1
|
Alberts A, Bratu AG, Niculescu AG, Grumezescu AM. Collagen-Based Wound Dressings: Innovations, Mechanisms, and Clinical Applications. Gels 2025; 11:271. [PMID: 40277707 PMCID: PMC12026876 DOI: 10.3390/gels11040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/30/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
Collagen-based wound dressings have developed as an essential component of contemporary wound care, utilizing collagen's inherent properties to promote healing. This review thoroughly analyzes collagen dressing advances, examining different formulations such as hydrogels, films, and foams that enhance wound care. The important processes by which collagen promotes healing (e.g., promoting angiogenesis, encouraging cell proliferation, and offering structural support) are discussed to clarify its function in tissue regeneration. The effectiveness and adaptability of collagen dressings are demonstrated via clinical applications investigated in acute and chronic wounds. Additionally, commercially accessible collagen-based skin healing treatments are discussed, demonstrating their practical use in healthcare settings. Despite the progress, the study discusses the obstacles and restrictions encountered in producing and adopting collagen-based dressings, such as the difficulties of manufacturing and financial concerns. Finally, the current landscape's insights indicate future research possibilities for collagen dressing optimization, bioactive agent integration, and overcoming existing constraints. This analysis highlights the potential of collagen-based innovations to improve wound treatment methods and patient care.
Collapse
Affiliation(s)
- Adina Alberts
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Andreea Gabriela Bratu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
2
|
Kulka-Kamińska K, Kurzawa M, Sionkowska A. Films Based on Chitosan/Konjac Glucomannan Blend Containing Resveratrol for Potential Skin Application. MATERIALS (BASEL, SWITZERLAND) 2025; 18:457. [PMID: 39859927 PMCID: PMC11766734 DOI: 10.3390/ma18020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Biopolymers represent a significant class of materials with potential applications in skin care due to their beneficial properties. Resveratrol is a natural substance that exhibits a range of biological activities, including the scavenging of free radicals and anti-inflammatory and anti-aging effects. In this study, chitosan/konjac glucomannan resveratrol-enriched thin films were prepared. The enrichment of biomaterials with active ingredients is a common practice, as it allows the desired properties to be obtained in the final product. To characterize the films, several analyses were performed, including infrared spectroscopy, imaging of the samples by SEM and AFM techniques, swelling analysis in pH 5.5 and 7.4, mechanical and antioxidant assays, contact angle measurements, and determination of the resveratrol release profile under the skin mimicking conditions. Resveratrol incorporation into the matrices resulted in modifications to the chemical structure and film morphology. The mechanical characteristics of films with additives were found to undergo deterioration. The sample containing 10% of resveratrol exhibited a higher swelling degree than other films. The resveratrol-modified films demonstrated a notable antioxidant capacity, a reduced contact angle, and enhanced wettability. The resveratrol release occurred rapidly initially, with a maximum of 84% and 56% of the substance released depending on the sample type. Thus, the proposed formulations have promising properties, in particular good swelling capacity, high antioxidant potential, and improved wettability, and may serve as skin dressings after further investigation.
Collapse
Affiliation(s)
- Karolina Kulka-Kamińska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland
| | - Marzanna Kurzawa
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland;
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland
| |
Collapse
|
3
|
Zou Y, Mao Z, Zhao C, Fan Z, Yang H, Xia A, Zhang X. Fish skin dressing for wound regeneration: A bioactive component review of omega-3 PUFAs, collagen and ECM. Int J Biol Macromol 2024; 283:137831. [PMID: 39566781 DOI: 10.1016/j.ijbiomac.2024.137831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/07/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Wound healing is a complex biological process that involves several stages, including hemostasis, inflammation, proliferation, and remodeling. Traditional wound dressings, to a certain extent, can provide wound protection but are limited in promoting wound healing, reducing scar formation, and preventing bacterial infections. In recent years, with the advancement of research in biomedical materials, fish skin dressings have become a research hotspot in the field of tissue regeneration due to their remarkable biocompatibility and precious bioactive components. However, current research on fish skin dressings remains focused on clinical treatment. To further deepen and promote the development of fish skin dressings, we put emphasis on discussing main bioactive components in fish skin. This article has reviewed the advantages of fish skin dressings in wound regeneration, especially the promotive effects of its main bioactive components-Omega-3 polyunsaturated fatty acids, collagen derived from fish skin, and the extracellular matrix of fish skin-on the wound healing process. Besides, by critically summarizing the research issues of each bioactive component, this review assists researchers in better defining the next direction of research, thereby designing the optimal dressing for different types of wounds.
