1
|
Anush Sheikh KH, Haokip SW, Hazarika BN, Devi OB, Lian HN, Yumkhaibam T, Ningombam L, Singh YD. Phyto-chemistry and Therapeutic Potential of Natural Flavonoid Naringin: A Consolidated Review. Chin J Integr Med 2025:10.1007/s11655-025-3826-9. [PMID: 39994136 DOI: 10.1007/s11655-025-3826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 02/26/2025]
Affiliation(s)
- K H Anush Sheikh
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Songthat William Haokip
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - B N Hazarika
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Oinam Bidyalaxmi Devi
- Department of Vegetable Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Hau Ngaih Lian
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Tabalique Yumkhaibam
- Department of Vegetable Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Linthoingambi Ningombam
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India.
| |
Collapse
|
2
|
Chowdhury A, Mitra Mazumder P. Unlocking the potential of flavonoid-infused drug delivery systems for diabetic wound healing with a mechanistic exploration. Inflammopharmacology 2024:10.1007/s10787-024-01561-5. [PMID: 39217278 DOI: 10.1007/s10787-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Diabetes is one of the common endocrine disorders generally characterized by elevated levels of blood sugar. It can originate either from the inability of the pancreas to synthesize insulin, which is considered as an autoimmune disorder, or the reduced production of insulin, considered as insulin resistivity. A wound can be defined as a condition of damage to living tissues including skin, mucous membrane and other organs as well. Wounds get complicated with respect to time based on specific processes like diabetes mellitus, obesity and immunocompromised conditions. Proper growth and functionality of the epidermis gets sustained due to impaired diabetic wound healing which shows a sign of dysregulated wound healing process. In comparison with synthetic medications, phytochemicals like flavonoids, tannins, alkaloids and glycosides have gained enormous importance relying on their distinct potential to heal diabetic wounds. Flavonoids are one of the most promising and important groups of natural compounds which can be used to treat acute as well as chronic wounds. Flavonoids show excellent properties due to the presence of hydroxyl groups in their chemical structure, which makes this class of compounds different from others. Based on the novel principles of nanotechnology via utilizing suitable drug delivery systems, the delivery of bioactive constituents from plant source amplifies the wound-healing mechanism, minimizes complexities and enhances bioavailability. Hence, the encapsulation and applicability of flavonoids with an emphasis on mechanistic route and wound-healing therapeutics have been highlighted in the subsequent study with focus on multiple drug delivery systems.
Collapse
Affiliation(s)
- Ankit Chowdhury
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
3
|
Uçar K, Göktaş Z. Biological activities of naringenin: A narrative review based on in vitro and in vivo studies. Nutr Res 2023; 119:43-55. [PMID: 37738874 DOI: 10.1016/j.nutres.2023.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Naringenin (4',5,7-trihydroxyflavonone) is a phytochemical mainly found in citrus fruits. It is a promising phytochemical for human health because of its beneficial effects. This review aims to present comprehensive information on naringenin biological activities along with its action mechanisms and explain the pharmacokinetic properties of naringenin. This study involves a comprehensive literature review of in vitro and in vivo studies examining the effects of naringenin. Naringenin has antidiabetic, anticancer, antimicrobial, antiobesity, gastroprotective, immunomodulator, cardioprotective, nephroprotective, and neuroprotective properties. These properties are primarily attributed to its antioxidant and anti-inflammatory activities. The most important antioxidant activities of naringenin including free radical scavenging and preventing lipid peroxidation. Naringenin can increase the concentration of antioxidant enzymes and inhibit metal chelation and various pro-oxidant enzymes. Anti-inflammatory activities of naringenin are associated with decreased mitogen-activated protein kinase activities and nuclear factor kappa B by modulating the expression and release of proinflammatory cytokine and enzymes. In vitro and in vivo studies show that naringenin has promising biological activities for a variety of diseases. More research must be conducted on the bioactivities of naringenin, and to determine its optimum dose. In addition, the efficiency of naringenin must be examined with enhanced bioavailability methods to be able to increase its therapeutic effect.
Collapse
Affiliation(s)
- Kübra Uçar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| | - Zeynep Göktaş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye.
