mechanisms remain largely unexplored. Here, we investigated the therapeutic potential of non-thermal plasma in targeting cancer stem cells (CSCs) in HCC, focusing on the mechanisms of resistance to oxidative stress and the role of PRDX1. By simulating oxidative stress conditions using the plasma-activated medium, we found that a reduction in PRDX1 levels resulted in a considerable increase in HepG2 cell apoptosis, suggesting that PRDX1 plays a key role in oxidative stress defense mechanisms in CSCs. Furthermore, we found that HepG2 cells had higher spheroid formation capability and increased levels of stem cell markers (CD133, c-Myc, and OCT-4), indicating strong stemness. Interestingly, PRDX1 expression was notably higher in HepG2 cells than in other HCC cell types such as Hep3B and Huh7 cells, whereas the expression levels of other PRDX family proteins (PRDX 2-6) were relatively consistent. The inhibition of PRDX1 expression and peroxidase activity by conoidin A resulted in markedly reduced stemness traits and increased cell death rate. Furthermore, in a xenograft mouse model, PRDX1 downregulation considerably inhibited the formation of solid tumors after plasma-activated medium (PAM) treatment. These findings underscore the critical role of PRDX 1 in regulating stemness and apoptosis in HCC cells under oxidative stress, highlighting PRDX1 as a promising therapeutic target for NTP-based treatment in HCC.
Collapse
Affiliation(s)
- Ying-Ying Hao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Wan-Qiu Xiao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Hui-Na Zhang
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Nan-Nan Yu
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Ying-Hao Han
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk, 56216, Republic of Korea; Department of Applied Biological Engineering, KRIBB School of Biotechnology, Korea National University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Hu-Nan Sun
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China.
| |
Collapse
|
3
|
Krishnamoorthi R, Ganapathy A A, Hari Priya VM, Kumaran A. Future aspects of plant derived bioactive metabolites as therapeutics to combat benign prostatic hyperplasia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118207. [PMID: 38636573 DOI: 10.1016/j.jep.2024.118207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Benign prostatic hyperplasia (BPH), characterized by prostate enlargement due to cell proliferation, is a common urinary disorder in men over 50, manifesting as lower urinary tract symptoms (LUTS). Currently, several therapeutic options are accessible for treating BPH, including medication therapy, surgery and watchful waiting. Conventional drugs such as finasteride and dutasteride are used as 5α-reductase inhibitors for the treatment of BPH. However long-term use of these drugs is restricted due to their unpleasant side effects. Despite the range of available medical therapies, the effective treatment against BPH is still inadequate. Certain therapeutic plants and their phytochemicals have the aforementioned goals and work by regulating this enzyme. AIM OF THE STUDY This review aims to provide a comprehensive insight to advancements in diagnosis of BPH, modern treatment methods and the significance of ethnobotanically relevant medicinal plants as alternative therapeutics for managing BPH. MATERIAL AND METHODS A thorough and systematic literature search was performed using electronic databases and search engines such as PubMed, Web of Science, NCBI and SciFinder till October 2023. Specific keywords such as "benign prostatic hyperplasia", "medicinal plants", "phytochemicals", "pharmacology", "synergy", "ethnobotany", "5-alpha reductase", "alpha blocker" and "toxicology". By include these keywords, a thorough investigation of pertinent papers was assured, and important data about the many facets of BPH could be retrieved. RESULTS After conducting the above investigation, 104 herbal remedies were found to inhibit Phosphodiesterase-5 (PDE-5) inhibition, alpha-blockers, or 5α -reductase inhibition effects which are supported by in vitro, in vivo and clinical trial studies evidence. Of these, 89 plants have ethnobotanical significance as alpha-blockers, alpha-reductase inhibition, or PDE-5 inhibition, and the other fifteen plants were chosen based on their ability to reduce BPH risk factors. Several phytocompounds, including, rutaecarpine, vaccarin, rutin, kaempferol, β-sitosterol, quercetin, dicaffeoylquinic acid, rutaevin, and phytosterol-F have been reported to be useful for the management of BPH. The use of combination therapy offers a strong approach to treating long-term conditions compare to single plant extract drugs. Furthermore, several botanical combinations such as lycopene and curcumin, pumpkin seed oil and saw palmetto oil, combinations of extracts from Funtumia africana (Benth.) Stapf and Abutilon mauritianum (Jacq.) Medik., and Hypselodelphys poggeana (K.Schum.) Milne-Redh. and Spermacoce radiata (DC.) Sieber ex Hiern are also supported through in vitro and in vivo studies for managing BPH through recuperation in patients with chronic long-term illnesses, as measured by the International Prostate Symptom Score. CONCLUSION The review proposes and endorses careful utilization of conventional medications that may be investigated further to discover possible PDE-5, 5 alpha-reductase, an alpha-blocker inhibitor for managing BPH. Even though most conventional formulations, such as 5 alpha-reductase, are readily available, systemic assessment of the effectiveness and mechanism of action of the herbal constituents is still necessary to identify novel chemical moieties that can be further developed for maximum efficacy. However, there exist abundant botanicals and medicinal plants across several regions of Africa, Asia, and the Americas, which can be further studied and developed for utilization as a potential phytotherapeutic for the management of BPH.
