1
|
Zardi P, Righino B, Pirolli D, Gramanzini M, Semeraro A, Galano-Frutos JJ, Königs A, Ðorđević L, Maggini M, Buttarelli M, Cappoli N, Romano V, De Donato M, Gallo D, Scambia G, De Rosa MC. Design and synthesis of pyridopyrimidines targeting NEK6 kinase. Arch Biochem Biophys 2025; 768:110391. [PMID: 40090442 DOI: 10.1016/j.abb.2025.110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
We designed a series of pyrido[2,3-d]pyrimidine derivatives based on the structure of the NEK6 kinase inhibitor, compound 21 (2-amino-5-phenyl-5,11-dihydro-3H-indeno[2',1':5,6]pyrido[2,3-d]pyrimidine-4,6-dione), which share the same heterocyclic core. Chemical modifications, aimed at altering the molecular planarity of 21 to enhance water solubility, were guided by receptor-based ligand design and further supported by molecular docking, molecular dynamics simulations, and free energy perturbation calculations. Our results indicate that disrupting the planarity of 21 increases aqueous solubility - nearly doubling it in two cases- while reducing lipophilicity. Among the compounds tested, three showed both improved solubility and NEK6 inhibitory activity exceeding 50 % in single-dose assay.
Collapse
Affiliation(s)
- Paolo Zardi
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Benedetta Righino
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC)-CNR, Roma, L.go F. Vito 1, 00168, Roma, Italy
| | - Davide Pirolli
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC)-CNR, Roma, L.go F. Vito 1, 00168, Roma, Italy
| | - Matteo Gramanzini
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC)-CNR, Roma, L.go F. Vito 1, 00168, Roma, Italy
| | - Alessandro Semeraro
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185, Roma, Italy
| | - Juan José Galano-Frutos
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC)-CNR, Roma, L.go F. Vito 1, 00168, Roma, Italy
| | - Anna Königs
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Luka Ðorđević
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Michele Maggini
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131, Padova, Italy; Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (ICMATE)-CNR, Padova, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Marianna Buttarelli
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Lgo A. Gemelli 8, 00168, Roma, Italy; Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Ginecologia ed Ostetricia, Università Cattolica del Sacro Cuore, Lgo F. Vito 1, 00168, Roma, Italy
| | - Natalia Cappoli
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Lgo A. Gemelli 8, 00168, Roma, Italy; Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Ginecologia ed Ostetricia, Università Cattolica del Sacro Cuore, Lgo F. Vito 1, 00168, Roma, Italy
| | - Viviana Romano
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Lgo A. Gemelli 8, 00168, Roma, Italy; Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Ginecologia ed Ostetricia, Università Cattolica del Sacro Cuore, Lgo F. Vito 1, 00168, Roma, Italy
| | - Marta De Donato
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Lgo A. Gemelli 8, 00168, Roma, Italy; Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Ginecologia ed Ostetricia, Università Cattolica del Sacro Cuore, Lgo F. Vito 1, 00168, Roma, Italy
| | - Daniela Gallo
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Lgo A. Gemelli 8, 00168, Roma, Italy; Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Ginecologia ed Ostetricia, Università Cattolica del Sacro Cuore, Lgo F. Vito 1, 00168, Roma, Italy
| | - Giovanni Scambia
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Lgo A. Gemelli 8, 00168, Roma, Italy; Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Ginecologia ed Ostetricia, Università Cattolica del Sacro Cuore, Lgo F. Vito 1, 00168, Roma, Italy
| | - Maria Cristina De Rosa
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC)-CNR, Roma, L.go F. Vito 1, 00168, Roma, Italy.