| |
Collapse
|
4
|
Wang J, Casimiro-Garcia A, Johnson BG, Duffen J, Cain M, Savary L, Wang S, Nambiar P, Lech M, Zhao S, Xi L, Zhan Y, Olson J, Stejskal JA, Lin H, Zhang B, Martinez RV, Masek-Hammerman K, Schlerman FJ, Dower K. A protein kinase C α and β inhibitor blunts hyperphagia to halt renal function decline and reduces adiposity in a rat model of obesity-driven type 2 diabetes. Sci Rep 2023; 13:16919. [PMID: 37805649 PMCID: PMC10560236 DOI: 10.1038/s41598-023-43759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 09/28/2023] [Indexed: 10/09/2023] Open
Abstract
Type 2 diabetes (T2D) and its complications can have debilitating, sometimes fatal consequences for afflicted individuals. The disease can be difficult to control, and therapeutic strategies to prevent T2D-induced tissue and organ damage are needed. Here we describe the results of administering a potent and selective inhibitor of Protein Kinase C (PKC) family members PKCα and PKCβ, Cmpd 1, in the ZSF1 obese rat model of hyperphagia-induced, obesity-driven T2D. Although our initial intent was to evaluate the effect of PKCα/β inhibition on renal damage in this model setting, Cmpd 1 unexpectedly caused a marked reduction in the hyperphagic response of ZSF1 obese animals. This halted renal function decline but did so indirectly and indistinguishably from a pair feeding comparator group. However, above and beyond this food intake effect, Cmpd 1 lowered overall animal body weights, reduced liver vacuolation, and reduced inguinal adipose tissue (iWAT) mass, inflammation, and adipocyte size. Taken together, Cmpd 1 had strong effects on multiple disease parameters in this obesity-driven rodent model of T2D. Further evaluation for potential translation of PKCα/β inhibition to T2D and obesity in humans is warranted.
Collapse
Affiliation(s)
- Ju Wang
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA.
| | | | - Bryce G Johnson
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Jennifer Duffen
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Michael Cain
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Mediar Therapeutics, Boston, MA, USA
| | - Leigh Savary
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Instem Life Science Systems Ltd, Mount Ida College, South Hadley, MA, USA
| | - Stephen Wang
- Pharmacokinetics and Drug Metabolism, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Novartis Gene Therapies, Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - Prashant Nambiar
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Strand Therapeutics, Cambridge, MA, USA
| | - Matthew Lech
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Shanrong Zhao
- Clinical Genetics and Bioinformatics, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Amunix Pharmaceuticals, San Francisco, CA, USA
| | - Li Xi
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Yutian Zhan
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Jennifer Olson
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - James A Stejskal
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, CT, USA
- Charles River Laboratories, Shrewsbury, MA, USA
| | - Hank Lin
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Sunovion Pharmaceuticals Inc., Marlborough, MA, USA
| | - Baohong Zhang
- Clinical Genetics and Bioinformatics, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Data Sciences, Biogen, Cambridge, MA, USA
| | - Robert V Martinez
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Center for Technological Innovation, Pfizer Worldwide Research and Development, San Francisco, CA, USA
| | | | - Franklin J Schlerman
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Ken Dower
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA.
| |
Collapse
|
5
|
Ning W, Xu X, Zhou S, Wu X, Wu H, Zhang Y, Han J, Wang J. Effect of high glucose supplementation on pulmonary fibrosis involving reactive oxygen species and TGF-β. Front Nutr 2022; 9:998662. [PMID: 36304232 PMCID: PMC9593073 DOI: 10.3389/fnut.2022.998662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
This study explored the profibrotic impact of high glucose in the lung and potential mechanisms using latent TGF-β1-induced human epithelial cell pulmonary fibrosis and bleomycin (BLM)-induced pulmonary fibrosis models. Results demonstrated that high glucose administration induced epithelial–mesenchymal transition (EMT) in human epithelial cells in a dose-dependent manner via activating latent TGF-β1, followed by increased expression of mesenchymal-related proteins and decreased expression of epithelial marker protein E-cadherin. Further mechanism analysis showed that administration of high glucose dose-dependently promoted total and mitochondrial reactive oxygen species (ROS) accumulation in human epithelial cells, which promoted latent TGF-β1 activation. However, N-acetyl-L-cysteine, a ROS eliminator, inhibited such effects. An in vivo feed study found that mice given a high-glucose diet had more seriously pathological characteristics of pulmonary fibrosis in BLM-treated mice, including increasing infiltrated inflammatory cells, collagen I deposition, and the expression of mesenchymal-related proteins while decreasing the expression of the epithelial marker E-cadherin. In addition, high glucose intake further increased TGF-β1 concentration and upregulated p-Smad2/3 and snail in lung tissues from BLM-treated mice when compared to BLM-treated mice. Finally, supplementation with high glucose further increased the production of lipid peroxidation metabolite malondialdehyde and decreased superoxide dismutase activity in BLM-treated mice. Collectively, these findings illustrate that high glucose supplementation activates a form of latent TGF-β1 by promoting ROS accumulation and ultimately exacerbates the development of pulmonary fibrosis.