Collapse
Affiliation(s)
- Raman Krishnamoorthi
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, Kerala, India
| | - Anand Ganapathy A
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - V M Hari Priya
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Alaganandam Kumaran
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Kumar Dubey S, Dabholkar N, Narayan Pal U, Singhvi G, Kumar Sharma N, Puri A, Kesharwani P. Emerging innovations in cold plasma therapy against cancer: A paradigm shift. Drug Discov Today 2022; 27:2425-2439. [PMID: 35598703 PMCID: PMC9420777 DOI: 10.1016/j.drudis.2022.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022]
Abstract
Cancer is one of the major causes of mortality, accounting for ∼ 9.5 million deaths globally in 2018. The spectrum of conventional treatment for cancer includes surgery, chemotherapy and radiotherapy. Recently, cold plasma therapy surfaced as a novel technique in the treatment of cancer. The FDA approval of the first trial for the use of cold atmospheric plasma (CAP) in cancer therapy in 2019 is evidence of this. This review highlights the mechanisms of action of CAP. Additionally, its applications in anticancer therapy have been reviewed. In summary, this article will introduce the readers to the exciting field of plasma oncology and help them understand the current status and prospects of plasma oncology.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- R&D Healthcare Division, Emami, 13 BT Road, Belgharia, Kolkata 700056, India.
| | - Neha Dabholkar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Udit Narayan Pal
- Council of Scientific and Industrial Research (CSIR)-Central Electronics Engineering Research Institute (CEERI), Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Navin Kumar Sharma
- School of Physics, Devi Ahilya Vishwavidyalaya, Indore, Madhya Pradesh 452001, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute - Frederick, Frederick, MD 21702, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
5
|
Mateu-Sanz M, Ginebra MP, Tornín J, Canal C. Cold atmospheric plasma enhances doxorubicin selectivity in metastasic bone cancer. Free Radic Biol Med 2022; 189:32-41. [PMID: 35843475 DOI: 10.1016/j.freeradbiomed.2022.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
High-dose systemic chemotherapy constitutes a main strategy in the management of bone metastases, employing drugs like doxorubicin (DOX), related with severe side effects. To solve this issue, Cold Atmospheric Plasmas (CAP) have been proposed as potential non-invasive anti-cancer agents capable of improving the efficacy of traditional drugs. Here, we investigate the cytotoxic effects of Plasma Conditioned Medium (PCM) in combination with DOX in prostate cancer cells from bone metastases (PC-3) as well as in non-malignant bone-cells. PCM was able to enhance the cytotoxic potential of DOX both in monolayer and in a 3D bioengineered model mimicking the bone matrix. The combined treatment of PCM + DOX resulted in a profound downregulation of the redox defenses (CAT1, SOD2, GPX1) and drug resistance genes (MRP1, MDR1, BCRP1), resulting in an enhanced uptake of DOX coupled to an overload of intracellular ROS. Besides, PCM improved the cytotoxic potential of DOX interfering on the migratory and clonogenic potential of PC-3 cells. Importantly, non-malignant bone cells were unaffected by the combination of PCM + DOX. Overall, these new findings may represent a new therapeutic approach for the management of bone metastatic prostate cancer in the future.
Collapse
Affiliation(s)
- Miguel Mateu-Sanz
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| | - María-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| | - Juan Tornín
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain; Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain.
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain.
| |
Collapse
|
6
|
Milhan NVM, Chiappim W, Sampaio ADG, Vegian MRDC, Pessoa RS, Koga-Ito CY. Applications of Plasma-Activated Water in Dentistry: A Review. Int J Mol Sci 2022; 23:ijms23084131. [PMID: 35456947 PMCID: PMC9029124 DOI: 10.3390/ijms23084131] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The activation of water by non-thermal plasma creates a liquid with active constituents referred to as plasma-activated water (PAW). Due to its active constituents, PAW may play an important role in different fields, such as agriculture, the food industry and healthcare. Plasma liquid technology has received attention in recent years due to its versatility and good potential, mainly focused on different health care purposes. This interest has extended to dentistry, since the use of a plasma–liquid technology could bring clinical advantages, compared to direct application of non-thermal atmospheric pressure plasmas (NTAPPs). The aim of this paper is to discuss the applicability of PAW in different areas of dentistry, according to the published literature about NTAPPs and plasma–liquid technology. The direct and indirect application of NTAPPs are presented in the introduction. Posteriorly, the main reactors for generating PAW and its active constituents with a role in biomedical applications are specified, followed by a section that discusses, in detail, the use of PAW as a tool for different oral diseases.
Collapse
Affiliation(s)
- Noala Vicensoto Moreira Milhan
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (M.R.d.C.V.); (C.Y.K.-I.)
- Correspondence: ; Tel.: +55-12-991851206
| | - William Chiappim
- Plasma and Processes Laboratory, Department of Physics, Aeronautics Institute of Technology, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, Brazil; (W.C.); (R.S.P.)
| | - Aline da Graça Sampaio
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (M.R.d.C.V.); (C.Y.K.-I.)
| | - Mariana Raquel da Cruz Vegian
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (M.R.d.C.V.); (C.Y.K.-I.)
| | - Rodrigo Sávio Pessoa
- Plasma and Processes Laboratory, Department of Physics, Aeronautics Institute of Technology, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, Brazil; (W.C.); (R.S.P.)
| | - Cristiane Yumi Koga-Ito
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (M.R.d.C.V.); (C.Y.K.-I.)