| |
Collapse
|
2
|
Panchal NK, Mohanty S, Prince SE. NIMA-related kinase-6 (NEK6) as an executable target in cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:66-77. [PMID: 36074296 DOI: 10.1007/s12094-022-02926-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 01/07/2023]
Abstract
Cancer is a disease that develops when cells begin to divide uncontrollably and spreads to other parts of the body. Proliferation and invasion of cancerous cells are generally known to be influenced by cell cycle-related proteins in human malignancies. Therefore, in this review, we have emphasized on the serine/threonine kinase named NEK6. NEK6 is been deliberated to play a critical role in mitosis progression that includes mitotic spindle formation, metaphase to anaphase transition, and centrosome separation. Moreover, it has a mechanistic role in DNA repair and can cause apoptosis when inhibited. Past studies have connected NEK6 protein expression to cancer cell senescence. Besides, there are reports relating NEK6 to a range of malignancies including breast, lung, ovarian, prostate, kidney, liver, and others. Given its significance, this review attempts to describe the structural and functional aspects of NEK6 in various cellular processes, as well as how it is linked to different forms of cancer. Lastly, we have accentuated, on some of the plausible inhibitors that have been explored against NEK6 overexpression.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Shruti Mohanty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
3
|
Shah BA, Ganai SA, Koul AM, Mohan S, Amin A, Wani Z, Majeed U, Rajamanikandan S, Farooq F, Malik FA, Shah NN, Qadri RA. Exploring novel and potent molecules for disrupting DEPTOR-mTOR interaction through structure-steered screening, extra-exactitude molecular docking, prime binding free energy estimation and voguish molecular dynamics. J Biomol Struct Dyn 2022; 40:12037-12047. [PMID: 34431457 DOI: 10.1080/07391102.2021.1967785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dep domain containing mTOR interacting protein (DEPTOR) has critical implications in the development and progression of human malignancies. Increased expression of DEPTOR promotes the growth of tumor cells by inhibiting the mTORC1, which alleviates the negative feedback inhibition by mTORC1 downstream target S6Ks on PI3K/AKT pathway thereby promotes cell survival and prevents apoptosis. This clearly suggests that targetting DEPTOR-mTOR interactions through small molecules may prove as an effective strategy for circumventing distinct cancers. In this study, we employed a top-down approach for finding three novel molecules which may prove effective in disrupting Deptor-mTOR interaction. Following DEPTOR modelling and validation we performed grid-directed structure-based screening by specifying the residues of DEPTOR known to interact with mTOR. A library of 10,000 protein-protein disrupting molecules was screened against the defined region of DEPTOR. From the screened molecules, 30 molecules with highest binding affinity were chosen for molecular docking. Thirty (30) extra-precision molecular docking experiments and 30 molecular mechanics generalized born surface area (MMGBSA) assays were performed. Following this top 10 molecules in terms of binding affinity were selected and the interaction profile of their corresponding docked files was generated. The top three molecules were finally selected after taking all the three parameters including docking score, binding energy value and interaction profile into consideration. For atomistic insights regarding DEPTOR-topmost hit interactions, molecular dynamics was performed for 100 ns. This molecule after further evaluation may prove as promising candidate for anticancer therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Basit Amin Shah
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Shabir Ahmad Ganai
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Aabid M Koul
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Suma Mohan
- SCBT, Shanmuga Arts, Science, Technology & Research Academy, Tamil Nadu, India
| | - Asif Amin
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Zubair Wani
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Umer Majeed
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | | | - Faizah Farooq
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | | | - Naveed Nazir Shah
- Department of Chest Medicine, Government Medical College, Srinagar, Jammu & Kashmir, India
| | - Raies A Qadri
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| |
Collapse
|
4
|