Collapse
|
6
|
Role of olmesartan in ameliorating diabetic nephropathy in rats by targeting the AGE/PKC, TLR4/P38-MAPK and SIRT-1 autophagic signaling pathways. Eur J Pharmacol 2022; 928:175117. [PMID: 35752350 DOI: 10.1016/j.ejphar.2022.175117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/21/2022]
Abstract
Diabetic nephropathy (DN) is one of the most serious consequences of diabetes and the most common reason for end-stage renal disease. The current study was set out to investigate the ability of olmesartan medoxomil (OM) to treat DN by evaluating the reno-protective effects of this drug on fat/fructose/streptozotocin (F/Fr/STZ)-induced diabetic rat model. This model was induced by feeding rats high F/Fr diet for 7 weeks followed by injection of a single sub-diabetogenic dose of STZ (35mg/kg; i.p). The F/Fr/STZ-induced diabetic rats were orally treated with either OM (10 mg/kg) or pioglitazone (10 mg/kg); as a standard drug daily for four consecutive weeks. F/Fr/STZ-induced diabetic rats propagated inflammatory, oxidative, and fibrotic events. OM was able to oppose the injurious effects of diabetes; it significantly reduced the elevated levels of advanced glycated end products (AGEs) and downregulated PKC gene expression, therefore, indicating its antioxidant capacity evidenced by mitigation in GSH, MDA renal content. Moreover, OM impaired the inflammatory cascade by suppressing the elevated level of renal TLR4 as well as diminished the inflammatory profibrotic cytokine TGF-β1. Additionally, OM was able to turn off the MAPK cascade mediated by an upsurge in renal angiotensin 1-7 content and decrease the level of renal tubular injury marker, KIM-1. Furthermore, OM enhanced the autophagic activity pathway by upregulating of gene expression of SIRT-1. The histopathological examination confirmed these results. Finally, OM protected against type 2 diabetes-related nephropathy complications by altering inflammatory pathways, oxidative, fibrotic, and autophagic processes triggered by renal glucose overload. This study shows that OM has a reno-protective effect against DN in rats by inhibiting the AGE/PKC, TLR4/P38-MAPK, and SIRT-1 autophagic signaling pathways.
Collapse
|
7
|
Yue Y, Yeh JN, Chiang JY, Sung PH, Chen YL, Liu F, Yip HK. Intrarenal arterial administration of human umbilical cord-derived mesenchymal stem cells effectively preserved the residual renal function of diabetic kidney disease in rat. Stem Cell Res Ther 2022; 13:186. [PMID: 35526048 PMCID: PMC9080206 DOI: 10.1186/s13287-022-02857-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/10/2022] [Indexed: 12/16/2022] Open
Abstract
Background This experimental study was designed as a preclinical study for testing the hypothesis that intrarenal arterial (IRA) transfusion of human umbilical cord-derived mesenchymal stem cells (HUCDMSCs) therapy preserved the residual renal function of diabetic kidney disease (DKD) in rat [induction by 5/6 nephrectomy of left kidney and right nephrectomy, followed by intraperitoneal administration of aminoguanidine (180 mg/kg) and streptozotocin (30 mg/kg)]. Methods Animals (n = 24) were categorized into group 1 (sham-operated control), group 2 (DKD), group 3 [DKD + HUCDMSCs (2.1 × 105/IRA injection at day 28 after CKD induction)] and group 4 [(DKD + HUCDMSCs (6.3 × 105/IRA injection)]. Results By day 60 after DKD induction, the kidneys were harvested and the result showed that the creatinine level, ratio of urine protein/urine creatinine and kidney injury score were lowest in group 1, highest in group 2 and significantly lower in group 4 than in group 3 (all p < 0.0001). The protein expressions of apoptotic (cleaved caspase-3/cleaved PARP/mitochondrial Bax), fibrotic (TGF-ß/p-Smad3), autophagic (ratio of LC3B-II/LC3B-I, Atg5/Beclin-1), oxidative stress (NOX-1/NOX-2/oxidized protein/p22phox), mitochondrial/DNA-damaged (cytosolic-cytochrome-C/DRP1/γ-H2AX) and inflammatory (MMP-9/TNF-α/p-NF-κB) biomarkers exhibited an identical pattern, whereas the protein expressions of angiogenesis factors (CD31/vWF/vascularity) exhibited an opposite pattern of creatinine level among the groups (all p < 0.0001). Histopathological findings demonstrated the renal tubular-damaged (KIM-1)/kidney fibrosis area/oxidative stress (8-OHdG + cells) expressed an identical pattern, whereas the podocyte components (ZO-1/synaptopodin/podocin) exhibited an opposite pattern of creatinine level among the groups (all p < 0.0001). No tumorigenesis or immune rejection event was identified. Conclusion IRA injection of xenogeneic MSCs was safe and effectively protected the residual renal function and architectural integrity in DKD rat.
Collapse
Affiliation(s)
- Ya Yue
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Jui-Ning Yeh
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China.,Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Fanna Liu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan. .,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan. .,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan. .,Department of Nursing, Asia University, Taichung, 41354, Taiwan. .,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, 361028, Fujian, China.
| |
Collapse
|
8
|
Liu J, Chen Y, Pei F, Zeng C, Yao Y, Liao W, Zhao Z. Extracellular Vesicles in Liquid Biopsies: Potential for Disease Diagnosis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6611244. [PMID: 33506022 PMCID: PMC7814955 DOI: 10.1155/2021/6611244] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 02/05/2023]
Abstract
Liquid biopsy is conducted through minimally invasive or noninvasive procedures, and the resulting material can be subjected to genomic, proteomic, and lipidomic analyses for early diagnosis of cancers and other diseases. Extracellular vesicles (EVs), one kind of promising tool for liquid biopsy, are nanosized bilayer particles that are secreted by all kinds of cells and that carry cargoes such as lipids, proteins, and nucleic acids, protecting them from enzymatic degradation in the extracellular environment. In this review, we provide a comprehensive introduction to the properties and applications of EVs, including their biogenesis, contents, sample collection, isolation, and applications in diagnostics based on liquid biopsy.