- Department of Environment Engineering, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12247-016, Brazil
| |
Collapse
|
7
|
Nam G, Kim M, Jang Y, Cho S. Cold Atmospheric Pressure Microplasma Pipette for Disinfection of Methicillin-Resistant Staphylococcus aureus. MICROMACHINES 2021; 12:1103. [PMID: 34577746 PMCID: PMC8465082 DOI: 10.3390/mi12091103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022]
Abstract
Microbial infections should be controlled and prevented for successful wound healing and tissue regeneration. Various disinfection methods exist that use antibiotics, ultraviolet (UV), heat, radiation, or chemical disinfectants; however, cold atmospheric pressure plasma has exhibited a unique and effective antibacterial ability that is not affected by antibiotic resistance or pain. This study develops a cold atmospheric pressure microplasma pipette (CAPMP) that outputs an Ar plasma plume through a tube with an inner radius of 180 μm for disinfection in a small area. The CAPMP was evaluated using Staphylococcus aureus and methicillin-resistant Staphylococcus aureus diluted in liquid media, spread on solid agar, or covered by dressing gauze. An increase in the treatment time of CAPMP resulted in a decrease in the number of colonies of the grown microorganism (colony forming unit) and an increase in the disinfected area for both bacteria. The disinfection ability of CAPMP was observed when the bacteria were covered with dressing gauze and was dependent on the number of gauze layers.
Collapse
Affiliation(s)
- Geunyoung Nam
- Department of Biomedical Engineering, Gachon Advanced Institute for Health Science & Technology, Gachon University, 191 Hambakmoe-ro, Incheon 21999, Korea;
| | - Muhwan Kim
- Femto Science Inc., 557 Dongtangiheung-ro, Hwaseong-si 18469, Gyeonggi-do, Korea; (M.K.); (Y.J.)
| | - Yeonsook Jang
- Femto Science Inc., 557 Dongtangiheung-ro, Hwaseong-si 18469, Gyeonggi-do, Korea; (M.K.); (Y.J.)
| | - Sungbo Cho
- Department of Biomedical Engineering, Gachon Advanced Institute for Health Science & Technology, Gachon University, 191 Hambakmoe-ro, Incheon 21999, Korea;
- Department of Electronic Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Korea
| |
Collapse
|
8
|
Nasiru MM, Frimpong EB, Muhammad U, Qian J, Mustapha AT, Yan W, Zhuang H, Zhang J. Dielectric barrier discharge cold atmospheric plasma: Influence of processing parameters on microbial inactivation in meat and meat products. Compr Rev Food Sci Food Saf 2021; 20:2626-2659. [PMID: 33876887 DOI: 10.1111/1541-4337.12740] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/26/2022]
Abstract
Decontamination of meat is commonly practiced to get rid of or decrease the microbial presence on the meat surface. Dielectric barrier discharge cold atmospheric plasma (DBD-CAP) as innovative technology is a food microbial inactivation technique considered in high regard by food scientists and engineers in present times. However, cold atmospheric plasma application is at the experimental stage, due to lack of sufficient information on its mode of action in inactivating microbes, food shelf-life extensibility, whereas, the nutritional value of food is preserved. In this review, we have appraised recent work on DBD-CAP concerning the decontamination treatment of meat products, highlighting the processing value results on the efficacy of the DBD-CAP microbial inactivation technique. Also, the paper will review the configurations, proposed mechanisms, and chemistry of DBD-CAP. Satisfactory microbial inactivation was observed. In terms of DBD-CAP application on sensory evaluation, inferences from reviewed literature showed that DBD has no significant effect on meat color and tenderness, whereas in contrast, TBARS values of fresh and processed meat are affected. DBD seems economically efficient and environmentally sustainable.
Collapse
Affiliation(s)
- Mustapha Muhammad Nasiru
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,Department of Food Science and Technology, Faculty of Agriculture and Agricultural Technology, Federal University Dutsin-Ma, Kankara-Katsina Road, Dutsin-Ma, Katsina, 821101, Nigeria
| | - Evans Boateng Frimpong
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China
| | - Umair Muhammad
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Jing Qian
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China
| | | | - Wenjing Yan
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China
| | - Hong Zhuang
- Quality and Safety Assessment Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
| | - Jianhao Zhang
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China
| |
Collapse
|
9
|
Mateu-Sanz M, Tornín J, Ginebra MP, Canal C. Cold Atmospheric Plasma: A New Strategy Based Primarily on Oxidative Stress for Osteosarcoma Therapy. J Clin Med 2021; 10:893. [PMID: 33672274 PMCID: PMC7926371 DOI: 10.3390/jcm10040893] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor, and its first line of treatment presents a high failure rate. The 5-year survival for children and teenagers with osteosarcoma is 70% (if diagnosed before it has metastasized) or 20% (if spread at the time of diagnosis), stressing the need for novel therapies. Recently, cold atmospheric plasmas (ionized gases consisting of UV-Vis radiation, electromagnetic fields and a great variety of reactive species) and plasma-treated liquids have been shown to have the potential to selectively eliminate cancer cells in different tumors through an oxidative stress-dependent mechanism. In this work, we review the current state of the art in cold plasma therapy for osteosarcoma. Specifically, we emphasize the mechanisms unveiled thus far regarding the action of plasmas on osteosarcoma. Finally, we review current and potential future approaches, emphasizing the most critical challenges for the development of osteosarcoma therapies based on this emerging technique.
