1
|
Fujii Y, Asadi Z, Mehla K. Cathepsins: Emerging targets in the tumor ecosystem to overcome cancers. Semin Cancer Biol 2025; 112:150-166. [PMID: 40228591 DOI: 10.1016/j.semcancer.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/13/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Cathepsins, a group of lysosomal peptidases, have traditionally been recognized as tumor facilitators. Recent research, however, highlights their critical role in orchestrating cancer and the tumor microenvironment (TME). Primality, cathepsins degrade extracellular matrix, enabling cancer cells to invade and metastasize, while also promoting vascular endothelial infiltration and subsequent angiogenesis. Additionally, cathepsins boost fibroblast growth, thereby supporting tumor progression. More importantly, cathepsins are pivotal in modulating immune cells within the TME by regulating their recruitment, antigen processing and presentation, differentiation, and cell death, primarily contributing to immune suppression. Given their overexpression in tumors and elevated levels in the circulation of cancer patients, it is crucial to consider the systemic effects of cathepsins. Although the comprehensive role of cathepsins in cancer patients' bodies remains underexplored, they likely influence systemic immunity and inflammation, cellular metabolism, muscle wasting, and distant metastasis through their unique proteolytic functions. Notably, cathepsins also confer resistance to chemoradiotherapy by rewriting the cellular profile within the TME. In this context, promising results are emerging from studies combining cathepsin inhibitors with conventional therapies to suppress tumor development effectively. This review aims to decipher the cathepsin-driven networks within cancer cells and the TME, detailing their contribution to chemoradioresistance by reshaping both micro- and macroenvironments. Furthermore, we explore current and future perspectives on therapies targeting cathepsins' interactions, offering insights into innovative treatment strategies.
Collapse
Affiliation(s)
- Yuki Fujii
- Department of Oncology Science, University of Oklahoma Health Sciences, Oklahoma City, OK 73014, USA
| | - Zahra Asadi
- Department of Oncology Science, University of Oklahoma Health Sciences, Oklahoma City, OK 73014, USA; Department of Pathology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Kamiya Mehla
- Department of Oncology Science, University of Oklahoma Health Sciences, Oklahoma City, OK 73014, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA.
| |
Collapse
|
2
|
Saberian E, Jenčová J, Jenča A, Jenča A, Salehipoor F, Zare-Zardini H, Petrášová A, Džupa P, Ebrahimifar M, Allahyartorkaman M, Jenča J. Bleomycin-loaded folic acid-conjugated nanoliposomes: a novel formulation for targeted treatment of oral cancer. Front Bioeng Biotechnol 2025; 13:1535793. [PMID: 40297282 PMCID: PMC12034650 DOI: 10.3389/fbioe.2025.1535793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Targeted delivery of anticancer drugs holds great promise for enhancing therapeutic efficacy while minimizing adverse effects. The folate receptor (FR)-mediated approach offers a selective strategy to target cancer cells overexpressing FR. Bleomycin, an established antitumor antibiotic, suffers from limited efficacy due to poor diffusion into tumor cells. This study examined the anti-cancer potential of folate-targeted liposomal Bleomycin (FL-BLEOMYCIN) in comparison to non-targeted L-BLEOMYCIN on oral cavity cancer (CAL27). The study also investigated FL-Bleomycin's capacity to halt the cell cycle in the G2/M phase using flow cytometry. Methods FL-Bleomycin was produced using thin-layer hydration, followed by incorporation of folic acid into nanoliposomes. To evaluate the release profile, drug release tests were carried out. Cytotoxicity of FL-Bleomycin, L-Bleomycin, and traditional Bleomycin was evaluated using cell viability assays. The cell cycle arrest caused by FL-Bleomycin was examined using flow cytometry. Finally, FL-Bleomycin uptake studies were performed to assess the internalization of FL-Bleomycin by CAL27 cells. Results Compared to L-Bleomycin and traditional Bleomycin, FL-Bleomycin showed noticeably more cytotoxicity against CAL 27 cells. The effective arrest of CAL 27 cells in the G2/M phase of the cell cycle by FL-Bleomycin was verified by flow cytometry. Uptake studies revealed increased internalization of FL-Bleomycin by CAL 27 cells compared to standard formulations. Drug release studies showed a consistent, non-explosive release profile. Cells treated with these nanoliposomes, compared to control groups, exhibited a dose-dependent decrease in the intensity of the 170-kDa EGF-R band as observed by Western blot analysis. Discussion The findings suggest that FL-Bleomycin is a potential method for delivering drugs precisely in tumors expressing folic acid receptors. Its potential for successful cancer treatment is shown by its higher internalization, improved cytotoxicity, and cell cycle prevention in CAL 27 cells. To find out how effective FL-Bleomycin is in vivo and whether it may be used to treat other FR-expressing tumors, more research is necessary.