Collapse
Affiliation(s)
- Ying Zou
- Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Zongtao Mao
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chenyu Zhao
- Department of China Medical University-The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhonghao Fan
- Department of China Medical University-The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Anqi Xia
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Xudong Zhang
- Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| |
Collapse
|
4
|
Cadar E, Pesterau AM, Prasacu I, Ionescu AM, Pascale C, Dragan AML, Sirbu R, Tomescu CL. Marine Antioxidants from Marine Collagen and Collagen Peptides with Nutraceuticals Applications: A Review. Antioxidants (Basel) 2024; 13:919. [PMID: 39199165 PMCID: PMC11351696 DOI: 10.3390/antiox13080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Collagen peptides and marine collagen are enormous resources currently utilized. This review aims to examine the scientific literature to determine which collagen peptides derived from marine sources and which natural active antioxidants from marine collagen have significant biological effects as health-promoting nutraceuticals. Marine collagen is extracted from both vertebrate and invertebrate marine creatures. For vertebrates, this includes fish skin, bones, scales, fins, and cartilage. For invertebrates, it includes mollusks, echinoderms, crustaceans, and poriferans. The method used involved data analysis to organize information for isolating and identifying marine biocompounds with antioxidant properties. Specifically, amino acids with antioxidant properties were identified, enabling the use of hydrolysates and collagen peptides as natural antioxidant nutraceuticals. The methods of extraction of hydrolyzed collagen and collagen peptides by different treatments are systematized. The structural characteristics of collagen, collagen peptides, and amino acids in fish skin and by-products, as well as in invertebrate organisms (jellyfish, mollusks, and crustaceans), are described. The antioxidant properties of different methods of collagen hydrolysates and collagen peptides are systematized, and the results are comparatively analyzed. Their use as natural antioxidant nutraceuticals expands the range of possibilities for the exploitation of natural resources that have not been widely used until now.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania;
| | - Ana-Maria Pesterau
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania;
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Ana-Maria Laura Dragan
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Bvd. Tomis, No. 145, 900591 Constanta, Romania
| |
Collapse
|
5
|
Jayaprakash S, Mohamad Abdul Razeen Z, Naveen Kumar R, He J, Milky MG, Renuka R, Sanskrithi MV. Enriched characteristics of poultry collagen over other sources of collagen and its extraction methods: A review. Int J Biol Macromol 2024; 273:133004. [PMID: 38851608 DOI: 10.1016/j.ijbiomac.2024.133004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Collagen is the most abundant protein in animals and is extensively studied for its structural and thermal stability, biocompatibility, and healing properties which enables them to be widely applied in various fields. Collagen extracted from poultry sources have shown improved structural stability and reduced risk of triggering allergic responses and transmitting animal diseases onto humans. Furthermore, poultry collagen is widely accepted by consumers of diverse beliefs in comparison to collagen extracted from bovine and porcine sources. The review aims to compare different sources of collagen, focusing on the various beneficial characteristics of poultry collagen over the other sources. Moreover, the review explains various pre-treatment and extraction methods of poultry collagen and its versatile applications in different industrial sectors.