Collapse
Affiliation(s)
- Miguel Mateu-Sanz
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| | - Juan Tornín
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| |
Collapse
|
10
|
Zubor P, Wang Y, Liskova A, Samec M, Koklesova L, Dankova Z, Dørum A, Kajo K, Dvorska D, Lucansky V, Malicherova B, Kasubova I, Bujnak J, Mlyncek M, Dussan CA, Kubatka P, Büsselberg D, Golubnitschaja O. Cold Atmospheric Pressure Plasma (CAP) as a New Tool for the Management of Vulva Cancer and Vulvar Premalignant Lesions in Gynaecological Oncology. Int J Mol Sci 2020; 21:ijms21217988. [PMID: 33121141 PMCID: PMC7663780 DOI: 10.3390/ijms21217988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Vulvar cancer (VC) is a specific form of malignancy accounting for 5–6% of all gynaecologic malignancies. Although VC occurs most commonly in women after 60 years of age, disease incidence has risen progressively in premenopausal women in recent decades. VC demonstrates particular features requiring well-adapted therapeutic approaches to avoid potential treatment-related complications. Significant improvements in disease-free survival and overall survival rates for patients diagnosed with post-stage I disease have been achieved by implementing a combination therapy consisting of radical surgical resection, systemic chemotherapy and/or radiotherapy. Achieving local control remains challenging. However, mostly due to specific anatomical conditions, the need for comprehensive surgical reconstruction and frequent post-operative healing complications. Novel therapeutic tools better adapted to VC particularities are essential for improving individual outcomes. To this end, cold atmospheric plasma (CAP) treatment is a promising option for VC, and is particularly appropriate for the local treatment of dysplastic lesions, early intraepithelial cancer, and invasive tumours. In addition, CAP also helps reduce inflammatory complications and improve wound healing. The application of CAP may realise either directly or indirectly utilising nanoparticle technologies. CAP has demonstrated remarkable treatment benefits for several malignant conditions, and has created new medical fields, such as “plasma medicine” and “plasma oncology”. This article highlights the benefits of CAP for the treatment of VC, VC pre-stages, and postsurgical wound complications. There has not yet been a published report of CAP on vulvar cancer cells, and so this review summarises the progress made in gynaecological oncology and in other cancers, and promotes an important, understudied area for future research. The paradigm shift from reactive to predictive, preventive and personalised medical approaches in overall VC management is also considered.
Collapse
Affiliation(s)
- Pavol Zubor
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
- OBGY Health & Care, Ltd., 010 01 Zilina, Slovakia
- Correspondence: or
| | - Yun Wang
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Alena Liskova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Lenka Koklesova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Anne Dørum
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Bibiana Malicherova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Ivana Kasubova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Jan Bujnak
- Department of Obstetrics and Gynaecology, Kukuras Michalovce Hospital, 07101 Michalovce, Slovakia;
| | - Milos Mlyncek
- Department of Obstetrics and Gynaecology, Faculty Hospital Nitra, Constantine the Philosopher University, 949 01 Nitra, Slovakia;
| | - Carlos Alberto Dussan
- Department of Surgery, Orthopaedics and Oncology, University Hospital Linköping, 581 85 Linköping, Sweden;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144 Doha, Qatar;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, Rheinische Friedrich-Wilhelms-Universität Bonn, 53105 Bonn, Germany;
| |
Collapse
|
11
|
Schneider C, Arndt S, Zimmermann JL, Li Y, Karrer S, Bosserhoff AK. Cold atmospheric plasma treatment inhibits growth in colorectal cancer cells. Biol Chem 2019; 400:111-122. [PMID: 29908123 DOI: 10.1515/hsz-2018-0193] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022]
Abstract
Plasma oncology is a relatively new field of research. Recent developments have indicated that cold atmospheric plasma (CAP) technology is an interesting new therapeutic approach to cancer treatment. In this study, p53 wildtype (LoVo) and human p53 mutated (HT29 and SW480) colorectal cancer cells were treated with the miniFlatPlaSter - a device particularly developed for the treatment of tumor cells - that uses the Surface Micro Discharge (SMD) technology for plasma production in air. The present study analyzed the effects of plasma on colorectal cancer cells in vitro and on normal colon tissue ex vivo. Plasma treatment had strong effects on colon cancer cells, such as inhibition of cell proliferation, induction of cell death and modulation of p21 expression. In contrast, CAP treatment of murine colon tissue ex vivo for up to 2 min did not show any toxic effect on normal colon cells compared to H2O2 positive control. In summary, these results suggest that the miniFlatPlaSter plasma device is able to kill colorectal cancer cells independent of their p53 mutation status. Thus, this device presents a promising new approach in colon cancer therapy.
Collapse
Affiliation(s)
- Christin Schneider
- Institute of Biochemistry (Emil-Fischer-Center), University of Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | - Stephanie Arndt
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauss Allee 11, D-93053 Regensburg, Germany
| | | | - Yangfang Li
- Terraplasma GmbH, Lichtenbergstrasse 8, D-85748 Garching, Germany
| | - Sigrid Karrer
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauss Allee 11, D-93053 Regensburg, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry (Emil-Fischer-Center), University of Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| |
Collapse
|
12
|
Tornin J, Mateu-Sanz M, Rodríguez A, Labay C, Rodríguez R, Canal C. Pyruvate Plays a Main Role in the Antitumoral Selectivity of Cold Atmospheric Plasma in Osteosarcoma. Sci Rep 2019; 9:10681. [PMID: 31337843 PMCID: PMC6650457 DOI: 10.1038/s41598-019-47128-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor but current therapies still have poor prognosis. Cold Atmospheric Plasma (CAP) and Plasma activated media (PAM) have shown potential to eliminate cancer cells in other tumors. It is thought that Reactive Oxygen and Nitrogen species (RONS) in PAM are key players but cell culture media composition alters treatment outcomes and data interpretation due to scavenging of certain RONS. In this work, an atmospheric pressure plasma jet was employed to obtain PAM in the presence or absence of pyruvate and used to treat the SaOS-2 (OS) cell line or hBM-MSC healthy cells. OS cells show higher sensitivity to PAM treatment than healthy cells, both in medium with and without pyruvate, activating apoptosis, DNA damage and deregulating cellular pathways mediated by c-JUN, AKT, AMPK or STAT3. In line with previous works, lack of pyruvate increases cytotoxic potential of PAM affecting cancer and healthy cells by increasing 10–100 times the concentration of H2O2 without altering that of nitrites and thus decreasing CAP anti-tumor selectivity. Suitable conditions for CAP anti-cancer selectivity can be obtained by modifying plasma process parameters (distance, flow, treatment time) to obtain adequate balance of the different RONS in cell culture media.