Collapse
Affiliation(s)
- Jialing Liu
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Ye Chen
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Fang Pei
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Chongmai Zeng
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yang Yao
- Department of Implantology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Wen Liao
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Multi-Therapeutic Potential of Naringenin (4',5,7-Trihydroxyflavonone): Experimental Evidence and Mechanisms. PLANTS 2020; 9:plants9121784. [PMID: 33339267 PMCID: PMC7766900 DOI: 10.3390/plants9121784] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Extensive research has been carried out during the last few decades, providing a detailed account of thousands of discovered phytochemicals and their biological activities that have the potential to be exploited for a wide variety of medicinal purposes. These phytochemicals, which are pharmacologically important for clinical use, primarily consist of polyphenols, followed by terpenoids and alkaloids. There are numerous published reports indicating the primary role of phytochemicals proven to possess therapeutic potential against several diseases. However, not all phytochemicals possess significant medicinal properties, and only some of them exhibit viable biological effects. Naringenin, a flavanone found in citrus fruits, is known to improve immunity, repair DNA damage, and scavenge free radicals. Despite the very low bioavailability of naringenin, it is known to exhibit various promising biological properties of medicinal importance, including anti-inflammatory and antioxidant activities. This review focuses on the various aspects related to naringenin, particularly its physicochemical, pharmacokinetic, and pharmacodynamic properties. Furthermore, various pharmacological activities of naringenin, such as anticancer, antidiabetic, hepatoprotective, neuroprotective, cardioprotective, nephroprotective, and gastroprotective effects, have been discussed along with their mechanisms of action.
Collapse
|
10
|
Jiang Y, Xie F, Lv X, Wang S, Liao X, Yu Y, Dai Q, Zhang Y, Meng J, Hu G, Peng Z, Tao L. Mefunidone ameliorates diabetic kidney disease in STZ and db/db mice. FASEB J 2020; 35:e21198. [PMID: 33225469 DOI: 10.1096/fj.202001138rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
Abstract
Diabetic kidney disease (DKD) is a major cause of end stage renal diseases worldwide. Despite successive interventions for delaying the progression of DKD, current treatments cannot reverse the pathological progression. Mefunidone (MFD) is a new compound with potent antifibrotic properties, but the effect of MFD on DKD remains unknown. Therefore, we investigated the protective effects of MFD in both models of the db/db type 2 diabetes (T2D) and streptozotocin (STZ)-induced type 1 diabetes (T1D) models. Compared with the model group, MFD treatment significantly reduced pathological changes observed by PAS staining, PASM staining, and Masson staining in vivo. To further elucidate the potential mechanisms, we discovered MFD treatment notably restored podocyte function, alleviated inflammation, abated ROS generation, inhibited the TGF-β1/SAMD2/3 pathway, suppressed the phosphorylation levels of MAPKs (ERK1/2, JNK, and P38), and reduced epithelial-to-mesenchymal transition(EMT). In conclusion, these findings demonstrate the effectiveness of MFD in diabetic nephropathy and elucidate its possible mechanism.
Collapse
Affiliation(s)
- Yupeng Jiang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Feifei Xie
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Xin Lv
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Shuting Wang
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, China
| | - Xiaohua Liao
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Yue Yu
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Qin Dai
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Yan Zhang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Gaoyun Hu
- Faculty of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
11
|
Zhang NN, Kang JS, Liu SS, Gu SM, Song ZP, Li FX, Wang LF, Yao L, Li T, Li LL, Wang Y, Li XJ, Mao XM. Flavanomarein inhibits high glucose-stimulated epithelial-mesenchymal transition in HK-2 cells via targeting spleen tyrosine kinase. Sci Rep 2020; 10:439. [PMID: 31949205 PMCID: PMC6965095 DOI: 10.1038/s41598-019-57360-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/27/2019] [Indexed: 01/14/2023] Open
Abstract
Flavanomarein (FM) is a major natural compound of Coreopsis tinctoria Nutt with protective effects against diabetic nephropathy (DN). In this study, we investigated the effects of FM on epithelial-mesenchymal transition (EMT) in high glucose (HG)-stimulated human proximal tubular epithelial cells (HK-2) and the underlying mechanisms, including both direct targets and downstream signal-related proteins. The influence of FM on EMT marker proteins was evaluated via western blot. Potential target proteins of FM were searched using Discovery Studio 2017 R2. Gene Ontology (GO) analysis was conducted to enrich the proteins within the protein-protein interaction (PPI) network for biological processes. Specific binding of FM to target proteins was examined via molecular dynamics and surface plasmon resonance analyses (SPR). FM promoted the proliferation of HK-2 cells stimulated with HG and inhibited EMT through the Syk/TGF-β1/Smad signaling pathway. Spleen tyrosine kinase (Syk) was predicted to be the most likely directly interacting protein with FM. Combined therapy with a Syk inhibitor and FM presents significant potential as an effective novel therapeutic strategy for DN.