Palanisamy CP, Cui B, Zhang H, Jayaraman S, Rajagopal P, Veeraraghavan VP. (5E,7E)-4,5,6 Trihydroxy-3-(hydroxymethyl)tetrahydro-2H-pyran-2-ylheptadeca-5,7-dienoate from Euclea crispa (L.) Inhibits Ovarian Cancer Cell Growth by Controlling Apoptotic and Metastatic Signaling Mechanisms. Bioinorg Chem Appl 2022; 2022:4464056. [PMID: 35132312 PMCID: PMC8817890 DOI: 10.1155/2022/4464056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/19/2022] Open
Abstract
Bioactive compound (5E,7E)-4,5,6 trihydroxy-3-(hydroxymethyl)tetrahydro-2H-pyran-2-ylheptadeca-5,7-dienoate (compound 2) was isolated from Euclea crispa (E. crispa) by the chromatographic methods. Further, the compound was confirmed by spectroscopic techniques such as ultraviolet-visible (UV/Vis) spectrometer, Fourier transform infrared (FTIR) spectrometer, and 1H and 13C nuclear magnetic resonance (NMR). Compound 2 exhibited a significant antioxidant activity with IC50 values. It restrained the auxesis of HO-8910 cells in a shot-dependent mode. CXCR4, HER2, and Akt proteins involved in cell proliferation and metastasis were found to be significantly reduced (p < 0.05). The protein that is responsible for the death of cells (Bcl-2 and Bcl-xL) was reduced (p < 0.05), while the protein expression of p53 and caspase-9 was increased (p < 0.05) in compound 2-treated HO-8910 cells. The results of molecular docking analysis showed the binding affinity with CXCR4 and HER2. Thus, compound 2 can serve as a promising chemotherapeutic agent for the intervention of ovarian cancer. The findings of this study conclude that compound 2 from E. crispa might work as a potential antioxidative and chemotherapeutic agent. The in vivo studies and attempts will pave way for this compound to be an effective drug hereafter.
Collapse
Affiliation(s)
- Chella Perumal Palanisamy
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai 600 078, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| |
Collapse
|
5
|
Identification of Novel SARS-CoV-2 Inhibitors: A Structure-Based Virtual Screening Approach. J CHEM-NY 2021. [DOI: 10.1155/2021/1901484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The recent outbreak of the coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) in the last few months raised global health concern. Previous research described that remdesivir and ritonavir can be used as effective drugs against COVID-19. In this study, we applied the structure-based virtual screening (SBVS) on the high similar remdesivir- and ritonavir-approved drugs, selected from the DrugBank database as well as on a series of ritonavir derivatives, selected from the literature. The aim was to provide new potent SARS-CoV-2 main protease (Mpro) inhibitors with high stability. The analysis was performed using AutoDock VINA implicated in the PyRx 0.8 tool. Based on the ligand binding energy, 20 compounds were selected and then analyzed by AutoDock tools. Among the 20 compounds, 3 compounds were selected as high-potent anti-COVID-19.
Collapse
|
6
|
RBBP6 interactome: RBBP6 isoform 3/DWNN and Nek6 interaction is critical for cell cycle regulation and may play a role in carcinogenesis. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Starlin T, Prabha PS, Thayakumar BKA, Gopalakrishnan VK. Screening and GC-MS profiling of ethanolic extract of Tylophora pauciflora. Bioinformation 2019; 15:425-429. [PMID: 31312080 PMCID: PMC6614127 DOI: 10.6026/97320630015425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 11/23/2022] Open
Abstract
Medicinal plants are boundless source of raw materials for the pharmaceutical. Identification of natural compounds from medicinal plant is helpful in the discovery of novel therapeutic agents. Tylophora pauciflora is a medicinal plant, which possess many biological activities such as antioxidant activity, anti-inflammatory activity and anti cancer activity. There is no GC-MS analysis reported on this plant. Thus, the present study is aimed to identify the present of phyto-chemical compounds from ethanolic extract of Tylophora pauciflora using GC-MS analysis. Results, the extract possess totally 14 bioactive compounds among that natural compound of n-hexadecanoic acid has highest % peak area and it have the variety of biological activities such as; anti-oxidant, 5-alpha-reductase-inhibitor, anti-fibrinolytic, hemolytic, antimicrobial activity, hypo-cholesterolemic, nematicide, pesticide, anti-androgenic flavor and hemolytic. It is concluded that the ethanolic extract of Tylophora pauciflora have biologically active compounds. In future by isolating and identifying, these compounds can be considered to treat the human disorders.
