1
|
Zheng J, He J, Li H. FAM19A5 in vascular aging and osteoporosis: Mechanisms and the "calcification paradox". Ageing Res Rev 2024; 99:102361. [PMID: 38821416 DOI: 10.1016/j.arr.2024.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/05/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Aging induces a progressive decline in the vasculature's structure and function. Vascular aging is a determinant factor for vascular ailments in the elderly. FAM19A5, a recently identified adipokine, has demonstrated involvement in multiple vascular aging-related pathologies, including atherosclerosis, cardio-cerebral vascular diseases and cognitive deficits. This review summarizes the current understanding of FAM19A5' role and explores its putative regulatory mechanisms in various aging-related disorders, including cardiovascular diseases (CVDs), metabolic diseases, neurodegenerative diseases and malignancies. Importantly, we provide novel insights into the underlying therapeutic value of FAM19A5 in osteoporosis. Finally, we outline future perspectives on the diagnostic and therapeutic potential of FAM19A5 in vascular aging-related diseases.
Collapse
Affiliation(s)
- Jin Zheng
- Department of Geriatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huahua Li
- Department of Geriatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Wesołek-Leszczyńska A, Pastusiak K, Bogdański P, Szulińska M. Can Adipokine FAM19A5 Be a Biomarker of Metabolic Disorders? Diabetes Metab Syndr Obes 2024; 17:1651-1666. [PMID: 38616989 PMCID: PMC11016272 DOI: 10.2147/dmso.s460226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024] Open
Abstract
Aim One of the most critical functions of adipose tissue is the production of adipokines, ie, numerous active substances that regulate metabolism. One is the newly discovered FAM19A5, whose older name is TAFA-5. Purpose The study aimed to review the literature on the FAM19A5 protein. Methods The review was conducted in December 2023 using the PubMed (Medline) search engine. Sixty-four papers were included in the review. Results This protein exhibits the characteristics of an adipokine with positive features for maintaining homeostasis. The results showed that FAM19A5 was highly expressed in adipose tissue, with mild to moderate expression in the brain and ovary. FAM19A5 may also inhibit vascular smooth muscle cell proliferation and migration through the perivascular adipose tissue paracrine pathway. Serum levels of FAM19A5 were decreased in obese children compared with healthy controls. There are negative correlations between FAM19A5, body mass index, and fasting insulin. Serum FAM19A5 level is correlated with type 2 diabetes, waist circumference, waist-to-hip ratio, glutamic pyruvic transferase, fasting plasma glucose, HbA1c, and mean shoulder pulse wave velocity. FAM19A5 expression was reduced in mice with obesity. However, the data available needs to be clarified or contradictory. Conclusion Considering today's knowledge about FAM19A5, we cannot consider this protein as a biomarker of the metabolic syndrome. According to current knowledge, FAM19A5 cannot be considered a marker of metabolic disorders because the results of studies conducted in this area are unclear.
Collapse
Affiliation(s)
- Agnieszka Wesołek-Leszczyńska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
- Doctoral School, Poznan University Of Medical Sciences, Poznań, Poland
| | - Katarzyna Pastusiak
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Monika Szulińska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
3
|
Capuozzo M, Santorsola M, Ferrara F, Cinque C, Farace S, Patrone R, Granata V, Zovi A, Nasti G, Ottaiano A. Intrahepatic cholangiocarcinoma biomarkers: Towards early detection and personalized pharmacological treatments. Mol Cell Probes 2024; 73:101951. [PMID: 38244704 DOI: 10.1016/j.mcp.2024.101951] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy originating from the biliary tree and is anatomically categorized as intrahepatic (iCCA), perihilar, and extrahepatic or distal. iCCA, the second most prevalent hepatobiliary cancer following hepatocellular carcinoma (HCC), constitutes 5-20 % of all liver malignancies, with an increasing incidence. The challenging nature of iCCA, combined with nonspecific symptoms, often leads to late diagnoses, resulting in unfavorable outcomes. The advanced phase of this neoplasm is difficult to treat with dismal results. Early diagnosis could significantly reduce mortality attributed to iCCA but remains an elusive goal. The identification of biomarkers specific to iCCA and their translation into clinical practice could facilitate diagnosis, monitor therapy response, and potentially reveal novel interventions and personalized medicine. In this review, we present the current landscape of biomarkers in each of these contexts. In addition to CA19.9, a widely recognized biomarker for iCCA, others such as A1BG, CYFRA 21-1, FAM19A5, MMP-7, RBAK, SSP411, TuM2-PK, WFA, etc., as well as circulating tumor DNA, RNA, cells, and exosomes, are under investigation. Advancing our knowledge and monitoring of biomarkers may enable us to improve diagnosis, prognostication, and apply treatments dynamically and in a more personalized manner.
Collapse
Affiliation(s)
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131, Napoli, Italy
| | | | - Claudia Cinque
- Pharmaceutical Department, ASL-Naples-3, 80056, Ercolano, Italy
| | - Stefania Farace
- Pharmaceutical Department, ASL-Naples-3, 80056, Ercolano, Italy
| | - Renato Patrone
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131, Napoli, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131, Napoli, Italy
| | - Andrea Zovi
- Hospital Pharmacist, Ministry of Health, 00144, Roma, Italy
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131, Napoli, Italy
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131, Napoli, Italy.