Collapse
Affiliation(s)
- Nan-Nan Zhang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.,Department of Pharmacology, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Jin-Sen Kang
- Department of Pharmacology, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Shuai-Shuai Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Si-Meng Gu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zhi-Peng Song
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.,Department of Pharmacology, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Feng-Xiang Li
- Department of Pharmacology, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Li-Feng Wang
- Department of Physiology, Preclinical School, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Tian Li
- Department of Histology and Embryology, Preclinical College, XinJiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Lin-Lin Li
- Department of Pharmacology, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Ye Wang
- Department of Pharmacology, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Xue-Jun Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Xin-Min Mao
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China. .,College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.
| |
Collapse
|
12
|
Sen Z, Weida W, Jie M, Li S, Dongming Z, Xiaoguang C. Coumarin glycosides from Hydrangea paniculata slow down the progression of diabetic nephropathy by targeting Nrf2 anti-oxidation and smad2/3-mediated profibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:385-395. [PMID: 30849675 DOI: 10.1016/j.phymed.2018.12.045] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/21/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Water extract of Hydrangea paniculata (HP) stem, rich in coumarin glycosides, has been demonstrated to have renal protective effect in several experimental kidney injury animal models. Currently, it is under pre-clinical development as a class 5 herbal drug against membranous nephropathy. However, whether it also benefits diabetic nephropathy (DN) is not clear. PURPOSE This study was performed to investigate the protective effect of HP on streptozotocin-induced experimental DN, and further understand its molecular mechanisms. METHODS In the present study, type 1 diabetes rat model was established by the intraperitoneal injection of streptozotocin. HP was orally administered every day for three months. Biochemical analysis and histopathological staining were conducted to evaluate the renal functions. In vivo pharmacokinetic study was conducted to analyse the metabolites of HP with high blood drug concentration. In vitro assay using these metabolites was performed to analyse their ability to reduce reactive oxygen species (ROS) production induced under high glucose (HG) condition by flow cytometry. Reverse transcription-polymerase chain reaction was conducted to analyse the mRNA level of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and IL6 and western blot was performed to analyse the phosphorylation status of smad 2/3 in HK2 cells under TGFβ1 stimulation. RESULTS The treatment with HP significantly reduced the blood urea nitrogen and serum creatinine content, and urine albumin excretion in diabetic rats, and increased the creatinine clearance rate. Periodic acid-schiff and methenamine staining and immunohistochemistry revealed that HP also ameliorated glomerulosclerosis and tubular vacuolar degeneration, as well as the deposition of fibronectin and collagen IV in the glomeruli. Pharmacokinetic study results revealed that the major coumarin compounds from HP were metabolised into umbelliferone and esculetin. By in vitro assay, umbelliferone and esculetin were found to significantly decrease ROS production induced by HG content, as well as increase the mRNA level of Nrf2. HP and its metabolites also can down-regulate fibronectin secretion in HK2 cells stimulated by TGFβ1 and inhibit smad2/3 phosphorylation. CONCLUSION HP has beneficial effect on DN by increasing Nrf2 expression and inhibiting TGF-smad signal activation. Further, it can be a novel herbal drug against DN.
Collapse
Affiliation(s)
- Zhang Sen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Wang Weida
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Ma Jie
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Sheng Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Zhang Dongming
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Chen Xiaoguang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
13
|
Mou Z, Feng Z, Xu Z, Zhuang F, Zheng X, Li X, Qian J, Liang G. Schisandrin B alleviates diabetic nephropathy through suppressing excessive inflammation and oxidative stress. Biochem Biophys Res Commun 2018; 508:243-249. [PMID: 30477745 DOI: 10.1016/j.bbrc.2018.11.128] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN) is a progressive kidney disease due to glomerular capillary damage in diabetic patients, with inflammation and oxidative stress implicated as crucial pathogenic factors. There is an urgent need to develop effective therapeutic drug. Natural medicines are rich resources for active lead compounds. They would provide new opportunities for the treatment of DN. The present study was designed to investigate the protective effects of Schisandrin B (SchB) on DN and to delineate the underlying mechanism. Oral administration of SchB in the diabetic mouse model significantly alleviated hyperglycemia-induced renal injury, which was accompanied by maintenance of urine creatinine and albumin levels at similar to those of control non-diabetic mice. Histological examination of renal tissue indicated that both development of fibrosis and renal cell apoptosis were dramatically inhibited by SchB. The protective effect of SchB on DN associated with suppression of inflammatory response and oxidative stress. These results strongly suggested that SchB could be a potential therapeutic agent for treatment of DN. Moreover, our findings provided a fuller understanding of the regulatory role of NF-κB and Nrf2 in DN, indicating that they could be important therapeutic targets.