Collapse
Affiliation(s)
- Sakthidasan Jayaprakash
- Department of Biotechnology, Hindustan Institute of Technology and Science, Chennai 603103, India.
| | - Z Mohamad Abdul Razeen
- Department of Biotechnology, Hindustan Institute of Technology and Science, Chennai 603103, India
| | - R Naveen Kumar
- Department of Biotechnology, Hindustan Institute of Technology and Science, Chennai 603103, India
| | - Jin He
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mariamawit Girma Milky
- Department of Biotechnology, Hindustan Institute of Technology and Science, Chennai 603103, India
| | - R Renuka
- Department of Biotechnology, Hindustan Institute of Technology and Science, Chennai 603103, India
| | - M V Sanskrithi
- Department of Biotechnology, Hindustan Institute of Technology and Science, Chennai 603103, India
| |
Collapse
|
6
|
Huang JY, Wong TY, Tu TY, Tang MJ, Lin HH, Hsueh YY. Assessment of Tilapia Skin Collagen for Biomedical Research Applications in Comparison with Mammalian Collagen. Molecules 2024; 29:402. [PMID: 38257315 PMCID: PMC10819363 DOI: 10.3390/molecules29020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Collagen is an important material for biomedical research, but using mammalian tissue-derived collagen carries the risk of zoonotic disease transmission. Marine organisms, such as farmed tilapia, have emerged as a safe alternative source of collagen for biomedical research. However, the tilapia collagen products for biomedical research are rare, and their biological functions remain largely unexamined. In this study, we characterized a commercial tilapia skin collagen using SDS-PAGE and fibril formation assays and evaluated its effects on skin fibroblast adhesion, proliferation, and migration, comparing it with commercial collagen from rat tails, porcine skin, and bovine skin. The results showed that tilapia skin collagen is a type I collagen, similar to rat tail collagen, and has a faster fibril formation rate and better-promoting effects on cell migration than porcine and bovine skin collagen. We also confirmed its application in a 3D culture for kidney cells' spherical cyst formation, fibroblast-induced gel contraction, and tumor spheroid interfacial invasion. Furthermore, we demonstrated that the freeze-dried tilapia skin collagen scaffold improved wound closure in a mouse excisional wound model, similar to commercial porcine or bovine collagen wound dressings. In conclusion, tilapia skin collagen is an ideal biomaterial for biomedical research.
Collapse
Affiliation(s)
- Jyun-Yuan Huang
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
| | - Tzyy-Yue Wong
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
| | - Ting-Yuan Tu
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan City 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan City 701, Taiwan
| | - Ming-Jer Tang
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| | - Hsi-Hui Lin
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| | - Yuan-Yu Hsueh
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| |
Collapse
|
7
|
Ibrahim A, Fahmy HM, Mahmoud GAE, Soliman M, Elshahawy AM. New strategies for sterilization and preservation of fresh fish skin grafts. Sci Rep 2024; 14:1253. [PMID: 38218988 PMCID: PMC10787751 DOI: 10.1038/s41598-024-51608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024] Open
Abstract
The introduction of fish skin as a biological dressing for treating burns and wounds holds great promise, offering an alternative to existing management strategies. However, the risk of disease transmission is a significant concern. Therefore, this study aimed to examine how established sterilization and preservation procedures affected fish skin grafts' microbiological and histological properties for long-term usage. Lyophilization of the fish skin graft followed by rehydration in normal saline for 15 min did not change the collagen content. Furthermore, gamma irradiation of the lyophilized fish skin graft at different lengths 5, 10, and 25 KGy showed a significant reduction in microbial growth (aerobic bacteria, aerobic yeasts, and fungi) at 15- and 30 days after the irradiation. However, exposure to 10 KGy was found to be the most effective intensity among the different gamma irradiation lengths since it preserved the collagen fiber content and intensity in the lyophilized fish skin grafts at 15- and 30 days after the irradiation. These findings provide efficient preservation and sterilization methods for long-term usage of the fresh Tilapia skin grafts used for biological dressings.