| |
Collapse
|
4
|
Phosphorylated Proteins from Serum: A Promising Potential Diagnostic Biomarker of Cancer. Int J Mol Sci 2022; 23:ijms232012359. [PMID: 36293212 PMCID: PMC9604268 DOI: 10.3390/ijms232012359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a fatal disease worldwide. Each year ten million people are diagnosed around the world, and more than half of patients eventually die from it in many countries. A majority of cancer remains asymptomatic in the earlier stages, with specific symptoms appearing in the advanced stages when the chances of adequate treatment are low. Cancer screening is generally executed by different imaging techniques like ultrasonography (USG), mammography, CT-scan, and magnetic resonance imaging (MRI). Imaging techniques, however, fail to distinguish between cancerous and non-cancerous cells for early diagnosis. To confirm the imaging result, solid and liquid biopsies are done which have certain limitations such as invasive (in case of solid biopsy) or missed early diagnosis due to extremely low concentrations of circulating tumor DNA (in case of liquid biopsy). Therefore, it is essential to detect certain biomarkers by a noninvasive approach. One approach is a proteomic or glycoproteomic study which mostly identifies proteins and glycoproteins present in tissues and serum. Some of these studies are approved by the Food and Drug Administration (FDA). Another non-expensive and comparatively easier method to detect glycoprotein biomarkers is by ELISA, which uses lectins of diverse specificities. Several of the FDA approved proteins used as cancer biomarkers do not show optimal sensitivities for precise diagnosis of the diseases. In this regard, expression of phosphoproteins is associated with a more specific stage of a particular disease with high sensitivity and specificity. In this review, we discuss the expression of different serum phosphoproteins in various cancers. These phosphoproteins are detected either by phosphoprotein enrichment by immunoprecipitation using phosphospecific antibody and metal oxide affinity chromatography followed by LC-MS/MS or by 2D gel electrophoresis followed by MALDI-ToF/MS analysis. The updated knowledge on phosphorylated proteins in clinical samples from various cancer patients would help to develop these serum phophoproteins as potential diagnostic/prognostic biomarkers of cancer.
Collapse
|
5
|
Brown ZJ, Hewitt DB, Pawlik TM. Biomarkers of intrahepatic cholangiocarcinoma: diagnosis and response to therapy. FRONT BIOSCI-LANDMRK 2022; 27:85. [PMID: 35345317 DOI: 10.31083/j.fbl2703085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 01/03/2025]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer behind hepatocellular carcinoma (HCC) and carries a dismal prognosis. Improved genetic analysis has paved the way for a better understanding of the distinct somatic genomic landscapes of ICC. The use of next generation sequencing has paved the way for more personalized medicine through identifying unique mutations which may prove to be therapeutic targets. The ability to identify biomarkers specific to ICC will assist in establishing a diagnosis, monitoring response to therapy, as well as assist in identifying novel therapies and personalized medicine. Herein, we discuss potential biomarkers for ICC and how these markers can assist in diagnosis, monitor response to therapy, and potentially identify novel interventions for the treatment of ICC.
Collapse
Affiliation(s)
- Zachary J Brown
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - D Brock Hewitt
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Timothy M Pawlik
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Hormati A, Hajrezaei Z, Jazi K, Aslani Kolur Z, Rezvan S, Ahmadpour S. Gastrointestinal and Pancratohepatobiliary Cancers: A Comprehensive Review on Epidemiology and Risk Factors Worldwide. Middle East J Dig Dis 2022; 14:5-23. [PMID: 36619733 PMCID: PMC9489325 DOI: 10.34172/mejdd.2022.251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/01/2021] [Indexed: 01/11/2023] Open
Abstract
A significant number of cancer cases are afflicted by gastrointestinal cancers annually. Lifestyle and nutrition have a huge effect on gastrointestinal function, and unhealthy habits have become quite widespread in recent decades, culminating in the rapid growth of gastrointestinal cancers. The most prevalent cancers are lip and mouth cancer, esophageal cancer, gastric cancer, liver and bile duct cancer, pancreatic cancer, and colorectal cancer. Risk factors such as red meat consumption, alcohol consumption, tea, rice, viruses such as Helicobacter pylori and Ebstein Bar Virus (EBV), along with reduced physical activity, predispose the gastrointestinal tract to damage and cause cancer. According to the rapid increase of cancer incidence and late diagnosis of gastrointestinal malignancies, further epidemiological researches remain necessary in order to make appropriate population-based preventive policies. In this study, we reviewed clinical symptoms, risk factors, preventative measures, as well as incidence and mortality rates of gastrointestinal malignancies worldwide with focus on Iranian population.
Collapse
Affiliation(s)
- Ahmad Hormati
- Assistant Professor of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
- Assistant Professor of Gastroenterology and Hepatology, Disease Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Zahra Hajrezaei
- Student Research Committee, Faculty of Medicine, Qom University of Medical Science, Qom, Iran
| | - Kimia Jazi
- Student Research Committee, Faculty of Medicine, Qom University of Medical Science, Qom, Iran
| | - Zahra Aslani Kolur
- Student Research Committee, Faculty of Medicine, Qom University of Medical Science, Qom, Iran
| | - Sajjad Rezvan
- Radiology Resident, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sajjad Ahmadpour
- Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
7
|
KRAB-ZFP Transcriptional Regulators Acting as Oncogenes and Tumor Suppressors: An Overview. Int J Mol Sci 2021; 22:ijms22042212. [PMID: 33672287 PMCID: PMC7926519 DOI: 10.3390/ijms22042212] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/17/2022] Open
Abstract
Krüppel-associated box zinc finger proteins (KRAB-ZFPs) constitute the largest family of transcriptional factors exerting co-repressor functions in mammalian cells. In general, KRAB-ZFPs have a dual structure. They may bind to specific DNA sequences via zinc finger motifs and recruit a repressive complex through the KRAB domain. Such a complex mediates histone deacetylation, trimethylation of histone 3 at lysine 9 (H3K9me3), and subsequent heterochromatization. Nevertheless, apart from their repressive role, KRAB-ZFPs may also co-activate gene transcription, likely through interaction with other factors implicated in transcriptional control. KRAB-ZFPs play essential roles in various biological processes, including development, imprinting, retroelement silencing, and carcinogenesis. Cancer cells possess multiple genomic, epigenomic, and transcriptomic aberrations. A growing number of data indicates that the expression of many KRAB-ZFPs is altered in several tumor types, in which they may act as oncogenes or tumor suppressors. Hereby, we review the available literature describing the oncogenic and suppressive roles of various KRAB-ZFPs in cancer. We focused on their association with the clinicopathological features and treatment response, as well as their influence on the cancer cell phenotype. Moreover, we summarized the identified upstream and downstream molecular mechanisms that may govern the functioning of KRAB-ZFPs in a cancer setting.