Collapse
Affiliation(s)
- Juan Tornin
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Miguel Mateu-Sanz
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Aida Rodríguez
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Av. de Roma s/n, Oviedo, Spain
| | - Cédric Labay
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Rene Rodríguez
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Av. de Roma s/n, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Av. de Roma s/n, Oviedo, Spain.,CIBER oncology (CIBERONC), Madrid, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain.
| |
Collapse
|
13
|
Bushlanov PS, Merzlikin NV, Semichev EV, Tskhai VF. Current trends in the treatment of liver abscesses. VESTNIK KHIRURGII IMENI I.I.GREKOVA 2018. [DOI: 10.24884/0042-4625-2018-177-6-87-90] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The paper includes the statistics of liver abscesses, etiology and related features of the diseases. The most common methods of conservative and surgical treatment of liver abscesses, currently used in surgical clinics of the Russian Federation, are presented. A small historical excursus about the existed methods of treatment is given in the paper. A comparative analysis of the currently used methods, their advantages and disadvantages is carried out. Some possible criteria for a certain method of treatment of liver abscesses are listed as well.
Collapse
Affiliation(s)
- P. S. Bushlanov
- Federal State Budgetary Educational Institution of Higher Education «Siberian State Medical University» of the Ministry of Healthcare of the Russian Federation
| | - N. V. Merzlikin
- Federal State Budgetary Educational Institution of Higher Education «Siberian State Medical University» of the Ministry of Healthcare of the Russian Federation
| | | | - V. F. Tskhai
- Federal State Budgetary Educational Institution of Higher Education «Siberian State Medical University» of the Ministry of Healthcare of the Russian Federation
| |
Collapse
|
14
|
Gümbel D, Daeschlein G, Ekkernkamp A, Kramer A, Stope MB. Cold atmospheric plasma in orthopaedic and urologic tumor therapy. GMS HYGIENE AND INFECTION CONTROL 2017; 12:Doc10. [PMID: 28840090 PMCID: PMC5550744 DOI: 10.3205/dgkh000295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cold atmospheric plasma (CAP) is a highly reactive ionized physical state thereby provoking divers biological effects. In medical applications, CAP treatment promotes wound healing, provokes immunostimulation, and is antiseptically active. Moreover, CAP interacts with antiproliferative mechanisms suggesting CAP treatment as a promising anticancer strategy. Here we review the current state of science concerning the so far investigated CAP effects on different cancer entities in orthopaedic and urologic oncology.
Collapse
Affiliation(s)
- Denis Gümbel
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Germany.,Department of Trauma and Orthopaedic Surgery, BG Klinikum Unfallkrankenhaus Berlin gGmbH, Berlin, Germany
| | - Georg Daeschlein
- Department of Dermatology, University Medicine Greifswald, Germany
| | - Axel Ekkernkamp
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Germany.,Department of Trauma and Orthopaedic Surgery, BG Klinikum Unfallkrankenhaus Berlin gGmbH, Berlin, Germany
| | - Axel Kramer
- Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, Germany
| | | |
Collapse
|
15
|
Ghasemi F, Parvin P, Hosseini Motlagh NS, Amjadi A, Abachi S. Laser induced breakdown spectroscopy and acoustic response techniques to discriminate healthy and cancerous breast tissues. APPLIED OPTICS 2016; 55:8227-8235. [PMID: 27828067 DOI: 10.1364/ao.55.008227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Laser induced breakdown spectroscopy and subsequent acoustic response during microplasma formation are employed to identify cancerous human breast tissues. The characteristic optical emissions identify Ca, Na, and Mg rich species in cancerous tissues compared to those of healthy ones. Furthermore, we show that the characteristic parameters of the microplasma, generated on the unhealthy tissues, are elevated. We report higher decibel audio signals emanating from laser induced microplasma and a subsequent audio blueshift for malignant tissues. The higher abundance of trace elements in cancerous tissues as well as higher plasma temperature and electron density in laser induced microplasma (leading to a stronger shockwave) intensify the acoustic signals.