Collapse
Affiliation(s)
- Ahmed Ibrahim
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Hossam M Fahmy
- Laboratory and Transfusion Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Mahmoud Soliman
- Department of Veterinary Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | | |
Collapse
|
8
|
Esmaeili A, Rahimi A, Abbasi A, Hasannejad-Asl B, Bagheri-Mohammadi S, Farjami M, Keshel SH. Processing and post-processing of fish skin as a novel material in tissue engineering. Tissue Cell 2023; 85:102238. [PMID: 37832248 DOI: 10.1016/j.tice.2023.102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
As a natural material, fish skin contains significant amounts of collagen I and III, and due to its biocompatible nature, it can be used to regenerate various tissues and organs. To use fish skin, it is necessary to perform the decellularization process to avoid the immunological response of the host body. In the process of decellularization, it is crucial to conserve the extracellular matrix (ECM) three-dimensional (3D) structure. However, it is known that decellularization methods may also damage ECM strands arrangement and structure. Moreover, after decellularization, the post-processing of fish skin improves its mechanical and biological properties and preserves its 3D design and strength. Also, sterilization, which is one of the post-processing steps, is mandatory in pre-clinical and clinical settings. In this review paper, the fish skin decellularization methods performed and the various post-processes used to increase the performance of the skin have been studied. Moreover, multiple applications of acellular fish skin (AFS) and its extracted collagen have been reviewed.
Collapse
Affiliation(s)
- Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Hasannejad-Asl
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Farjami
- Department of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Soares GC, Alves APNN, de Sousa AM, Dantas TF, de Barros Silva PG, Júnior EML, de Moraes Filho MO, Paier CRK, Rodrigues FAR, Mota MRL. Evaluation of the healing potential of Nile tilapia skin collagen in traumatic oral ulcers in male rats. Arch Oral Biol 2023; 155:105793. [PMID: 37633029 DOI: 10.1016/j.archoralbio.2023.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/06/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
OBJECTIVE To evaluate the healing potential of Nile tilapia skin collagen using a rat model with experimentally induced traumatic oral ulcers. DESIGN Male Wistar rats were segregated into three experimental groups (n = 8/group/euthanasia day). Ulcers were induced using a dermatological punch on the left buccal mucosa. The rats were then euthanized on days 1, 5, 10, 15, and 20 (ntotal=120 rats). Each group received topical treatment, 2x/day, with 1 % Nile tilapia skin collagen orabase (experimental group), only orabase (negative control), or Oncilom-A® orabase (positive control). Ulcer area, closure percentage, and body mass variation were measured. Slides were prepared for histological analysis, which included Picrosirius red staining (collagen analysis), and immunohistochemistry (platelet endothelial cell adhesion molecule, alpha-smooth muscle actin, and transforming growth factor-beta). RESULTS On day 15, the experimental and positive control groups displayed smaller ulcer areas, a higher percentage of closure, complete re-epithelialization, superior histological repair scores, and a reduced count of polymorphonuclear cells in comparison to the negative control group (p < 0.05). Additionally, the experimental group exhibited an increased number of blood vessels, total collagen (types I and III) and expression of platelet endothelial cell adhesion molecule, alpha-smooth muscle actin, and transforming growth factor-beta relative to the negative and positive control groups (p < 0.05). By day 20, the experimental group showed a more significant weight gain compared to the other groups (p < 0.0001). CONCLUSIONS Nile tilapia skin collagen orabase optimizes the healing of traumatic ulcers by stimulating re-epithelialization, angiogenesis, and collagenesis. Transforming growth factor-beta plays a significant role in this process.
Collapse
Affiliation(s)
- Guilherme Costa Soares
- Department of Dental Clinic, Stomatology and Oral Pathology Sector, Federal University of Ceara, Fortaleza, Brazil
| | | | - Alceu Machado de Sousa
- Department of Dental Clinic, Stomatology and Oral Pathology Sector, Federal University of Ceara, Fortaleza, Brazil
| | - Tales Freitas Dantas
- Department of Dental Clinic, Stomatology and Oral Pathology Sector, Federal University of Ceara, Fortaleza, Brazil
| | - Paulo Goberlânio de Barros Silva
- Department of Dental Clinic, Stomatology and Oral Pathology Sector, Federal University of Ceara, Fortaleza, Brazil; Ceara Cancer Institute, Hospital Haroldo Juaçaba, Fortaleza, Brazil
| | | | - Manoel Odorico de Moraes Filho
- Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil; Translational Medicine Postgraduate Program, Federal University of Ceara, Fortaleza, Brazil
| | - Carlos Roberto Koscky Paier
- Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil; Translational Medicine Postgraduate Program, Federal University of Ceara, Fortaleza, Brazil
| | - Felipe Augusto Rocha Rodrigues
- Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil; Translational Medicine Postgraduate Program, Federal University of Ceara, Fortaleza, Brazil
| | - Mário Rogério Lima Mota
- Department of Dental Clinic, Stomatology and Oral Pathology Sector, Federal University of Ceara, Fortaleza, Brazil.