Collapse
Affiliation(s)
- Elham Saberian
- Pavol Jozef Šafárik University, Clinic of Dentistry and Maxillofacial Surgery Academy of Košice, Kosice, Slovakia
| | - Janka Jenčová
- Pavol Jozef Šafárik University, Clinic of Dentistry and Maxillofacial Surgery Academy of Košice, Kosice, Slovakia
| | - Andrej Jenča
- Pavol Jozef Šafárik University, Clinic of Dentistry and Maxillofacial Surgery Academy of Košice, Kosice, Slovakia
| | - Andrej Jenča
- Pavol Jozef Šafárik University, Clinic of Dentistry and Maxillofacial Surgery Academy of Košice, Kosice, Slovakia
| | - Fateme Salehipoor
- Department of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Adriána Petrášová
- Pavol Jozef Šafárik University, Clinic of Dentistry and Maxillofacial Surgery Academy of Košice, Kosice, Slovakia
| | - Peter Džupa
- Department of Medicine, Slovak Medical University in Bratislava, Bratislava, Slovakia
| | - Meysam Ebrahimifar
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza, Iran
| | | | - Jozef Jenča
- Pavol Jozef Šafárik University, Clinic of Dentistry and Maxillofacial Surgery Academy of Košice, Kosice, Slovakia
| |
Collapse
|
3
|
Gederaas OA, Sharma A, Mbarak S, Sporsheim B, Høgset A, Bogoeva V, Slupphaug G, Hagen L. Proteomic analysis reveals mechanisms underlying increased efficacy of bleomycin by photochemical internalization in bladder cancer cells. Mol Omics 2023; 19:585-597. [PMID: 37345535 DOI: 10.1039/d2mo00337f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Photochemical internalization (PCI) is a promising new technology for site-specific drug delivery, developed from photodynamic therapy (PDT). In PCI, light-induced activation of a photosensitizer trapped inside endosomes together with e.g. chemotherapeutics, nucleic acids or immunotoxins, allows cytosolic delivery and enhanced local therapeutic effect. Here we have evaluated the photosensitizer meso-tetraphenyl chlorine disulphonate (TPCS2a/fimaporfin) in a proteome analysis of AY-27 rat bladder cancer cells in combination with the chemotherapeutic drug bleomycin (BML). We find that BLMPCI attenuates oxidative stress responses induced by BLM alone, while concomitantly increasing transcriptional repression and DNA damage responses. BLMPCI also mediates downregulation of bleomycin hydrolase (Blmh), which is responsible for cellular degradation of BLM, as well as several factors known to be involved in fibrotic responses. PCI-mediated delivery might thus allow reduced dosage of BLM and alleviate unwanted side effects from treatment, including pulmonary fibrosis.
Collapse
Affiliation(s)
- Odrun A Gederaas
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
- Department of Natural Sciences, UiA, University of Agder, N-4630, Kristiansand, Norway.