Collapse
|
16
|
Schuster M, Seebauer C, Rutkowski R, Hauschild A, Podmelle F, Metelmann C, Metelmann B, von Woedtke T, Hasse S, Weltmann KD, Metelmann HR. Visible tumor surface response to physical plasma and apoptotic cell kill in head and neck cancer. J Craniomaxillofac Surg 2016; 44:1445-52. [PMID: 27499516 DOI: 10.1016/j.jcms.2016.07.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/27/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022] Open
Abstract
The aim of the study was to learn, whether clinical application of cold atmospheric pressure plasma (CAP) is able to cause (i) visible tumor surface effects and (ii) apoptotic cell kill in squamous cell carcinoma and (iii) whether CAP-induced visible tumor surface response occurs as often as CAP-induced apoptotic cell kill. Twelve patients with advanced head and neck cancer and infected ulcerations received locally CAP followed by palliative treatment. Four of them revealed tumor surface response appearing 2 weeks after intervention. The tumor surface response expressed as a flat area with vascular stimulation (type 1) or a contraction of tumor ulceration rims forming recesses covered with scabs, in each case surrounded by tumor tissue in visible progress (type 2). In parallel, 9 patients with the same kind of cancer received CAP before radical tumor resection. Tissue specimens were analyzed for apoptotic cells. Apoptotic cells were detectable and occurred more frequently in tissue areas previously treated with CAP than in untreated areas. Bringing together both findings and placing side by side the frequency of clinical tumor surface response and the frequency of analytically proven apoptotic cell kill, detection of apoptotic cells is as common as clinical tumor surface response. There was no patient showing signs of an enhanced or stimulated tumor growth under influence of CAP. CAP was made applicable by a plasma jet, kINPen(®) MED (neoplas tools GmbH, Greifswald, Germany).
Collapse
Affiliation(s)
- Matthias Schuster
- Department of Oral and Maxillofacial Surgery/Plastic Surgery (Head: Prof. Dr. Dr. Hans-Robert Metelmann), Greifswald University Medicine, Ferdinand-Sauerbruch-Str. DZ 7, 17475 Greifswald, Germany.
| | - Christian Seebauer
- Department of Oral and Maxillofacial Surgery/Plastic Surgery (Head: Prof. Dr. Dr. Hans-Robert Metelmann), Greifswald University Medicine, Ferdinand-Sauerbruch-Str. DZ 7, 17475 Greifswald, Germany; Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Rico Rutkowski
- Department of Oral and Maxillofacial Surgery/Plastic Surgery (Head: Prof. Dr. Dr. Hans-Robert Metelmann), Greifswald University Medicine, Ferdinand-Sauerbruch-Str. DZ 7, 17475 Greifswald, Germany
| | - Anna Hauschild
- Department of Oral and Maxillofacial Surgery/Plastic Surgery (Head: Prof. Dr. Dr. Hans-Robert Metelmann), Greifswald University Medicine, Ferdinand-Sauerbruch-Str. DZ 7, 17475 Greifswald, Germany
| | - Fred Podmelle
- Department of Oral and Maxillofacial Surgery/Plastic Surgery (Head: Prof. Dr. Dr. Hans-Robert Metelmann), Greifswald University Medicine, Ferdinand-Sauerbruch-Str. DZ 7, 17475 Greifswald, Germany
| | - Camilla Metelmann
- Greifswald University Medicine, Department of Anesthesiology, Anesthesia, Intensive Care-, Emergency- and Pain Medicine, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Bibiana Metelmann
- Greifswald University Medicine, Department of Anesthesiology, Anesthesia, Intensive Care-, Emergency- and Pain Medicine, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; National Centre for Plasma Medicine (ZPM), Charitéplatz 1, 10117 Berlin, Germany
| | - Sybille Hasse
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; National Centre for Plasma Medicine (ZPM), Charitéplatz 1, 10117 Berlin, Germany
| | - Hans-Robert Metelmann
- Department of Oral and Maxillofacial Surgery/Plastic Surgery (Head: Prof. Dr. Dr. Hans-Robert Metelmann), Greifswald University Medicine, Ferdinand-Sauerbruch-Str. DZ 7, 17475 Greifswald, Germany; National Centre for Plasma Medicine (ZPM), Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
17
|
Clinical and Biological Principles of Cold Atmospheric Plasma Application in Skin Cancer. Adv Ther 2016; 33:894-909. [PMID: 27142848 PMCID: PMC4920838 DOI: 10.1007/s12325-016-0338-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 01/12/2023]
Abstract
Plasma-based electrosurgical devices have long been employed for tissue coagulation, cutting, desiccation, and cauterizing. Despite their clinical benefits, these technologies involve tissue heating and their effects are primarily heat-mediated. Recently, there have been significant developments in cold atmospheric pressure plasma (CAP) science and engineering. New sources of CAP with well-controlled temperatures below 40 °C have been designed, permitting safe plasma application on animal and human bodies. In the last decade, a new innovative field, often referred to as plasma medicine, which combines plasma physics, life science, and clinical medicine has emerged. This field aims to exploit effects of mild plasma by controlling the interactions between plasma components (and other secondary species that can be formed from these components) with specific structural elements and functionalities of living cells. Recent studies showed that CAP can exert beneficial effects when applied selectively in certain pathologies with minimal toxicity to normal tissues. The rapid increase in new investigations and development of various devices for CAP application suggest early adoption of cold plasma as a new tool in the biomedical field. This review explores the latest major achievements in the field, focusing on the biological effects, mechanisms of action, and clinical evidence of CAP applications in areas such as skin disinfection, tissue regeneration, chronic wounds, and cancer treatment. This information may serve as a foundation for the design of future clinical trials to assess the efficacy and safety of CAP as an adjuvant therapy for skin cancer.