Collapse
|
8
|
Man Z, Chen Y, Gao L, Xei G, Li Q, Lu Q, Yan J. A Prognostic Model Based on RNA Binding Protein Predicts Clinical Outcomes in Hepatocellular Carcinoma Patients. Front Oncol 2021; 10:613102. [PMID: 33643914 PMCID: PMC7907500 DOI: 10.3389/fonc.2020.613102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Dysregulation of RNA binding proteins (RBPs) is closely associated with tumor events. However, the function of RBPs in hepatocellular carcinoma (HCC) has not been fully elucidated. The RNA sequences and relevant clinical data of HCC were retrieved from the The Cancer Genome Atlas (TCGA) database to identify distinct RBPs. Subsequently, univariate and multivariate cox regression analysis was performed to evaluate the overall survival (OS)-associated RBPs. The expression levels of prognostic RBP genes and survival information were analyzed using a series of bioinformatics tool. A total of 365 samples with 1,542 RBPs were included in this study. One hundred and eighty-seven differently RBPs were screened, including 175 up-regulated and 12 down-regulated. The independent OS-associated RBPs of NHP2, UPF3B, and SMG5 were used to develop a prognostic model. Survival analysis showed that low-risk patients had a significantly longer OS and disease-free survival (DFS) when compared to high-risk patients (HR: 2.577, 95% CI: 1.793-3.704, P < 0.001 and HR: 1.599, 95% CI: 1.185-2.159, P = 0.001, respectively). The International Cancer Genome Consortium (ICGC) database was used to externally validate the model, and the OS of low-risk patients were found to be longer than that of high-risk patients (P < 0.001). The Nomograms of OS and DFS were plotted to help in clinical decision making. These results showed that the model was effective and may help in prognostic stratification of HCC patients. The prognostic prediction model based on RBPs provides new insights for HCC diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Zhongsong Man
- Center of Hepatobiliary Pancreatic Disease, XuZhou Central Hospital, Jiangsu, China
| | - Yongqiang Chen
- Department of Clinical Laboratory, XuZhou Central Hospital, Jiangsu, China
| | - Lu Gao
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Guowei Xei
- Center of Hepatobiliary Pancreatic Disease, The Affiliated Hospital of Qinghai University, Qinghai, China
| | - Quanfu Li
- Center of Hepatobiliary Pancreatic Disease, The Second Hospital, Baoding, China
| | - Qian Lu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Beijing, China
| |
Collapse
|
9
|
Sun Y, Wang R. A Risk Score System Based on the Methylation Levels of 15 RNAs in Breast Cancer. Cancer Biother Radiopharm 2021; 37:697-707. [PMID: 33571027 DOI: 10.1089/cbr.2020.4074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Breast cancer (BC) occurs in the epithelial tissues of the breast gland, which is the most common cancer in women. This study is implemented to construct a risk score system for BC. Methods: The methylation data of BC from The Cancer Genome Atlas database (the training set) and GSE37754 from Gene Expression Omnibus database (the validation set) were downloaded. The differentially methylated RNAs (DMRs) between BC and normal samples were screened by limma package, and the correlations between the expression levels and methylation levels of the DMRs were analyzed to calculate their Pearson correlation coefficients (PCCs) using the cor.test function. To build the risk score system, the optimal RNAs were identified by penalized package. Subsequently, the nomogram survival model was established using the rms package. The lncRNA-mRNA comethylation network was constructed by Cytoscape software, and then enrichment analysis was performed using DAVID tool. Results: From the 1170 DMRs between BC and normal samples, 800 DMRs with significant negative PCCs were screened. For building the risk score system, the 15 optimal RNAs were selected. Afterward, the nomogram survival model based on four independent clinical prognostic factors (including age, radiation therapy, tumor recurrence, and RS model status) was constructed. In the comethylation network, the long noncoding RNA (lncRNA) PRNT was comethylated with FAM19A5 and RBM24. For the mRNAs in the comethylation network, angiogenesis and pathways in cancer were enriched. Conclusion: The risk score system and the nomogram survival model might be of great importance for the prognosis prediction of BC patients.
Collapse
Affiliation(s)
- Ying Sun
- Department of Radiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Rengui Wang
- Department of Radiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Association of Serum FAM19A5 with Cognitive Impairment in Vascular Dementia. DISEASE MARKERS 2020; 2020:8895900. [PMID: 32831973 PMCID: PMC7422492 DOI: 10.1155/2020/8895900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Objective Family with sequence similarity 19 member A5 (FAM19A5), a novel chemokine-like peptide, is a secreted protein mainly expressed in the brain. FAM19A5 was recently found to be involved in a variety of neurological diseases; however, its correlation with vascular dementia (VaD) remains unclear. The aim of the study is to explore the association between serum FAM19A5 and cognitive impairment in subjects with VaD. Method 136 VaD subjects and 81 normal controls were recruited in the study. Their demographic and clinical baseline data were collected on admission. All subjects received Mini-Mental State Examination (MMSE) evaluation, which was used to test their cognitive functions. A sandwich enzyme-linked immunosorbent assay (ELISA) was applied to detect the serum levels of FAM19A5. Results No significant differences were found between the two groups regarding the demographic and clinical baseline data (p > 0.05). The serum FAM19A5 levels were significantly higher compared to normal controls (p < 0.001). The Spearman correlation analysis indicated that serum FAM19A5 levels and MMSE scores have a significant negative correlation in VaD patients (r = −0.414, <0.001). Further multiple regression analysis indicated that serum FAM19A5 levels were independent risk predictors for cognitive functions in VaD (β = 0.419, p = 0.031). Conclusion The serum FAM19A5 level of VaD patients is significantly increased, which may serve as a biomarker to predict cognitive function of VaD.