Collapse
Affiliation(s)
- Thangarajan Starlin
- Department of Biochemistry and Bioinformatics, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, India 641 02
| | - Poochi Saravana Prabha
- Department of Biochemistry and Bioinformatics, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, India 641 02
| | | | | |
Collapse
|
8
|
Palanisamy CP, Ashafa AOT. Screening of Potential Phytocompounds From Euclea crispa (Thunb.) Leaves Targeting Human Epidermal Growth Factor Receptor 2 (HER2) Signaling Pathway. J Pharm Bioallied Sci 2019; 11:155-161. [PMID: 31148892 PMCID: PMC6537645 DOI: 10.4103/jpbs.jpbs_61_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background: Overexpression of human epidermal growth factor receptor 2 (HER2) plays an important role in the development and progression in a variety of cancers and it is a novel therapeutic target for breast cancer and ovarian cancer. Euclea crispa (E. crispa) is a South African medicinal plant in the family Ebenaceae used in the management of different human diseases and disorders. Aims: The aim of this study was to evaluate the potential inhibitors against HER2 from hexane extract of E. crispa leaves. Materials and Methods: Chemical fingerprinting method was used to identify the presence of natural compounds from the extract whereas their inhibitory activities were analyzed by molecular docking analysis against HER2. Absorption, distribution, metabolism, and excretion (ADME) properties also predicted to establish the pharmacokinetics and pharmacodynamics profiles of the selected compounds. Results: The molecular docking analysis expressed that phenyl glucuronide, hydrocortisone acetate, and 6-(4,6-dioxo-1,4,5,6-tetrahydropyrimidin-2-yl-amino)hexanoic acid trifluoroacetate possess good inhibitory activities with good glide score of −6.63, −5.41, and −5.40 and glide energy of −35.03, −42.51, and −31.38 kcal/mol, respectively when compared with standard Food and Drug Administration–approved drug and other compounds. All the screened compounds were within the acceptable and permissible limits of ADME properties. Conclusion: Thus, from this study it can be concluded that, these screened natural compounds from E. crispa leaves may serve as potential inhibitors for HER2 and they might lead to development of new therapeutic agents against cancer and its associated complications.
Collapse
Affiliation(s)
- Chella Perumal Palanisamy
- Phytomedicine and Phytopharmacology Research Group, Department of Plant Sciences, University of the Free State, Qwaqwa Campus, Phuthaditjhaba, South Africa
| | - Anofi Omotayo Tom Ashafa
- Phytomedicine and Phytopharmacology Research Group, Department of Plant Sciences, University of the Free State, Qwaqwa Campus, Phuthaditjhaba, South Africa
| |
Collapse
|
9
|
De Donato M, Righino B, Filippetti F, Battaglia A, Petrillo M, Pirolli D, Scambia G, De Rosa MC, Gallo D. Identification and antitumor activity of a novel inhibitor of the NIMA-related kinase NEK6. Sci Rep 2018; 8:16047. [PMID: 30375481 PMCID: PMC6207720 DOI: 10.1038/s41598-018-34471-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/12/2018] [Indexed: 12/29/2022] Open
Abstract
The NIMA (never in mitosis, gene A)-related kinase-6 (NEK6), which is implicated in cell cycle control and plays significant roles in tumorigenesis, is an attractive target for the development of novel anti-cancer drugs. Here we describe the discovery of a potent ATP site-directed inhibitor of NEK6 identified by virtual screening, adopting both structure- and ligand-based techniques. Using a homology-built model of NEK6 as well as the pharmacophoric features of known NEK6 inhibitors we identified novel binding scaffolds. Twenty-five compounds from the top ranking hits were subjected to in vitro kinase assays. The best compound, i.e. compound 8 ((5Z)-2-hydroxy-4-methyl-6-oxo-5-[(5-phenylfuran-2-yl)methylidene]-5,6-dihydropyridine-3-carbonitrile), was able to inhibit NEK6 with low micromolar IC50 value, also displaying antiproliferative activity against a panel of human cancer cell lines. Our results suggest that the identified inhibitor can be used as lead candidate for the development of novel anti-cancer agents, thus opening the possibility of new therapeutic strategies.