Collapse
|
18
|
Tabuchi Y, Uchiyama H, Zhao QL, Yunoki T, Andocs G, Nojima N, Takeda K, Ishikawa K, Hori M, Kondo T. Effects of nitrogen on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon-based cold atmospheric pressure plasma. Int J Mol Med 2016; 37:1706-14. [PMID: 27121589 DOI: 10.3892/ijmm.2016.2574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/07/2016] [Indexed: 11/06/2022] Open
Abstract
Cold atmospheric pressure plasma (CAP) is known as a source of biologically active agents, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). In the present study, we examined the effects of nitrogen (N2) on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon (Ar)-CAP. Enormous amounts of hydroxyl (·OH) radicals in aqueous solution were produced using Ar‑CAP generated using a 20 kHz low frequency at 18 kV with a flow rate of 2 l/min. The increase in the levels of ·OH radicals was significantly attenuated by the addition of N2 to Ar gas. On the other hand, the level of total nitrate/nitrite in the supernatant was significantly elevated in the Ar + N2-CAP‑exposed U937 cells. When the cells were exposed to Ar‑CAP, a significant increase in apoptosis was observed, whereas apoptosis was markedly decreased in the cells exposed to Ar + N2-CAP. Microarray and pathway analyses revealed that a newly identified gene network containing a number of heat shock proteins (HSPs), anti-apoptotic genes, was mainly associated with the biological function of the prevention of apoptosis. Quantitative PCR revealed that the expression levels of HSPs were significantly elevated in the cells exposed to Ar + N2-CAP than those exposed to Ar‑CAP. These results indicate that N2 gas in Ar‑CAP modifies the ratio of ROS to RNS, and suppresses the apoptosis induced by Ar‑CAP. The modulation of gaseous conditions in CAP may thus prove to be useful for future clinical applications, such as for switching from a sterilizing mode to cytocidal effect for cancer cells.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | | | - Qing-Li Zhao
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Tatsuya Yunoki
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Gabor Andocs
- Tateyama Machine Co., Ltd., Toyama 930-1305, Japan
| | | | - Keigo Takeda
- Plasma Nanotechnology Research Center, Nagoya University, Nagoya 464-8601, Japan
| | - Kenji Ishikawa
- Plasma Nanotechnology Research Center, Nagoya University, Nagoya 464-8601, Japan
| | - Masaru Hori
- Plasma Nanotechnology Research Center, Nagoya University, Nagoya 464-8601, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
19
|
Gesbert F, Larue L. Non-thermal plasmas: novel preventive and curative therapy against melanomas? Exp Dermatol 2016; 23:716-7. [PMID: 24980188 DOI: 10.1111/exd.12481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2014] [Indexed: 11/27/2022]
Abstract
Malignant melanoma is a very aggressive cancer with a very poor short-term prognosis once metastatic. For years, there was no efficient adjuvant therapy after surgery. Chemotherapy and immunotherapy provided hope, but not victory. Further efforts are therefore required, to find new ways to cure this disease. Physics has, once again, opened up new possibilities for treatment, through the use of non-equilibrium atmospheric pressure plasma (NEAPP). The curative potential of this technique was initially assessed on cancer cells, among which melanoma. In a recent issue, Yajima et al. use NEAPP on benign nevi, as a preventive treatment.
Collapse
Affiliation(s)
- Franck Gesbert
- Institut Curie, Normal and Pathological Development of Melanocytes, Orsay, France; CNRS UMR3347, Orsay, France; INSERM U1021, Orsay, France; Equipe labellisée - Ligue Nationale contre le Cancer, Orsay, France; University of Paris-Sud, Orsay, France
| | | |
Collapse
|
20
|
Hirst AM, Frame FM, Arya M, Maitland NJ, O'Connell D. Low temperature plasmas as emerging cancer therapeutics: the state of play and thoughts for the future. Tumour Biol 2016; 37:7021-31. [PMID: 26888782 PMCID: PMC4875936 DOI: 10.1007/s13277-016-4911-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/22/2016] [Indexed: 12/19/2022] Open
Abstract
The field of plasma medicine has seen substantial advances over the last decade, with applications developed for bacterial sterilisation, wound healing and cancer treatment. Low temperature plasmas (LTPs) are particularly suited for medical purposes since they are operated in the laboratory at atmospheric pressure and room temperature, providing a rich source of reactive oxygen and nitrogen species (RONS). A great deal of research has been conducted into the role of reactive species in both the growth and treatment of cancer, where long-established radio- and chemo-therapies exploit their ability to induce potent cytopathic effects. In addition to producing a plethora of RONS, LTPs can also create strong electroporative fields. From an application perspective, it has been shown that LTPs can be applied precisely to a small target area. On this basis, LTPs have been proposed as a promising future strategy to accurately and effectively control and eradicate tumours. This review aims to evaluate the current state of the literature in the field of plasma oncology and highlight the potential for the use of LTPs in combination therapy. We also present novel data on the effect of LTPs on cancer stem cells, and speculatively outline how LTPs could circumvent treatment resistance encountered with existing therapeutics.
Collapse
Affiliation(s)
- Adam M Hirst
- Department of Physics, York Plasma Institute, University of York, Heslington, UK
| | - Fiona M Frame
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, UK
| | | | - Norman J Maitland
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, UK
| | - Deborah O'Connell
- Department of Physics, York Plasma Institute, University of York, Heslington, UK.
| |
Collapse
|
21
|
Joslin JM, McCall JR, Bzdek JP, Johnson DC, Hybertson BM. Aqueous Plasma Pharmacy: Preparation Methods, Chemistry, and Therapeutic Applications. PLASMA MEDICINE 2016; 6:135-177. [PMID: 28428835 DOI: 10.1615/plasmamed.2016018618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Plasma pharmacy is a subset of the broader field of plasma medicine. Although not strictly defined, the term aqueous plasma pharmacy (APP) is used to refer to the generation and distribution of reactive plasma-generated species in an aqueous solution followed by subsequent administration for therapeutic benefits. APP attempts to harness the therapeutic effects of plasma-generated oxidant species within aqueous solution in various applications, such as disinfectant solutions, cell proliferation related to wound healing, and cancer treatment. The subsequent use of plasma-generated solutions in the APP approach facilitates the delivery of reactive plasma species to internal locations within the body. Although significant efforts in the field of plasma medicine have concentrated on employing direct plasma plume exposure to cells or tissues, here we focus specifically on plasma discharge in aqueous solution to render the solution biologically active for subsequent application. Methods of plasma discharge in solution are reviewed, along with aqueous plasma chemistry and the applications for APP. The future of the field also is discussed regarding necessary research efforts that will enable commercialization for clinical deployment.