Collapse
|
11
|
Son KH, Ahn CB, Kim HJ, Kim JS. Quantitative proteomic analysis of bile in extrahepatic cholangiocarcinoma patients. J Cancer 2020; 11:4073-4080. [PMID: 32368289 PMCID: PMC7196276 DOI: 10.7150/jca.40964] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/29/2020] [Indexed: 12/17/2022] Open
Abstract
Background and Aims: Extrahepatic cholangiocarcinoma (CCA) without liver-fluke is increasing. Multifactorial carcinogenesis makes it hard to find biomarkers related to CCA. Although there are a few studies of bile proteomics, these showed different protein profiles because of having heterogeneous groups of patients and different sampling methods. Our aim was to identify the specific bile proteins of extrahepatic CCA patients. Methods: We collected bile from 23 patients undergoing endoscopic nasobiliary drainage in Korea University Guro Hospital from May 2018 to January 2019. The CCA group included 18 patients diagnosed with extrahepatic CCA, and the control group included 5 patients with benign biliary conditions. We analyzed bile proteome using liquid chromatography mass spectrometry. We compared the relative abundance of various proteins in the CCA and control groups. Results: In all, we identified a total of 245 proteins in the bile of CCA and control patients. Increased top 14 proteins in CCA patients were immunoglobulin kappa light chain, apolipoprotein B, inter-alpha-trypsin inhibitor heavy chain H4, apolipoprotein E, Mucin 5B, inter-alpha-trypsin inhibitor heavy chain H1, apolipoprotein A-IV, intercellular adhesion molecule 1, complement C7, complement C5, apolipoprotein C-III, albumin, antithrombin-III, and apolipoprotein A-II. However, the significantly increased proteins in bile of CCA patients comparing with control patients were immunoglobulin kappa light chain, apolipoprotein E, albumin, apolipoprotein A-I, antithrombin-III, α1-antitrypsin, serotransferrin, immunoglobulin heavy constant mu, immunoglobulin J chain, complement C4-A, and complement C3 (p<0.05). Conclusions: In this study, we identified several proteins that were significantly increased in the bile of extrahepatic CCA. Further study is needed to validate them as potential tumor-associated proteins that may be potential biomarkers for CCA.
Collapse
Affiliation(s)
- Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon, 21565, Republic of Korea
| | - Chi Bum Ahn
- Center for information security technologies, Korea University
| | - Hyo Jung Kim
- Department of Internal Medicine, Korea University Guro Hospital
| | - Jae Seon Kim
- Department of Internal Medicine, Korea University Guro Hospital
| |
Collapse
|
12
|
Lee YB, Hwang HJ, Kim JA, Hwang SY, Roh E, Hong SH, Choi KM, Baik SH, Yoo HJ. Association of serum FAM19A5 with metabolic and vascular risk factors in human subjects with or without type 2 diabetes. Diab Vasc Dis Res 2019; 16:530-538. [PMID: 31280604 DOI: 10.1177/1479164119860746] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES A recent experimental study revealed that family with sequence similarity 19 [chemokine (C-C motif)-like] member A5 (FAM19A5), a novel secreted adipokine, has inhibitory effects on vascular smooth muscle cell proliferation and migration, and on neointima formation in injured arteries. We investigated the associations between serum FAM19A5 concentration and cardio-metabolic risk factors for the first time in human subjects. METHODS Circulating FAM19A5 concentrations and their associations with cardio-metabolic risk factors were explored in 223 individuals (45 without diabetes and 178 with type 2 diabetes). RESULTS Serum FAM19A5 concentrations (pg/mL) were greater in patients with type 2 diabetes [median (interquartile range), 172.70 (116.19, 286.42)] compared with non-diabetic subjects [92.09 (70.32, 147.24)] (p < 0.001). Increasing serum FAM19A5 tertile was associated with trends of increasing waist-to-hip ratio, fasting plasma glucose, glycated haemoglobin and mean brachial-ankle pulse wave velocity. Serum FAM19A5 was positively correlated with waist circumference, waist-to-hip ratio, alanine aminotransferase, fasting plasma glucose, glycated haemoglobin and mean brachial-ankle pulse wave velocity. Multiple stepwise regression analyses identified waist-to-hip ratio, low-density lipoprotein cholesterol and brachial-ankle pulse wave velocity as determining factors for log-transformed serum FAM19A5 concentration (R2 = 0.0689). CONCLUSION A novel adipokine FAM19A5 was related to various metabolic and vascular risk factors in humans, suggesting its potential as a biomarker of cardio-metabolic disease.
Collapse
Affiliation(s)
- You-Bin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hwan-Jin Hwang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung A Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soon Young Hwang
- Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eun Roh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - So-Hyeon Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
Hu Z, Niu G, Ren J, Wang X, Chen L, Hong R, Ke C. TAFA5 promotes proliferation and migration in gastric cancer. Mol Med Rep 2019; 20:4477-4488. [PMID: 31702029 PMCID: PMC6797941 DOI: 10.3892/mmr.2019.10724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
TAFA chemokine like family member 5 (TAFA5), a TAFA family member that encodes small secreted proteins in the central nervous system, has been demonstrated to have increased expression in human malignancies. However, the expression and function of TAFA5 in gastric cancer (GC) remains unclear. In the present study, public datasets and human GC samples were used to determine the TAFA5 expression levels. The results revealed that TAFA5 was upregulated in GC when compared with adjacent normal tissues. Overexpression of TAFA5 in GC was associated with poor differentiation, and worse tumor, nodal and metastasis stages. In addition, high TAFA5 expression was correlated with unfavorable patient prognoses. In vitro experiments indicated that downregulation of TAFA5 inhibited the proliferation and migration of GC cell lines. Finally, the results from gene set enrichment analysis using data from The Cancer Genome Atlas revealed that TAFA5 expression was significantly correlated with genes associated with epithelial-mesenchymal transition, which was further confirmed by western blot analysis. In conclusion, the results of the present study suggested that TAFA5 had significant effects on GC progression, suggesting that it may serve as a potential therapeutic target for GC therapy.