Collapse
Affiliation(s)
- Marta De Donato
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Benedetta Righino
- Institute of Biochemistry and Clinical Biochemistry - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Flavia Filippetti
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Alessandra Battaglia
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Petrillo
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Gynecologic and Obstetric Clinic, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Davide Pirolli
- Institute of Chemistry of Molecular Recognition (ICRM) - CNR, Rome, Italy
| | - Giovanni Scambia
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Daniela Gallo
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
10
|
Wells CI, Kapadia NR, Couñago RM, Drewry DH. In depth analysis of kinase cross screening data to identify chemical starting points for inhibition of the Nek family of kinases. MEDCHEMCOMM 2018; 9:44-66. [PMID: 30108900 PMCID: PMC6071746 DOI: 10.1039/c7md00510e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Abstract
Potent, selective, and cell active small molecule kinase inhibitors are useful tools to help unravel the complexities of kinase signaling. As the biological functions of individual kinases become better understood, they can become targets of drug discovery efforts. The small molecules used to shed light on function can also then serve as chemical starting points in these drug discovery efforts. The Nek family of kinases has received very little attention, as judged by number of citations in PubMed, yet they appear to play many key roles and have been implicated in disease. Here we present our work to identify high quality chemical starting points that have emerged due to the increased incidence of broad kinome screening. We anticipate that this analysis will allow the community to progress towards the generation of chemical probes and eventually drugs that target members of the Nek family.
Collapse
Affiliation(s)
- C I Wells
- Structural Genomics Consortium , Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , 27599 USA .
| | - N R Kapadia
- Structural Genomics Consortium , Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , 27599 USA .
| | - R M Couñago
- Structural Genomics Consortium , Universidade Estadual de Campinas - UNICAMP , Campinas , SP , 13083 Brazil
| | - D H Drewry
- Structural Genomics Consortium , Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , 27599 USA .
| |
Collapse
|
11
|
Poornima K, Palanisamy CP, Sundaram S, Kanniappan GV. Chromatographic Fingerprinting Analysis of Secondary Metabolites Present in Ethanolic Extract of Tabernaemontana divaricata (L.) R. Br. by HPTLC Technique. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/22297928.2017.1284608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Identification of Binding Mode and Prospective Structural Features of Novel Nef Protein Inhibitors as Potential Anti-HIV Drugs. Cell Biochem Biophys 2016; 75:49-64. [DOI: 10.1007/s12013-016-0774-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022]
|
13
|
Mathi P, Veeramachaneni GK, Raj KK, Talluri VR, Bokka VR, Botlagunta M. In vitro and in silico characterization of angiogenic inhibitors from Sophora interrupta. J Mol Model 2016; 22:247. [PMID: 27683258 DOI: 10.1007/s00894-016-3102-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/01/2016] [Indexed: 02/03/2023]
Abstract
Sophora interrupta Bedd, (Fabaceae) is used in Indian folk medicine to treat cancer. Angiogenesis is one of the crucial characteristics of cancer metastasis and is regulated by vascular endothelial growth factor (VEGF). In this study, we examined the antiangiogenic properties of the root ethyl acetate extract of Sophora interrupta by various methods. In vitro antioxidant activity (100-600 μg/ml) of S. interrupta ethyl acetate (SEA) extract was evaluated by DPPH and ABTS, anti-inflammatory activity (50, 100 and 150 μg/ml) by estimating nitric oxide (NO) levels, anti-angiogenic activity (200 and 500 μg/ml) was validated by chorio allantoic membrane (CAM) assay and in silico molecular dynamic (MD) simulations analyses (25 ns) were performed to identify the anti-angiogenic compounds extracted from root extract. The antioxidative activity of SEA extract at IC50 (200 ± 0.6 μg/mL) is equal to that of ascorbic acid at IC50 (50 ± 0.6 μg/mL), and the anti-inflammatory activity of SEA extract at IC50 (150 ± 0.2 μg/mL) was inhibited significantly by nitric oxide (NO) production. The SEA extract significantly reduced the sprouting of new blood vessels at ID50 500 ± 0.13 μg/mL in the CAM assay. Gas chromatography-mass spectrometry analysis of the SEA extract detected 34 secondary metabolites, of which 6a,12a-dihydro-6H-(1,3)dioxolo(5,6)benzofuro(3,2-c)chromen-3-ol (maackiain) and funiculosin formed strong hydrogen bond interactions with Lys 920, Thr 916 and Cys 919 (2H), as well as Glu 917 of VEGFR2, and these interactions were similar to those of the anti-angiogenic compound axitinib. Significant findings in all the assays performed indicate that SEA extract has potential anti-angiogenic compounds that may interfere with VEGF-induced cancer malignancy.