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
- Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Saide Mbarak
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | - Bjørnar Sporsheim
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
- CMIC Cellular & Molecular Imaging Core Facility, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Anders Høgset
- PCI Biotech AS, Ullernchaussen 64, 0379 Oslo, Norway
| | - Vanya Bogoeva
- Department of Molecular Biology and Cell Cycle, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
- Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
- Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway
| |
Collapse
|
4
|
Enzian P, Rahmanzadeh R. Photochemical Internalization with Fimaporfin: Enhanced Bleomycin Treatment for Head and Neck Cancer. Pharmaceutics 2023; 15:2040. [PMID: 37631254 PMCID: PMC10458762 DOI: 10.3390/pharmaceutics15082040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) still represents the world's sixth most common tumor entity, with increasing incidence. The reachability of light makes HNSCC suitable for light-based therapies such as Photochemical Internalization (PCI). The drug Bleomycin is cytotoxic and used as an anti-tumor medication. Since Bleomycin is endocytosed as a relatively large molecule, part of it is degraded in lysosomes before reaching its intracellular target. The goal of our study was to improve the intracellular availability of Bleomycin with PCI. We investigate the intracellular delivery of Bleomycin after PCI with the photosensitizer Fimaporfin. A systematic variation of Bleomycin and Fimaporfin concentrations and light irradiation led to the pronounced cell death of HNSCC cells. After optimization, the same level of tumor cell death of 75% was reached with a 20-fold lower Bleomycin concentration. This would allow treatment of HNSCC with high local tumor cell death and reduce the side effects of Bleomycin, e.g., lung fibrosis, at the same time. This demonstrates the increased efficacy of the anti-tumor medication Bleomycin in combination with PCI.
Collapse
Affiliation(s)
| | - Ramtin Rahmanzadeh
- Institute of Biomedical Optics, University of Lübeck, 23562 Lübeck, Germany;
| |
Collapse
|
5
|
Suzuki IL, de Araujo MM, Bagnato VS, Bentley MVLB. TNFα siRNA delivery by nanoparticles and photochemical internalization for psoriasis topical therapy. J Control Release 2021; 338:316-329. [PMID: 34437914 DOI: 10.1016/j.jconrel.2021.08.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 07/29/2021] [Accepted: 08/21/2021] [Indexed: 12/26/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease that presents increased expression of tumor necrosis factor α (TNFα), a proinflammatory cytokine. The discovery of RNA interference (RNAi), mediated by short interfering RNA (siRNA), made it possible for the expression of some genes to be eliminated. However, for its application, it is necessary to use carriers that can protect siRNA and release it in the target cells. Herein, we developed a delivery system for siRNA based on hybrid polymer-lipid nanoparticles (PLNs) and combined this system with photochemical internalization (PCI), photoactivating the photosensitizer TPPS2a, to optimize the endosomal escape of TNFα siRNA in the cytoplasm, aiming to use the system as a topical formulation to treat psoriasis. The PLNs composed of 2.0% of Compritol® 888 ATO (lipid), 1.5% of poloxamer 188 and 0.1% of the cationic polymer poly(allylamine hydrochloride) showed an average nanoparticle size of 142 nm, a zeta potential of +25 mV, and the ability to efficiently coencapsulate TPPS2a and complexed siRNA. In addition, these materials did not present cellular toxicity and showed high cellular uptake. In vitro delivery studies using porcine skin model revealed that the PLNs delivered siRNA and TPPS2a into the skin. The efficacy was verified using an in vivo psoriasis animal (hairless mouse) model induced by imiquimod (IMQ) cream. The results revealed that PLN-TPPS2a-TNFα siRNA combined with PCI resulted in a decrease in the levels of TNFα, showing the efficiency of the treatment to silence this cytokine in psoriatic lesions, which was accompanied by a reduction in the redness and scaling of the mouse skin. The results showed the potential of the developed PLNs in combined silencing gene therapy and PCI for topical treatment of psoriasis.