Collapse
Affiliation(s)
- Zhiqing Hu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Gengming Niu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Jun Ren
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Xin Wang
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Liang Chen
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Runqi Hong
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Chongwei Ke
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
14
|
Maciejewski A, Kowalczyk MJ, Gasińska T, Szeliga A, Prendecki M, Dorszewska J, Żaba R, Łącka K. The Role of Vitamin D Receptor Gene Polymorphisms in Thyroid-Associated Orbitopathy. Ocul Immunol Inflamm 2019; 28:354-361. [DOI: 10.1080/09273948.2019.1629605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Adam Maciejewski
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał J. Kowalczyk
- Department of Dermatology and Venereology, Poznan University of Medical Sciences, Poznan, Poland
| | - Teresa Gasińska
- Department of Internal Diseases and Oncological Chemotherapy, Medical University of Silesia, Katowice, Poland
| | - Anna Szeliga
- Student Scientific Society, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Ryszard Żaba
- Department of Dermatology and Venereology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Łącka
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
15
|
Sun X, Lv Y, Wang J, Cheng H, Huang J, Du Y, Dong J. Differential protein expression profiling by iTRAQ‐2D‐LC‐MS/MS of rats treated with oxaliplatin. J Cell Biochem 2019; 120:18128-18141. [PMID: 31237037 DOI: 10.1002/jcb.29116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Xianjun Sun
- Department of Integrative Medicine, Huashan Hospital Fudan University Shanghai China
- Qingpu Chinese Medicine Hospital Institutes of Integrative Medicine, Fudan University Shanghai China
| | - Yubao Lv
- Department of Integrative Medicine, Huashan Hospital Fudan University Shanghai China
- Qingpu Chinese Medicine Hospital Institutes of Integrative Medicine, Fudan University Shanghai China
| | - Junjun Wang
- Qingpu Chinese Medicine Hospital Institutes of Integrative Medicine, Fudan University Shanghai China
| | - HuiQin Cheng
- Department of Prevention and Healthcare Yangpu Daqiao Community Health Service Center Shanghai China
| | - Jianhua Huang
- Department of Integrative Medicine, Huashan Hospital Fudan University Shanghai China
- Qingpu Chinese Medicine Hospital Institutes of Integrative Medicine, Fudan University Shanghai China
| | - Yijie Du
- Department of Integrative Medicine, Huashan Hospital Fudan University Shanghai China
- Qingpu Chinese Medicine Hospital Institutes of Integrative Medicine, Fudan University Shanghai China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital Fudan University Shanghai China
- Qingpu Chinese Medicine Hospital Institutes of Integrative Medicine, Fudan University Shanghai China
| |
Collapse
|
16
|
Wasenang W, Chaiyarit P, Proungvitaya S, Limpaiboon T. Serum cell-free DNA methylation of OPCML and HOXD9 as a biomarker that may aid in differential diagnosis between cholangiocarcinoma and other biliary diseases. Clin Epigenetics 2019; 11:39. [PMID: 30832707 PMCID: PMC6399934 DOI: 10.1186/s13148-019-0634-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a fatal cancer of the bile duct epithelial cell lining. The misdiagnosis of CCA and other biliary diseases may occur due to the similarity of clinical manifestations and blood tests resulting in inappropriate or delayed treatment. Thus, an accurate and less-invasive method for differentiating CCA from other biliary diseases is inevitable. METHODS We quantified methylation of OPCML, HOXA9, and HOXD9 in serum cell-free DNA (cfDNA) of CCA patients and other biliary diseases using methylation-sensitive high-resolution melting (MS-HRM). Their potency as differential biomarkers between CCA and other biliary diseases was also evaluated by using receiver operating characteristic (ROC) curves. RESULTS The significant difference of methylation levels of OPCML and HOXD9 was observed in serum cfDNA of CCA compared to other biliary diseases. Assessment of serum cfDNA methylation of OPCML and HOXD9 as differential biomarkers of CCA and other biliary diseases showed the area under curve (AUC) of 0.850 (0.759-0.941) for OPCML which sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were 80.00%, 90.00%, 88.88%, 81.81%, and 85.00%, respectively. The AUC of HOXD9 was 0.789 (0.686-0.892) with sensitivity, specificity, PPV, NPV, and accuracy of 67.50%, 90.00%, 87.09%, 73.46%, and 78.75%, respectively. The combined marker between OPCML and HOXD9 showed sensitivity, specificity, PPV, and NPV of 62.50%, 100%, 100%, and 72.72%, respectively, which may be helpful to prevent a misdiagnosis between CCA and other biliary diseases. CONCLUSIONS Our findings suggest the application of serum cfDNA methylation of OPCML and HOXD9 for differential diagnosis of CCA and other biliary diseases due to its less invasiveness and clinically practical method which may benefit the patients by preventing the misdiagnosis of CCA and avoiding unnecessary surgical intervention.
Collapse
Affiliation(s)
- Wiphawan Wasenang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ponlatham Chaiyarit
- Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Siriporn Proungvitaya
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Temduang Limpaiboon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
17
|
Qian F, Guo J, Jiang Z, Shen B. Translational Bioinformatics for Cholangiocarcinoma: Opportunities and Challenges. Int J Biol Sci 2018; 14:920-929. [PMID: 29989102 PMCID: PMC6036745 DOI: 10.7150/ijbs.24622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/02/2018] [Indexed: 02/07/2023] Open
Abstract
Translational bioinformatics is becoming a driven force and a new scientific paradigm for cancer research in the era of big data. To promote the cross-disciplinary communication and research, we take cholangiocarcinoma as an example to review the present status and the future perspectives of the bioinformatics models applied in cancer study. We first summarize the present application of computational methods to the study of cholangiocarcinoma ranged from pattern recognition of biological data, knowledge based data annotation to systems biological level modeling and clinical translation. Then the future opportunities and challenges about database or knowledge base building, novel model developing and molecular mechanism exploring as well as the intelligent decision supporting system construction for the precision diagnosis, prognosis and treatment of cholangiocarcinoma are discussed.