Collapse
Affiliation(s)
- Zhenxin Mou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiguo Feng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zheng Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fei Zhuang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Diabetes Center, Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuyong Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jianchang Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
14
|
NaoXinTong Capsules inhibit the development of diabetic nephropathy in db/db mice. Sci Rep 2018; 8:9158. [PMID: 29904053 PMCID: PMC6002396 DOI: 10.1038/s41598-018-26746-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/04/2018] [Indexed: 12/17/2022] Open
Abstract
NaoXinTong Capsule (NXT), a Chinese medicine, is currently used to treat patients with cardiovascular and cerebrovascular diseases. Clinical observations indicate its anti-diabetic functions with unclear mechanisms. Herein, we report the effect of NXT on diabetic nephropathy (DN). Type 2 diabetic db/db mice were treated with NXT for 14 weeks. In the course of treatment, NXT reduced diabetes-increased glucose levels and improved renal functions. At the end of treatment, we found that NXT ameliorated serum lipid profiles and other biochemical parameters. In the kidney, NXT inhibited mesangial matrix expansion, expression of vascular endothelial growth factor A, fibronectin, advanced glycation end product and its receptor. Meanwhile, it reduced the diabetes-induced podocyte injury by increasing WT1 and nephrin expression. In addition, NXT inhibited accumulation of extracellular matrix proteins by increasing MMP2/9 expression through inactivation of TGFβ/Smad pathway and CTGF expression. Mechanically, NXT activated insulin signaling pathway by increasing expression of INSR, IRS and FGF21, phosphorylation of Akt and AMPKα in the liver, INSR phosphorylation in the kidney, and FGF21 and GLUT4 expression in adipose tissue and skeletal muscle. Taken together, our study demonstrates that NXT inhibits DN by ameliorating glucose/lipid metabolism, maintaining tissue structure integrity, and correcting diabetes-induced renal dysfunctions.
Collapse
|
15
|
Xu Z, Zhao Y, Zhong P, Wang J, Weng Q, Qian Y, Han J, Zou C, Liang G. EGFR inhibition attenuates diabetic nephropathy through decreasing ROS and endoplasmic reticulum stress. Oncotarget 2018; 8:32655-32667. [PMID: 28427241 PMCID: PMC5464817 DOI: 10.18632/oncotarget.15948] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/23/2017] [Indexed: 01/14/2023] Open
Abstract
Diabetic nephropathy (DN) is a progressive kidney disease due to glomerular capillary damage in diabetic patients. Endoplasmic reticulum (ER) stress caused by reactive oxygen species (ROS) is associated with DN progression. Epidermal growth factor receptor (EGFR) mediates oxidative stress and damage of cardiomyocytes in diabetic mice. Here we demonstrated that AG1478, a specific inhibitor of EGFR, blocked EGFR and AKT phosphorylation in diabetic mice. Oxidative stress and ER stress markers were eliminated after AG1478 administration. AG1478 decreased pro-fibrotic genes TGF-β and collagen IV. Furthermore, we found that high glucose (HG) induced oxidative stress and ER stress, and subsequently increased ATF4 and CHOP. These changes were eliminated by either AG1478 or ROS scavenger N-acetyl-L-cysteine (NAC) administration. These results were confirmed by knock-down approaches in renal mesangial SV40 cells. However, AG1478, not NAC, reversed HG induced EGFR and AKT phosphorylation. These results suggest that EGFR/AKT/ROS/ER stress signaling plays an essential role in DN development and inhibiting EGFR may serve as a potential therapeutic strategy in diabetic kidney diseases.
Collapse
Affiliation(s)
- Zheng Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Zhong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jingying Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qiaoyou Weng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Department of Interventional Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Yuanyuan Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jibo Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chunpeng Zou
- Department of Ultrasonography, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
16
|
Han CS, Liu K, Zhang N, Li SW, Gao HC. Rutin suppresses high glucose-induced ACTA2 and p38 protein expression in diabetic nephropathy. Exp Ther Med 2017; 14:181-186. [PMID: 28672912 PMCID: PMC5488511 DOI: 10.3892/etm.2017.4509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/14/2017] [Indexed: 01/23/2023] Open
Abstract
The present study investigated the effect of rutin on high glucose-induced actin, α2, smooth muscle, aorta (ACTA2) and p38 protein expression in diabetic nephropathy (DN). Human mesangial cells were divided into a control group, high glucose-induced mesangial cell group, high glucose + captopril group, and high glucose + rutin group (low, middle and high doses of rutin). Cell viability, adenosine 5′-triphosphate (ATP) content, cell cycle, and ACTA2 and p38 protein expression were examined using MTT assay, ATP assay kit, flow cytometry and immunofluorescence staining in cultured human mesangial cells, respectively. Cell viability, ATP content, and ACTA2 and p38 expression increased significantly in high glucose-induced mesangial cells (P<0.05). However, at concentrations of 0.2, 0.4 and 0.8 µmol/l rutin was able to inhibit high glucose-induced human mesangial cell viability, ATP content, and ACTA2 and p38 expression and improve the cell cycle progression of mesangial cells. In conclusion, ACTA2 and p38 proteins may have important roles in DN. Rutin may inhibit the expression of ACTA2 and p38 and may be utilized in the prevention and treatment of DN.