Collapse
Affiliation(s)
- Isabella Luiz Suzuki
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Margarete Moreno de Araujo
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Vanderlei Salvador Bagnato
- Physics Institute of São Carlos, University of São Paulo, Brazil; Hagler Institute for Advanced Studies, Texas A&M University, College Station, USA
| | - Maria Vitoria Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Chang HR, Jung E, Cho S, Jeon YJ, Kim Y. Targeting Non-Oncogene Addiction for Cancer Therapy. Biomolecules 2021; 11:129. [PMID: 33498235 PMCID: PMC7909239 DOI: 10.3390/biom11020129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
While Next-Generation Sequencing (NGS) and technological advances have been useful in identifying genetic profiles of tumorigenesis, novel target proteins and various clinical biomarkers, cancer continues to be a major global health threat. DNA replication, DNA damage response (DDR) and repair, and cell cycle regulation continue to be essential systems in targeted cancer therapies. Although many genes involved in DDR are known to be tumor suppressor genes, cancer cells are often dependent and addicted to these genes, making them excellent therapeutic targets. In this review, genes implicated in DNA replication, DDR, DNA repair, cell cycle regulation are discussed with reference to peptide or small molecule inhibitors which may prove therapeutic in cancer patients. Additionally, the potential of utilizing novel synthetic lethal genes in these pathways is examined, providing possible new targets for future therapeutics. Specifically, we evaluate the potential of TONSL as a novel gene for targeted therapy. Although it is a scaffold protein with no known enzymatic activity, the strategy used for developing PCNA inhibitors can also be utilized to target TONSL. This review summarizes current knowledge on non-oncogene addiction, and the utilization of synthetic lethality for developing novel inhibitors targeting non-oncogenic addiction for cancer therapy.
Collapse
Affiliation(s)
- Hae Ryung Chang
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| | - Eunyoung Jung
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| | - Soobin Cho
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea;
| | - Yonghwan Kim
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| |
Collapse
|
7
|
Cardano M, Tribioli C, Prosperi E. Targeting Proliferating Cell Nuclear Antigen (PCNA) as an Effective Strategy to Inhibit Tumor Cell Proliferation. Curr Cancer Drug Targets 2020; 20:240-252. [PMID: 31951183 DOI: 10.2174/1568009620666200115162814] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
Targeting highly proliferating cells is an important issue for many types of aggressive tumors. Proliferating Cell Nuclear Antigen (PCNA) is an essential protein that participates in a variety of processes of DNA metabolism, including DNA replication and repair, chromatin organization and transcription and sister chromatid cohesion. In addition, PCNA is involved in cell survival, and possibly in pathways of energy metabolism, such as glycolysis. Thus, the possibility of targeting this protein for chemotherapy against highly proliferating malignancies is under active investigation. Currently, approaches to treat cells with agents targeting PCNA rely on the use of small molecules or on peptides that either bind to PCNA, or act as a competitor of interacting partners. Here, we describe the status of the art in the development of agents targeting PCNA and discuss their application in different types of tumor cell lines and in animal model systems.
Collapse
Affiliation(s)
- Miriana Cardano
- Istituto di Genetica Molecolare del C.N.R. "Luca Cavalli-Sforza", Pavia- 27100, Italy
| | - Carla Tribioli
- Istituto di Genetica Molecolare del C.N.R. "Luca Cavalli-Sforza", Pavia- 27100, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare del C.N.R. "Luca Cavalli-Sforza", Pavia- 27100, Italy
| |
Collapse
|
8
|
Lindgren M, Gederaas OA, Siksjø M, Hansen TA, Chen L, Mettra B, Andraud C, Monnereau C. Influence of Polymer Charge on the Localization and Dark- and Photo-Induced Toxicity of a Potential Type I Photosensitizer in Cancer Cell Models. Molecules 2020; 25:molecules25051127. [PMID: 32138280 PMCID: PMC7179247 DOI: 10.3390/molecules25051127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 01/02/2023] Open
Abstract
A current trend within photo-dynamic therapy (PDT) is the development of molecular systems targeting hypoxic tumors. Thus, type I PDT sensitizers could here overcome traditional type II molecular systems that rely on the photo-initiated production of toxic singlet oxygen. Here, we investigate the cell localization properties and toxicity of two polymeric anthracene-based fluorescent probes (neutral Ant-PHEA and cationic Ant-PIm). The cell death and DNA damage of Chinese hamster ovary cancer cells (CHO-K1) were characterized as combining PDT, cell survival studies (MTT-assay), and comet assay. Confocal microscopy was utilized on samples incubated together with either DRAQ5, Lyso Tracker Red, or Mito Tracker Deep Red in order to map the localization of the sensitizer into the nucleus and other cell compartments. While Ant-PHEA did not cause significant damage to the cell, Ant-PIm showed increased cell death upon illumination, at the cost of a significant dark toxicity. Both anthracene chromophores localized in cell compartments of the cytosol. Ant-PIm showed a markedly improved selectivity toward lysosomes and mitochondria, two important biological compartments for the cell’s survival. None of the two anthracene chromophores showed singlet oxygen formation upon excitation in solvents such as deuterium oxide or methanol. Conclusively, the significant photo-induced cell death that could be observed with Ant-PIm suggests a possible type I PDT mechanism rather than the usual type II mechanism.