Collapse
Affiliation(s)
- Fuliang Qian
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Junping Guo
- The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, China
| | - Zhi Jiang
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Bairong Shen
- Center for Systems Biology, Soochow University, Suzhou 215006, China.,Guizhou University School of Medicine, Guiyang, 550025, China.,Institute for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
18
|
Greco V, Piras C, Pieroni L, Urbani A. Direct Assessment of Plasma/Serum Sample Quality for Proteomics Biomarker Investigation. Methods Mol Biol 2018; 1619:3-21. [PMID: 28674873 DOI: 10.1007/978-1-4939-7057-5_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Blood proteome analysis for biomarker discovery represents one of the most challenging tasks to be achieved through clinical proteomics due to the sample complexity, such as the extreme heterogeneity of proteins in very dynamic concentrations, and to the observation of proper sampling and storage conditions. Quantitative and qualitative proteomics profiling of plasma and serum could be useful both for the early detection of diseases and for the evaluation of pathological status. Two main sources of variability can affect the precision and accuracy of the quantitative experiments designed for biomarker discovery and validation. These sources are divided into two categories, pre-analytical and analytical, and are often ignored; however, they can contribute to consistent errors and misunderstanding in biomarker research. In this chapter, we review critical pre-analytical and analytical variables that can influence quantitative proteomics. According to guidelines accepted by proteomics community, we propose some recommendations and strategies for a proper proteomics analysis addressed to biomarker studies.
Collapse
Affiliation(s)
- Viviana Greco
- Proteomics and metabonomics unit, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Cristian Piras
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Luisa Pieroni
- Proteomics and metabonomics unit, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Andrea Urbani
- Proteomics and metabonomics unit, Fondazione Santa Lucia, IRCCS, Rome, Italy. .,Institute of Biochemistry and Clinical Biochemistry, Catholic University of Sacred Heart, Rome, Italy.
| |
Collapse
|
19
|
Park MY, Kim HS, Lee M, Park B, Lee HY, Cho EB, Seong JY, Bae YS. FAM19A5, a brain-specific chemokine, inhibits RANKL-induced osteoclast formation through formyl peptide receptor 2. Sci Rep 2017; 7:15575. [PMID: 29138422 PMCID: PMC5686125 DOI: 10.1038/s41598-017-15586-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023] Open
Abstract
Osteoclasts can be differentiated from bone marrow-derived macrophages (BMDM). They play a key role in bone resorption. Identifying novel molecules that can regulate osteoclastogenesis has been an important issue. In this study, we found that FAM19A5, a neurokine or brain-specific chemokine, strongly stimulated mouse BMDM, resulting in chemotactic migration and inhibition of RANKL-induced osteoclastogenesis. Expression levels of osteoclast-related genes such as RANK, TRAF6, OSCAR, TRAP, Blimp1, c-fos, and NFATc1 were markedly decreased by FAM19A5. However, negative regulators of osteoclastogenesis such as MafB and IRF-8 were upregulated by FAM19A5. FAM19A5 also downregulated expression levels of RANKL-induced fusogenic genes such as OC-STAMP, DC-STAMP, and Atp6v0d2. FAM19A5-induced inhibitory effect on osteoclastogenesis was significantly reversed by a formyl peptide receptor (FPR) 2 antagonist WRW4 or by FPR2-deficiency, suggesting a crucial role of FPR2 in the regulation of osteoclastogenesis. Collectively, our results suggest that FAM19A5 and its target receptor FPR2 can act as novel endogenous ligand/receptor to negatively regulate osteoclastogenesis. They might be regarded as potential targets to control osteoclast formation and bone disorders.
Collapse
Affiliation(s)
- Min Young Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyung Sik Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Byunghyun Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ha Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Eun Bee Cho
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Young Seong
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Berretta M, Cavaliere C, Alessandrini L, Stanzione B, Facchini G, Balestreri L, Perin T, Canzonieri V. Serum and tissue markers in hepatocellular carcinoma and cholangiocarcinoma: clinical and prognostic implications. Oncotarget 2017; 8:14192-14220. [PMID: 28077782 PMCID: PMC5355172 DOI: 10.18632/oncotarget.13929] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022] Open
Abstract
HCC represents the sixth most common cancer worldwide and the second leading cause of cancer-related death. Despite the high incidence, treatment options for advanced HCC remain limited and unsuccessful, resulting in a poor prognosis. Despite the major advances achieved in the diagnostic management of HCC, only one third of the newly diagnosed patients are presently eligible for curative treatments. Advances in technology and an increased understanding of HCC biology have led to the discovery of novel biomarkers. Improving our knowledge about serum and tissutal markers could ultimately lead to an early diagnosis and better and early treatment strategies for this deadly disease. Serum biomarkers are striking potential tools for surveillance and early diagnosis of HCC thanks to the non-invasive, objective, and reproducible assessments they potentially enable. To date, many biomarkers have been proposed in the diagnosis of HCC. Cholangiocarcinoma (CCA) is an aggressive malignancy, characterized by early lymph node involvement and distant metastasis, with 5-year survival rates of 5%-10%. The identification of new biomarkers with diagnostic, prognostic or predictive value is especially important as resection (by surgery or combined with a liver transplant) has shown promising results and novel therapies are emerging. However, the relatively low incidence of CCA, high frequency of co-existing cholestasis or cholangitis (primary sclerosing cholangitis –PSC- above all), and difficulties with obtaining adequate samples, despite advances in sampling techniques and in endoscopic visualization of the bile ducts, have complicated the search for accurate biomarkers. In this review, we attempt to analyze the existing literature on this argument.