Collapse
Affiliation(s)
- Pardhasaradhi Mathi
- Biomedical Research Laboratory, Department of Biotechnology, KLEF University (Koneru Lakshmaiah Educational Foundation), Green fields; Vaddeswaram, Guntur (Dist), 522502, Andhra Pradesh, India.,Upstream Process Development Team, Lupin Limited, Biotechnology R&D, 1156, Ghotawade Village, Mulshi Taluka, Pune-411042, India
| | - Ganesh Kumar Veeramachaneni
- Biomedical Research Laboratory, Department of Biotechnology, KLEF University (Koneru Lakshmaiah Educational Foundation), Green fields; Vaddeswaram, Guntur (Dist), 522502, Andhra Pradesh, India
| | - K Kranthi Raj
- Biomedical Research Laboratory, Department of Biotechnology, KLEF University (Koneru Lakshmaiah Educational Foundation), Green fields; Vaddeswaram, Guntur (Dist), 522502, Andhra Pradesh, India
| | - Venkateswara Rao Talluri
- Biomedical Research Laboratory, Department of Biotechnology, KLEF University (Koneru Lakshmaiah Educational Foundation), Green fields; Vaddeswaram, Guntur (Dist), 522502, Andhra Pradesh, India
| | - Venkata Raman Bokka
- Department of Basic Sciences-Chemistry, Madanapalle Institute of Technology and Science (MITS), Madanapalle, Chittoor, 517325, Andhra Pradesh, India
| | - Mahendran Botlagunta
- Biomedical Research Laboratory, Department of Biotechnology, KLEF University (Koneru Lakshmaiah Educational Foundation), Green fields; Vaddeswaram, Guntur (Dist), 522502, Andhra Pradesh, India.
| |
Collapse
|
14
|
Lockhat HA, Silva JRA, Alves CN, Govender T, Lameira J, Maguire GEM, Sayed Y, Kruger HG. Binding Free Energy Calculations of Nine FDA-approved Protease Inhibitors Against HIV-1 Subtype C I36T↑T Containing 100 Amino Acids Per Monomer. Chem Biol Drug Des 2016; 87:487-98. [PMID: 26613568 DOI: 10.1111/cbdd.12690] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/28/2015] [Accepted: 10/22/2015] [Indexed: 12/19/2022]
Abstract
In this work, have investigated the binding affinities of nine FDA-approved protease inhibitor drugs against a new HIV-1 subtype C mutated protease, I36T↑T. Without an X-ray crystal structure, homology modelling was used to generate a three-dimensional model of the protease. This and the inhibitor models were employed to generate the inhibitor/I36T↑T complexes, with the relative positions of the inhibitors being superimposed and aligned using the X-ray crystal structures of the inhibitors/HIV-1 subtype B complexes as a reference. Molecular dynamics simulations were carried out on the complexes to calculate the average binding free energies for each inhibitor using the molecular mechanics generalized Born surface area (MM-GBSA) method. When compared to the binding free energies of the HIV-1 subtype B and subtype C proteases (calculated previously by our group using the same method), it was clear that the I36T↑T proteases mutations and insertion had a significant negative effect on the binding energies of the non-pepditic inhibitors nelfinavir, darunavir and tipranavir. On the other hand, ritonavir, amprenavir and indinavir show improved calculated binding energies in comparison with the corresponding data for wild-type C-SA protease. The computational model used in this study can be used to investigate new mutations of the HIV protease and help in establishing effective HIV drug regimes and may also aid in future protease drug design.