Collapse
Affiliation(s)
- Mikael Lindgren
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology, Gløshaugen, NO-7491 Trondheim, Norway; (O.A.G.); (M.S.); (T.A.H.)
- Correspondence: ; Tel.: +47-414-66-510
| | - Odrun A. Gederaas
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology, Gløshaugen, NO-7491 Trondheim, Norway; (O.A.G.); (M.S.); (T.A.H.)
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Laboratoriesentret 5, NO-7491 Trondheim, Norway
| | - Monica Siksjø
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology, Gløshaugen, NO-7491 Trondheim, Norway; (O.A.G.); (M.S.); (T.A.H.)
| | - Tom A. Hansen
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology, Gløshaugen, NO-7491 Trondheim, Norway; (O.A.G.); (M.S.); (T.A.H.)
| | - Lena Chen
- Laboratoire de Chimie, CNRS UMR 5182, ENS de Lyon, Université Lyon 1, F-69342 Lyon, France; (L.C.); (B.M.); (C.A.); (C.M.)
| | - Bastien Mettra
- Laboratoire de Chimie, CNRS UMR 5182, ENS de Lyon, Université Lyon 1, F-69342 Lyon, France; (L.C.); (B.M.); (C.A.); (C.M.)
| | - Chantal Andraud
- Laboratoire de Chimie, CNRS UMR 5182, ENS de Lyon, Université Lyon 1, F-69342 Lyon, France; (L.C.); (B.M.); (C.A.); (C.M.)
| | - Cyrille Monnereau
- Laboratoire de Chimie, CNRS UMR 5182, ENS de Lyon, Université Lyon 1, F-69342 Lyon, France; (L.C.); (B.M.); (C.A.); (C.M.)