| |
Collapse
|
10
|
Ciornei B, Vaduva A, David VL, Popescu D, Vulcanescu DD, Adam O, Avram CR, Pacurari AC, Boia ES. Comparison of Type I and Type III Collagen Concentration between Oreochromis mossambicus and Oreochromis niloticus in Relation to Skin Scaffolding. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1002. [PMID: 37374206 DOI: 10.3390/medicina59061002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: Skin scaffolding can be done using allografts and autografts. As a biological allograft, the skin of Oreochromis niloticus (ON) has been used due to its high type I and III collagen content. Oreochromis mossambicus (OM) is also a member of the Oreochromis family, but not much is known regarding its collagen content. As such, this study aimed to assess and compare the collagen content of the two fish species. Materials and Methods: This is a crossover study comparing the skin collagen contents of the two fish. Young fish were chosen, as they tend to have higher collagen concentrations. The skin samples were sterilized in chlorhexidine and increasing glycerol solutions and analyzed histochemically with Sirius red picrate under polarized light microscopy. Results: 6 young ON and 4 OM specimens were used. Baseline type I collagen was higher for OM, but at maximum sterilization it was higher for ON, with no differences in between Type III collagen was higher for OM across all comparisons with the exception of the last stage of sterilization. Generally, collagen concentrations were higher in highly sterilized samples. Conclusions: OM skin harvested from young fish, with its greater collagen III content may be a better candidate for use as a biological skin scaffold in the treatment of burn wounds, compared to ON.
Collapse
Affiliation(s)
- Bogdan Ciornei
- Department of Pediatric Surgery and Orthopedics, "Victor Babes" University of Medicine and Pharmacy, 300002 Timisoara, Romania
| | - Adrian Vaduva
- Department of Pathology, Methodological Research Center ANAPATMOL, "Victor Babes" University of Medicine and Pharmacy, 300002 Timisoara, Romania
| | - Vlad Laurentiu David
- Department of Pediatric Surgery and Orthopedics, "Victor Babes" University of Medicine and Pharmacy, 300002 Timisoara, Romania
| | - Diana Popescu
- Department of Pediatric Surgery, "Louis Turcanu" Emergency Children's Hospital, 300011 Timisoara, Romania
| | - Dan Dumitru Vulcanescu
- Multidisciplinary Research Center on Antimicrobial Resistance (Multi-Rez), "Victor Babes" University of Medicine and Pharmacy, 300002 Timisoara, Romania
| | - Ovidiu Adam
- Department of Pediatric Surgery and Orthopedics, "Victor Babes" University of Medicine and Pharmacy, 300002 Timisoara, Romania
| | - Cecilia Roberta Avram
- Department of Residential Training and Post-University Courses, "Vasile Goldis" Western University, 300002 Arad, Romania
| | | | - Eugen Sorin Boia
- Department of Pediatric Surgery and Orthopedics, "Victor Babes" University of Medicine and Pharmacy, 300002 Timisoara, Romania
| |
Collapse
|
11
|
Cutting Edge Aquatic-Based Collagens in Tissue Engineering. Mar Drugs 2023; 21:md21020087. [PMID: 36827128 PMCID: PMC9959471 DOI: 10.3390/md21020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Aquatic-based collagens have attracted much interest due to their great potential application for biomedical sectors, including the tissue engineering sector, as a major component of the extracellular matrix in humans. Their physical and biochemical characteristics offer advantages over mammalian-based collagen; for example, they have excellent biocompatibility and biodegradability, are easy to extract, and pose a relatively low immunological risk to mammalian products. The utilization of aquatic-based collagen also has fewer religious restrictions and lower production costs. Aquatic-based collagen also creates high-added value and good environmental sustainability by aquatic waste utilization. Thus, this study aims to overview aquatic collagen's characteristics, extraction, and fabrication. It also highlights its potential application for tissue engineering and the regeneration of bone, cartilage, dental, skin, and vascular tissue. Moreover, this review highlights the recent research in aquatic collagen, future prospects, and challenges for it as an alternative biomaterial for tissue engineering and regenerative medicines.