Collapse
Affiliation(s)
- Chun-Shan Han
- Department of Chest Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Kai Liu
- Department of Pathology and Pathophysiology, Chengde Medical College, Chengde, Hebei 300000, P.R. China
| | - Ning Zhang
- Department of Clinical Pharmacy, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin 130021, P.R. China
| | - Shi-Wen Li
- Department of Clinical Pharmacy, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin 130021, P.R. China
| | - Hai-Cheng Gao
- Department of Clinical Pharmacy, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
17
|
Li HY, Oh YS, Choi JW, Jung JY, Jun HS. Blocking lysophosphatidic acid receptor 1 signaling inhibits diabetic nephropathy in db/db mice. Kidney Int 2017; 91:1362-1373. [PMID: 28111010 DOI: 10.1016/j.kint.2016.11.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 01/03/2023]
Abstract
Lysophosphatidic acid (LPA) is known to regulate various biological responses by binding to LPA receptors. The serum level of LPA is elevated in diabetes, but the involvement of LPA in the development of diabetes and its complications remains unknown. Therefore, we studied LPA signaling in diabetic nephropathy and the molecular mechanisms involved. The expression of autotaxin, an LPA synthesis enzyme, and LPA receptor 1 was significantly increased in both mesangial cells (SV40 MES13) maintained in high-glucose media and the kidney cortex of diabetic db/db mice. Increased urinary albumin excretion, increased glomerular tuft area and volume, and mesangial matrix expansion were observed in db/db mice and reduced by treatment with ki16425, a LPA receptor 1/3 antagonist. Transforming growth factor (TGF)β expression and Smad-2/3 phosphorylation were upregulated in SV40 MES13 cells by LPA stimulation or in the kidney cortex of db/db mice, and this was blocked by ki16425 treatment. LPA receptor 1 siRNA treatment inhibited LPA-induced TGFβ expression, whereas cells overexpressing LPA receptor 1 showed enhanced LPA-induced TGFβ expression. LPA treatment of SV40 MES13 cells increased phosphorylated glycogen synthase kinase (GSK)3β at Ser9 and induced translocation of sterol regulatory element-binding protein (SREBP)1 into the nucleus. Blocking GSK3β phosphorylation inhibited SREBP1 activation and consequently blocked LPA-induced TGFβ expression in SV40 MES13 cells. Phosphorylated GSK3β and nuclear SREBP1 accumulation were increased in the kidney cortex of db/db mice and ki16425 treatment blocked these pathways. Thus, LPA receptor 1 signaling increased TGFβ expression via GSK3β phosphorylation and SREBP1 activation, contributing to the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Hui Ying Li
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea; Department of Internal Medicine, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Yoon Sin Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea; Gachon Medical Research Institute, Gil Hospital, Incheon, Korea.
| | - Ji-Woong Choi
- College of Pharmacy, Gachon University, Incheon, Korea
| | - Ji Yong Jung
- Gachon Medical Research Institute, Gil Hospital, Incheon, Korea; Division of Nephrology, Department of Internal Medicine, Gachon University School of Medicine, Incheon, Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea; Gachon Medical Research Institute, Gil Hospital, Incheon, Korea; College of Pharmacy, Gachon University, Incheon, Korea.
| |
Collapse
|
18
|
Liu YN, Zhou J, Li T, Wu J, Xie SH, Liu HF, Liu Z, Park TS, Wang Y, Liu WJ. Sulodexide Protects Renal Tubular Epithelial Cells from Oxidative Stress-Induced Injury via Upregulating Klotho Expression at an Early Stage of Diabetic Kidney Disease. J Diabetes Res 2017; 2017:4989847. [PMID: 28929120 PMCID: PMC5591972 DOI: 10.1155/2017/4989847] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
The hypoalbuminuric effect of sulodexide (SDX) on diabetic kidney disease (DKD) was suggested by some clinical trials but was denied by the Collaborative Study Group. In this study, the diabetic rats were treated with SDX either from week 0 to 24 or from week 13 to 24. We found that 24-week treatment significantly decreased the urinary protein and HAVCR1 excretion, inhibited the interstitial expansion, and downregulated the renal cell apoptosis and interstitial fibrosis. Renoprotection was also associated with a reduction in renocortical/urinary oxidative activity and the normalization of renal klotho expression. However, all of these actions were not observed when SDX was administered only at the late stage of diabetic nephropathy (from week 13 to 24). In vitro, advanced glycation end products (AGEs) dose-dependently enhanced the oxidative activity but lowered the klotho expression in cultured proximal tubule epithelial cells (PTECs). Also, H2O2 could downregulate the expression of klotho in a dose-dependent manner. However, overexpression of klotho reduced the HAVCR1 production and the cellular apoptosis level induced by AGEs or H2O2. Our study suggests that SDX may prevent the progression of DKD at the early stage by upregulating renal klotho expression, which inhibits the tubulointerstitial injury induced by oxidative stress.