Collapse
Affiliation(s)
- Jessica M Joslin
- Symbios Technologies, Inc., 3185 Rampart Road, Bldg. A, Colorado State University Research Innovation Center, Fort Collins, CO 80523
| | - James R McCall
- Symbios Technologies, Inc., 3185 Rampart Road, Bldg. A, Colorado State University Research Innovation Center, Fort Collins, CO 80523
| | - Justin P Bzdek
- Symbios Technologies, Inc., 3185 Rampart Road, Bldg. A, Colorado State University Research Innovation Center, Fort Collins, CO 80523
| | - Derek C Johnson
- Symbios Technologies, Inc., 3185 Rampart Road, Bldg. A, Colorado State University Research Innovation Center, Fort Collins, CO 80523
| | - Brooks M Hybertson
- Symbios Technologies, Inc., 3185 Rampart Road, Bldg. A, Colorado State University Research Innovation Center, Fort Collins, CO 80523.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
22
|
Chernets N, Kurpad DS, Alexeev V, Rodrigues DB, Freeman TA. Reaction Chemistry Generated by Nanosecond Pulsed Dielectric Barrier Discharge Treatment is Responsible for the Tumor Eradication in the B16 Melanoma Mouse Model. PLASMA PROCESSES AND POLYMERS (PRINT) 2015; 12:1400-1409. [PMID: 29104522 PMCID: PMC5667549 DOI: 10.1002/ppap.201500140] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Melanoma is one of the most aggressive metastatic cancers with resistance to radiation and most chemotherapy agents. This study highlights an alternative treatment for melanoma based on nanosecond pulsed dielectric barrier discharge (nsP DBD). We show that a single nsP DBD treatment, directly applied to a 5 mm orthotopic mouse melanoma tumor, completely eradicates it 66% (n = 6; p ≤ 0.05) of the time. It was determined that reactive oxygen and nitrogen species produced by nsP DBD are the main cause of tumor eradication, while nsP electric field and heat generated by the discharge are not sufficient to kill the tumor. However, we do not discount that potential synergy between each plasma generated component (temperature, electric field and reactive species) can enhance the killing efficacy.
Collapse
Affiliation(s)
- Natalie Chernets
- Department of Orthopaedic Surgery, Thomas Jefferson, University, 1015 Walnut Street, Philadelphia, Pennsylvania 19107
| | - Deepa S. Kurpad
- Department of Orthopaedic Surgery, Thomas Jefferson, University, 1015 Walnut Street, Philadelphia, Pennsylvania 19107
| | - Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Dario B. Rodrigues
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Theresa A. Freeman
- Department of Orthopaedic Surgery, Thomas Jefferson, University, 1015 Walnut Street, Philadelphia, Pennsylvania 19107. Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
23
|
Tanaka H, Mizuno M, Ishikawa K, Kondo H, Takeda K, Hashizume H, Nakamura K, Utsumi F, Kajiyama H, Kano H, Okazaki Y, Toyokuni S, Akiyama S, Maruyama S, Yamada S, Kodera Y, Kaneko H, Terasaki H, Hara H, Adachi T, Iida M, Yajima I, Kato M, Kikkawa F, Hori M. Plasma with high electron density and plasma-activated medium for cancer treatment. CLINICAL PLASMA MEDICINE 2015. [DOI: 10.1016/j.cpme.2015.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Low-temperature plasma treatment induces DNA damage leading to necrotic cell death in primary prostate epithelial cells. Br J Cancer 2015; 112:1536-45. [PMID: 25839988 PMCID: PMC4454887 DOI: 10.1038/bjc.2015.113] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/29/2015] [Accepted: 03/03/2015] [Indexed: 12/26/2022] Open
Abstract
Background: In recent years, the rapidly advancing field of low-temperature atmospheric pressure plasmas has shown considerable promise for future translational biomedical applications, including cancer therapy, through the generation of reactive oxygen and nitrogen species. Method: The cytopathic effect of low-temperature plasma was first verified in two commonly used prostate cell lines: BPH-1 and PC-3 cells. The study was then extended to analyse the effects in paired normal and tumour (Gleason grade 7) prostate epithelial cells cultured directly from patient tissue. Hydrogen peroxide (H2O2) and staurosporine were used as controls throughout. Results: Low-temperature plasma (LTP) exposure resulted in high levels of DNA damage, a reduction in cell viability, and colony-forming ability. H2O2 formed in the culture medium was a likely facilitator of these effects. Necrosis and autophagy were recorded in primary cells, whereas cell lines exhibited apoptosis and necrosis. Conclusions: This study demonstrates that LTP treatment causes cytotoxic insult in primary prostate cells, leading to rapid necrotic cell death. It also highlights the need to study primary cultures in order to gain more realistic insight into patient response.
Collapse
|
25
|
|