| |
Collapse
|
9
|
Zhang X, de Boer L, Heiliegers L, Man-Bovenkerk S, Selbo PK, Drijfhout JW, Høgset A, Zaat SA. Photochemical internalization enhances cytosolic release of antibiotic and increases its efficacy against staphylococcal infection. J Control Release 2018; 283:214-222. [DOI: 10.1016/j.jconrel.2018.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/14/2018] [Accepted: 06/03/2018] [Indexed: 12/26/2022]
|
10
|
Sellevold S, Peng Q, Fremstedal ASV, Berg K. Photochemical internalization (PCI) of bleomycin is equally effective in two dissimilar leiomyosarcoma xenografts in athymic mice. Photodiagnosis Photodyn Ther 2017; 20:95-106. [PMID: 28865875 DOI: 10.1016/j.pdpdt.2017.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/21/2017] [Accepted: 08/27/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Photochemical internalization (PCI) is a novel technique for delivery of active macromolecules into cancerous cells, via light activation of a specific photosensitizer and a low dose systemic drug. Numerous pre-clinical studies and one clinical trial have confirmed the treatment potential in carcinomas. Soft tissue sarcomas are rare and generally resistant to radio- and chemotherapy. Due to treatment resistance and surgical morbidity in sarcoma care, we seek to increase knowledge on PCI effects in sarcomas by studying two different, but closely related leiomyosarcomas. METHODS MES-SA and SK-LMS-1 tumours were established in the leg muscles of athymic mice. Treatment effects after AlPcS2a-PCI of bleomycin, PCI with no drug (photodynamic therapy, PDT) and control groups were evaluated by: 1) assessment of tumour growth, 2) uptake of contrast agent during MRI and 3) histopathology. RESULTS PCI of bleomycin induced a similar and significant increase in time to reach the end point in both tumour models, while neither responded to AlPcS2a-PDT. In the MES-SA tumours PCI reduced the growth rate, while in the SK-LMS-1 tumours the growth was blocked for 12days followed by exponential growth close to that of untreated tumours. SK-LMS-1 tumours were more homogenously and better vascularized than MES-SA. After PCI the vascular shutdown was more complete in the SK-LMS-1 tumours than in the MES-SA tumours. CONCLUSIONS AlPcS2a-based PCI, but not PDT, induced significant tumour growth delay in the evaluated sarcomas. Cellular responsiveness to bleomycin and tumour vascularity are identified as predictive markers for PCI treatment effects.
Collapse
Affiliation(s)
- Simen Sellevold
- Division of Orthopaedic Surgery, Oslo University Hospital, Norway; Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Qian Peng
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Ane Sofie Viset Fremstedal
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway.
| |
Collapse
|
11
|
Gaware VS, Håkerud M, Juzeniene A, Høgset A, Berg K, Másson M. Endosome Targeting meso-Tetraphenylchlorin-Chitosan Nanoconjugates for Photochemical Internalization. Biomacromolecules 2017; 18:1108-1126. [PMID: 28245649 DOI: 10.1021/acs.biomac.6b01670] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four amphiphilic covalently linked meso-tetraphenylchlorin-chitosan nanoconjugates were synthesized and evaluated for use in photochemical internalization (PCI) in vitro and in vivo. The synthetic protocol for the preparation of two different hydrophobic chlorin photosensitizers, 5-(4-aminophenyl)-10,15,20-triphenylchlorin and 5-(4-carboxyphenyl)-10,15,20-triphenylchlorin, was optimized. These monofunctional photosensitizers were covalently attached to carrier chitosan via silyl-protected 3,6-di-O-tert-butyldimethylsilyl-chitosan (Di-TBDMS-chitosan) with 0.10 degree of substitution per glucosamine (DS). Hydrophilic moieties such as trimethylamine and/or 1-methylpiperazine were incorporated with 0.9 DS to give fully water-soluble conjugates after removal of the TBDMS groups. A dynamic light scattering (DLS) study confirmed the formation of nanoparticles with a 140-200 nm diameter. These nanoconjugates could be activated at 650 nm (red region) light, with a fluorescence quantum yield (ΦF) of 0.43-0.45, and are thus suitable candidates for use in PCI. These nanoconjugates were taken up and localized in the endocytic vesicles of HCT116/LUC human colon carcinoma cells, and upon illumination they substantially enhanced plasmid DNA transfection. The nanoconjugates were also evaluated in preliminary in vivo experiments in tumor-bearing mice, showing that the nanoconjugates could induce a strong photodynamic therapy (PDT) and also PCI effects in treatment with bleomycin.