Collapse
Affiliation(s)
| | - Carla Cavaliere
- Department of Onco-Ematology Medical Oncology, S.G. Moscati Hospital of Taranto Taranto, Italy
| | - Lara Alessandrini
- Division of Pathology, National Cancer Institute, Aviano (PN), Italy
| | - Brigida Stanzione
- Department of Medical Oncology, National Cancer Institute, Aviano (PN), Italy
| | - Gaetano Facchini
- Department of Medical Oncology, National Cancer Institute, "G. Pascale" Foundation, Naples, Italy
| | - Luca Balestreri
- Department of Radiology, National Cancer Institute, Aviano (PN), Italy
| | - Tiziana Perin
- Division of Pathology, National Cancer Institute, Aviano (PN), Italy
| | | |
Collapse
|
21
|
Ishikawa T. Next-generation sequencing traces human induced pluripotent stem cell lines clonally generated from heterogeneous cancer tissue. World J Stem Cells 2017; 9:77-88. [PMID: 28596815 PMCID: PMC5440771 DOI: 10.4252/wjsc.v9.i5.77] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/03/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate genotype variation among induced pluripotent stem cell (iPSC) lines that were clonally generated from heterogeneous colon cancer tissues using next-generation sequencing.
METHODS Human iPSC lines were clonally established by selecting independent single colonies expanded from heterogeneous primary cells of S-shaped colon cancer tissues by retroviral gene transfer (OCT3/4, SOX2, and KLF4). The ten iPSC lines, their starting cancer tissues, and the matched adjacent non-cancerous tissues were analyzed using next-generation sequencing and bioinformatics analysis using the human reference genome hg19. Non-synonymous single-nucleotide variants (SNVs) (missense, nonsense, and read-through) were identified within the target region of 612 genes related to cancer and the human kinome. All SNVs were annotated using dbSNP135, CCDS, RefSeq, GENCODE, and 1000 Genomes. The SNVs of the iPSC lines were compared with the genotypes of the cancerous and non-cancerous tissues. The putative genotypes were validated using allelic depth and genotype quality. For final confirmation, mutated genotypes were manually curated using the Integrative Genomics Viewer.
RESULTS In eight of the ten iPSC lines, one or two non-synonymous SNVs in EIF2AK2, TTN, ULK4, TSSK1B, FLT4, STK19, STK31, TRRAP, WNK1, PLK1 or PIK3R5 were identified as novel SNVs and were not identical to the genotypes found in the cancer and non-cancerous tissues. This result suggests that the SNVs were de novo or pre-existing mutations that originated from minor populations, such as multifocal pre-cancer (stem) cells or pre-metastatic cancer cells from multiple, different clonal evolutions, present within the heterogeneous cancer tissue. The genotypes of all ten iPSC lines were different from the mutated ERBB2 and MKNK2 genotypes of the cancer tissues and were identical to those of the non-cancerous tissues and that found in the human reference genome hg19. Furthermore, two of the ten iPSC lines did not have any confirmed mutated genotypes, despite being derived from cancerous tissue. These results suggest that the traceability and preference of the starting single cells being derived from pre-cancer (stem) cells, stroma cells such as cancer-associated fibroblasts, and immune cells that co-existed in the tissues along with the mature cancer cells.
CONCLUSION The genotypes of iPSC lines derived from heterogeneous cancer tissues can provide information on the type of starting cell that the iPSC line was generated from.
Collapse
|
22
|
Rahnemai-Azar AA, Weisbrod A, Dillhoff M, Schmidt C, Pawlik TM. Intrahepatic cholangiocarcinoma: Molecular markers for diagnosis and prognosis. Surg Oncol 2017; 26:125-137. [PMID: 28577718 DOI: 10.1016/j.suronc.2016.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/24/2016] [Accepted: 12/29/2016] [Indexed: 02/08/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver tumor with increasing incidence worldwide. The outcome of patients with iCCA is dismal owing to tumor's aggressiveness, late diagnosis and lack of effective treatment options. Detection of the tumor at early stages may make surgical resection, as only potential curative treatment, more feasible. Unfortunately, despite recent developments in imaging modalities and laboratory tests, the diagnosis of iCCA remains challenging and patients often present in advanced stages when surgery cannot be offered. Moreover, accurate assessment of disease burden is critical to optimize management strategy, including the use of adjuvant therapies and clinical trials. Identifying iCCA specific diagnostic and prognostic biomarkers has been a focus of interest among many investigators with a progressive increase in data on iCCA related to advances in "omics" technologies. We herein summarize iCCA biomarkers and define the molecular mechanisms underlying iCCA carcinogenesis, as well as highlight potential diagnostic and prognostic application of molecular biomarkers.
Collapse
Affiliation(s)
- Amir A Rahnemai-Azar
- Department of Surgery, University of Washington Medical Center, Seattle, WA, USA
| | - Allison Weisbrod
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Mary Dillhoff
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Carl Schmidt
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
23
|
Wirth TC, Vogel A. Surveillance in cholangiocellular carcinoma. Best Pract Res Clin Gastroenterol 2016; 30:987-999. [PMID: 27938792 DOI: 10.1016/j.bpg.2016.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 01/31/2023]
Abstract
Cholangiocellular carcinoma is the most frequent malignant neoplasm originating from the epithelium of intra- or extrahepatic bile ducts. In the past decades, the incidence of cholangiocarcinoma has been shown to increase while overall mortality has remained high with an approximate 5-year overall survival below 20%. Surgery remains the only curative option while systemic treatment is limited to palliative chemotherapy. Therefore, surveillance strategies for patients at risk of developing cholangiocarcinoma are urgently needed, particularly in patients with primary sclerosing cholangitis and patients infected with liver flukes. Here we summarize the currently available data on surveillance of risk populations and methods for the detection of cholangiocarcinoma.