Collapse
Affiliation(s)
- Husain A Lockhat
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - José R A Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, Belém, PA, 66075-110, Brazil
| | - Cláudio N Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, Belém, PA, 66075-110, Brazil
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, Belém, PA, 66075-110, Brazil
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Wits, 2050, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| |
Collapse
|
15
|
Chaitanya S, Das M, Bhat P, Ebenezer M. Computational Modelling of Dapsone Interaction With Dihydropteroate Synthase inMycobacterium leprae; Insights Into Molecular Basis of Dapsone Resistance in Leprosy. J Cell Biochem 2015; 116:2293-303. [DOI: 10.1002/jcb.25180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/31/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Sundeep Chaitanya
- Research Officer; Department of Laboratories; Molecular Biology and Immunology Division; The Schieffelin Institute of Health-Research and Leprosy Center (SIH-R&LC); Karigiri; Vellore Tamil Nadu 632106 India
| | - Madhusmita Das
- Research Officer; Department of Laboratories; Molecular Biology and Immunology Division; The Schieffelin Institute of Health-Research and Leprosy Center (SIH-R&LC); Karigiri; Vellore Tamil Nadu 632106 India
| | - Pritesh Bhat
- Applications Scientist; Schrodinger, Inc.; Near KMWA Vidya Niketan; Mahalakshmipuram; Bangalore 560 086 India
| | - Mannam Ebenezer
- The Schieffelin Institute of Health-Research and Leprosy Center (SIH-R&LC); Karigiri; Vellore Tamil Nadu 632106 India
| |
Collapse
|
16
|
Moraes EC, Meirelles GV, Honorato RV, de Souza TDACB, de Souza EE, Murakami MT, de Oliveira PSL, Kobarg J. Kinase inhibitor profile for human nek1, nek6, and nek7 and analysis of the structural basis for inhibitor specificity. Molecules 2015; 20:1176-91. [PMID: 25591119 PMCID: PMC6272266 DOI: 10.3390/molecules20011176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022] Open
Abstract
Human Neks are a conserved protein kinase family related to cell cycle progression and cell division and are considered potential drug targets for the treatment of cancer and other pathologies. We screened the activation loop mutant kinases hNek1 and hNek2, wild-type hNek7, and five hNek6 variants in different activation/phosphorylation statesand compared them against 85 compounds using thermal shift denaturation. We identified three compounds with significant Tm shifts: JNK Inhibitor II for hNek1(Δ262-1258)-(T162A), Isogranulatimide for hNek6(S206A), andGSK-3 Inhibitor XIII for hNek7wt. Each one of these compounds was also validated by reducing the kinases activity by at least 25%. The binding sites for these compounds were identified by in silico docking at the ATP-binding site of the respective hNeks. Potential inhibitors were first screened by thermal shift assays, had their efficiency tested by a kinase assay, and were finally analyzed by molecular docking. Our findings corroborate the idea of ATP-competitive inhibition for hNek1 and hNek6 and suggest a novel non-competitive inhibition for hNek7 in regard to GSK-3 Inhibitor XIII. Our results demonstrate that our approach is useful for finding promising general and specific hNekscandidate inhibitors, which may also function as scaffolds to design more potent and selective inhibitors.
Collapse
Affiliation(s)
- Eduardo Cruz Moraes
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | - Gabriela Vaz Meirelles
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | - Rodrigo Vargas Honorato
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | | | - Edmarcia Elisa de Souza
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | - Mario Tyago Murakami
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | | | - Jörg Kobarg
- Programa de Pós-graduação em Biologia Funcional e Molecular, Departamento de Bioquímica e BiologiaTecidual, Instituto de Biologia, UniversidadeEstadual de Campinas, Campinas, 13083-862 SP, Brazil.
| |
Collapse
|