Collapse
Affiliation(s)
- Yu Ning Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing and Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jingwei Zhou
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing and Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Tingting Li
- Institute of Nephrology, Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Jing Wu
- Institute of Nephrology, Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Shu Hua Xie
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing and Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hua-feng Liu
- Institute of Nephrology, Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zhangsuo Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tae Sun Park
- Chonbuk National University, Jeonju, Republic of Korea
| | - Yaoxian Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing and Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
- *Yaoxian Wang: and
| | - Wei Jing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing and Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
- Institute of Nephrology, Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
- *Wei Jing Liu:
| |
Collapse
|
19
|
Khan S, Bhat ZR, Jena G. Role of autophagy and histone deacetylases in diabetic nephropathy: Current status and future perspectives. Genes Dis 2016; 3:211-219. [PMID: 30258890 PMCID: PMC6150107 DOI: 10.1016/j.gendis.2016.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/16/2016] [Indexed: 01/12/2023] Open
Abstract
The prevalence of diabetes and its complications is increasing at an alarming rate in both developed and deve1oping nations. The emerging evidences highlighted that both genetic and epigenetic mechanisms including histone modifications play a significant role in the pathogenesis of diabetic nephropathy (DN). Histone deacetylases (HDACs) and acetylation are involved in the regulation of autophagy as well as pathogenesis of DN. Both HDACs and histone acetyltransferases (HATs) play a key role in chromatin remodeling and affect the transcription of various genes involved in the cellular homeostasis, apoptosis, immunity and angiogenesis. Further, HDAC inhibitors are exert the renoprotective effects in DN and other diabetic complications. Thus, the cellular acetylation plays a crucial role in the regulation of autophagy and can be explored as a new therapeutic target for the treatment of DN. This review aimed to delineate the role of HDACs and associated molecular signaling/pathways in the regulation of autophagy with an emphasis on promising targets for the treatment of DN.
Collapse
Affiliation(s)
- Sabbir Khan
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Zahid Rafiq Bhat
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab, 160062, India
| |
Collapse
|
20
|
Yao L, Li L, Li X, Li H, Zhang Y, Zhang R, Wang J, Mao X. The anti-inflammatory and antifibrotic effects of Coreopsis tinctoria Nutt on high-glucose-fat diet and streptozotocin-induced diabetic renal damage in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:314. [PMID: 26346939 PMCID: PMC4561427 DOI: 10.1186/s12906-015-0826-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/25/2015] [Indexed: 01/30/2023]
Abstract
Background Diabetic nephropathy is a serious complication of diabetes whose development process is associated with inflammation, renal hypertrophy, and fibrosis. Coreopsis tinctoria Nutt, traditionally used as a healthcare tea, has anti-inflammatory, anti-hyperlipidemia, and glycemic regulation activities. The aim of our study was to investigate the renal protective effect of ethyl acetate extract of C. tinctoria Nutt (AC) on high-glucose–fat diet and streptozotocin (STZ)-induced diabetic rats. Methods A diabetic rat model was induced by high-glucose–fat diet and intraperitoneal injection of 35 mg/kg STZ. After treatment with AC at a daily dose of 150, 300 or, 600 mg/kg for 4 weeks, metabolic and renal function parameters of serum and urine were examined. Degree of renal damage, renal proinflammatory cytokines, and fibrotic protein expression were analyzed by histopathology and immunohistochemistry. Renal AMP-activated protein kinase (AMPK) and transforming growth factor (TGF)-β1/Smad signaling pathway were determined by western blotting. Results Diabetic rats showed obvious renal dysfunction, inflammation and fibrosis. However, AC significantly reduced levels of blood glucose, total cholesterol, triglyceride, blood urea nitrogen, serum creatinine and urinary albumin, as well as expression of kidney proinflammatory cytokines of monocyte chemoattractant protein-1 and intercellular adhesion molecule-1. AC also ameliorated renal hypertrophy and fibrosis by reducing fibronectin and collagen IV and suppressing the TGF-β1/Smad signaling pathway. Meanwhile, AMPKα as a protective cytokine was markedly stimulated by AC. Conclusion In summary, AC controls blood glucose, inhibits inflammatory and fibrotic processes, suppresses the TGF-β1/Smad signaling pathway, and activates phosphorylation of AMPKα in the kidneys, which confirms the protective effects of AC in the early stage of diabetic kidney disease.
Collapse
|