Collapse
Affiliation(s)
- Thomas C Wirth
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, 30625 Hannover, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, 30625 Hannover, Germany.
| |
Collapse
|
24
|
Voiculescu V, Calenic B, Ghita M, Lupu M, Caruntu A, Moraru L, Voiculescu S, Ion A, Greabu M, Ishkitiev N, Caruntu C. From Normal Skin to Squamous Cell Carcinoma: A Quest for Novel Biomarkers. DISEASE MARKERS 2016; 2016:4517492. [PMID: 27642215 PMCID: PMC5011506 DOI: 10.1155/2016/4517492] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022]
Abstract
Squamous cells carcinoma (SCC) is the second most frequent of the keratinocyte-derived malignancies after basal cell carcinoma and is associated with a significant psychosocial and economic burden for both the patient himself and society. Reported risk factors for the malignant transformation of keratinocytes and development of SCC include ultraviolet light exposure, followed by chronic scarring and inflammation, exposure to chemical compounds (arsenic, insecticides, and pesticides), and immune-suppression. Despite various available treatment methods and recent advances in noninvasive or minimal invasive diagnostic techniques, the risk recurrence and metastasis are far from being negligible, even in patients with negative histological margins and lymph nodes. Analyzing normal, dysplastic, and malignant keratinocyte proteome holds special promise for novel biomarker discovery in SCC that could be used in the future for early detection, risk assessment, tumor monitoring, and development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Vlad Voiculescu
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Bogdan Calenic
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihaela Ghita
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Lupu
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, Bucharest, Romania
| | - Liliana Moraru
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, Bucharest, Romania
| | - Suzana Voiculescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Alexandra Ion
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Nikolay Ishkitiev
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University, Sofia, Bulgaria
| | - Constantin Caruntu
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
25
|
Seno A, Kasai T, Ikeda M, Vaidyanath A, Masuda J, Mizutani A, Murakami H, Ishikawa T, Seno M. Characterization of Gene Expression Patterns among Artificially Developed Cancer Stem Cells Using Spherical Self-Organizing Map. Cancer Inform 2016; 15:163-78. [PMID: 27559294 PMCID: PMC4988459 DOI: 10.4137/cin.s39839] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/15/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022] Open
Abstract
We performed gene expression microarray analysis coupled with spherical self-organizing map (sSOM) for artificially developed cancer stem cells (CSCs). The CSCs were developed from human induced pluripotent stem cells (hiPSCs) with the conditioned media of cancer cell lines, whereas the CSCs were induced from primary cell culture of human cancer tissues with defined factors (OCT3/4, SOX2, and KLF4). These cells commonly expressed human embryonic stem cell (hESC)/hiPSC-specific genes (POU5F1, SOX2, NANOG, LIN28, and SALL4) at a level equivalent to those of control hiPSC 201B7. The sSOM with unsupervised method demonstrated that the CSCs could be divided into three groups based on their culture conditions and original cancer tissues. Furthermore, with supervised method, sSOM nominated TMED9, RNASE1, NGFR, ST3GAL1, TNS4, BTG2, SLC16A3, CD177, CES1, GDF15, STMN2, FAM20A, NPPB, CD99, MYL7, PRSS23, AHNAK, and LOC152573 genes commonly upregulating among the CSCs compared to hiPSC, suggesting the gene signature of the CSCs.
Collapse
Affiliation(s)
- Akimasa Seno
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Tomonari Kasai
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Masashi Ikeda
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Arun Vaidyanath
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Junko Masuda
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Akifumi Mizutani
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Hiroshi Murakami
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Tetsuya Ishikawa
- Cell Biology, Core Facilities for Research and Innovative Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.; Central Animal Division, Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Masaharu Seno
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| |
Collapse
|
26
|
Gene Expression and Proteome Analysis as Sources of Biomarkers in Basal Cell Carcinoma. DISEASE MARKERS 2016; 2016:9831237. [PMID: 27578920 PMCID: PMC4992754 DOI: 10.1155/2016/9831237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/10/2016] [Indexed: 12/13/2022]
Abstract
Basal cell carcinoma (BCC) is the world's leading skin cancer in terms of frequency at the moment and its incidence continues to rise each year, leading to profound negative psychosocial and economic consequences. UV exposure is the most important environmental factor in the development of BCC in genetically predisposed individuals, this being reflected by the anatomical distribution of lesions mainly on sun-exposed skin areas. Early diagnosis and prompt management are of crucial importance in order to prevent local tissue destruction and subsequent disfigurement. Although various noninvasive or minimal invasive techniques have demonstrated their utility in increasing diagnostic accuracy of BCC and progress has been made in its treatment options, recurrent, aggressive, and metastatic variants of BCC still pose significant challenge for the healthcare system. Analysis of gene expression and proteomic profiling of tumor cells and of tumoral microenvironment in various tissues strongly suggests that certain molecules involved in skin cancer pathogenic pathways might represent novel predictive and prognostic biomarkers in BCC.
Collapse
|
27
|
Timms JF, Hale OJ, Cramer R. Advances in mass spectrometry-based cancer research and analysis: from cancer proteomics to clinical diagnostics. Expert Rev Proteomics 2016; 13:593-607. [DOI: 10.1080/14789450.2016.1182431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Seeree P, Pearngam P, Kumkate S, Janvilisri T. An Omics Perspective on Molecular Biomarkers for Diagnosis, Prognosis, and Therapeutics of Cholangiocarcinoma. Int J Genomics 2015; 2015:179528. [PMID: 26421274 PMCID: PMC4572471 DOI: 10.1155/2015/179528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/09/2015] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive biliary tract malignancy arising from the epithelial bile duct. The lack of early diagnostic biomarkers as well as therapeutic measures results in severe outcomes and poor prognosis. Thus, effective early diagnostic, prognostic, and therapeutic biomarkers are required to improve the prognosis and prolong survival rates in CCA patients. Recent advancement in omics technologies combined with the integrative experimental and clinical validations has provided an insight into the underlying mechanism of CCA initiation and progression as well as clues towards novel biomarkers. This work highlights the discovery and validation of molecular markers in CCA identified through omics approaches. The possible roles of these molecules in various cellular pathways, which render CCA carcinogenesis and progression, will also be discussed. This paper can serve as a reference point for further investigations to yield deeper understanding in the complex feature of this disease, potentially leading to better approaches for diagnosis, prognosis, and therapeutics.
Collapse
Affiliation(s)
- Pattaya Seeree
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phorutai Pearngam
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Supeecha Kumkate
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|