Collapse
Affiliation(s)
- Vivek S Gaware
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland , Hofsvallagata 53, IS-107 Reykjavik, Iceland.,PCI Biotech AS , Ullernchauséen 64, N0379 Oslo, Norway
| | - Monika Håkerud
- PCI Biotech AS , Ullernchauséen 64, N0379 Oslo, Norway.,Oslo University Hospital , The Norwegian Radium Hospital, Institute for Cancer Research, Department of Radiation Biology, Montebello, N-0310 Oslo, Norway
| | - Asta Juzeniene
- Oslo University Hospital , The Norwegian Radium Hospital, Institute for Cancer Research, Department of Radiation Biology, Montebello, N-0310 Oslo, Norway
| | - Anders Høgset
- PCI Biotech AS , Ullernchauséen 64, N0379 Oslo, Norway
| | - Kristian Berg
- Oslo University Hospital , The Norwegian Radium Hospital, Institute for Cancer Research, Department of Radiation Biology, Montebello, N-0310 Oslo, Norway
| | - Már Másson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland , Hofsvallagata 53, IS-107 Reykjavik, Iceland
| |
Collapse
|
12
|
Wu L, Liu M, Shan W, Cui Y, Zhang Z, Huang Y. Lipid nanovehicles with adjustable surface properties for overcoming multiple barriers simultaneously in oral administration. Int J Pharm 2017; 520:216-227. [DOI: 10.1016/j.ijpharm.2017.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/31/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
|
13
|
Chiani M, Shokrgozar MA, Azadmanesh K, Norouzian D, Mehrabi MR, Najmafshar A, Akbarzadeh A. Preparation, characterization, and in vitro evaluation of bleomycin-containing nanoliposomes. Chem Biol Drug Des 2016; 89:492-497. [DOI: 10.1111/cbdd.12869] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/21/2016] [Accepted: 09/10/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Mohsen Chiani
- Pilot Nanobiotechnology Department; Pasteur Institute of Iran; Tehran Iran
| | | | | | - Dariush Norouzian
- Pilot Nanobiotechnology Department; Pasteur Institute of Iran; Tehran Iran
| | | | - Aazam Najmafshar
- Clinical Biochemistry Department; Faculty of Pharmacy; Isfahan University of Medical Sciences; Isfahan Iran
| | - Azim Akbarzadeh
- Pilot Nanobiotechnology Department; Pasteur Institute of Iran; Tehran Iran
| |
Collapse
|
14
|
Gederaas OA, Hauge A, Ellingsen PG, Berg K, Altin D, Bardal T, Høgset A, Lindgren M. Photochemical internalization of bleomycin and temozolomide--in vitro studies on the glioma cell line F98. Photochem Photobiol Sci 2016; 14:1357-66. [PMID: 26088711 DOI: 10.1039/c5pp00144g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we evaluate the photosensitizer meso-tetraphenyl chlorin disulphonate (TPCS2a) in survival studies of rat glioma cancer cells in combination with the novel photochemical internalization (PCI) technique. The tested anticancer drugs were bleomycin (BLM) and temozolomide (TMZ). Glioma cells were incubated with TPCS2a (0.2 μg ml(-1), 18 h, 37 °C) before BLM or TMZ stimulation (4 h) prior to red light illumination (652 nm, 50 mW cm(-2)). The cell survival after BLM (0.5 μm)-PCI (40 s light) quantified using the MTT assay was reduced to about 25% after 24 h relative to controls, and to 31% after TMZ-PCI. The supplementing quantification by clonogenic assays, using BLM (0.1 μm), indicated a long-term cytotoxic effect: the surviving fraction of clonogenic cells was reduced to 5% after light exposure (80 s) with PCI, compared to 70% in the case of PDT. In parallel, structural and morphological changes within the cells upon light treatment were examined using fluorescence microscopy techniques. The present study demonstrates that PCI of BLM is an effective method for killing F98 glioma cells, but smaller effects were observed using TMZ following the "light after" strategy. The results are the basis for further in vivo studies on our rat glioma cancer model using PDT and PCI.
Collapse
Affiliation(s)
- Odrun A Gederaas
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Baglo Y, Peng Q, Hagen L, Berg K, Høgset A, Drabløs F, Gederaas OA. Studies of the photosensitizer disulfonated meso-tetraphenyl chlorin in an orthotopic rat bladder tumor model. Photodiagnosis Photodyn Ther 2015; 12:58-66. [DOI: 10.1016/j.pdpdt.2014.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 12/21/2022]
|