Collapse
|
12
|
Rajabimashhadi Z, Gallo N, Salvatore L, Lionetto F. Collagen Derived from Fish Industry Waste: Progresses and Challenges. Polymers (Basel) 2023; 15:544. [PMID: 36771844 PMCID: PMC9920587 DOI: 10.3390/polym15030544] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Fish collagen garnered significant academic and commercial focus in the last decades featuring prospective applications in a variety of health-related industries, including food, medicine, pharmaceutics, and cosmetics. Due to its distinct advantages over mammalian-based collagen, including the reduced zoonosis transmission risk, the absence of cultural-religious limitations, the cost-effectiveness of manufacturing process, and its superior bioavailability, the use of collagen derived from fish wastes (i.e., skin, scales) quickly expanded. Moreover, by-products are low cost and the need to minimize fish industry waste's environmental impact paved the way for the use of discards in the development of collagen-based products with remarkable added value. This review summarizes the recent advances in the valorization of fish industry wastes for the extraction of collagen used in several applications. Issues related to processing and characterization of collagen were presented. Moreover, an overview of the most relevant applications in food industry, nutraceutical, cosmetics, tissue engineering, and food packaging of the last three years was introduced. Lastly, the fish-collagen market and the open technological challenges to a reliable recovery and exploitation of this biopolymer were discussed.
Collapse
Affiliation(s)
- Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| | | | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| |
Collapse
|
13
|
Yamaura K, Mifune Y, Inui A, Nishimoto H, Mukohara S, Yoshikawa T, Shinohara I, Kato T, Furukawa T, Hoshino Y, Matsushita T, Kuroda R. Novel therapy using a fish scale collagen scaffold for rotator cuff healing in rat models. J Shoulder Elbow Surg 2022; 31:2629-2637. [PMID: 35961498 DOI: 10.1016/j.jse.2022.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Large and massive rotator cuff tears are challenging for surgeons because of postoperative complications such as repaired site retears. Recently, collagen extracted from fish scales has gained more attention because fish byproducts are considered a safer collagen source than other animal-derived scaffolds. This study aimed to evaluate the biological efficacy of tilapia scale-derived collagen scaffolds for rotator cuff repair in rat models. METHODS The infraspinatus tendon was resected from the greater tuberosity of Sprague-Dawley rats. In the control group, the tendon edge was sutured directly to the humeral head. In the augmentation group, the repaired site was augmented with a tilapia scale-derived collagen scaffold. Histologic examinations were performed at 2 and 4 weeks postoperatively via safranin O and immunofluorescence staining (isolectin B4 and type II collagen) in the bone-tendon junction. For mechanical analysis, the ultimate failure load of the tendon-humeral head complex was evaluated at 6 weeks postoperatively. RESULTS During safranin O staining, the repaired enthesis demonstrated greater proteoglycan staining in the augmentation group than in the control group at 4 weeks postoperatively. Compared to controls, the augmentation group had significantly higher vascular staining with isolectin B4 at 2 and 4 weeks postoperatively, type II collagen expression at 4 weeks postoperatively, and ultimate failure load at 6 weeks postoperatively. CONCLUSION Augmentation therapy using tilapia scale-derived type I collagen scaffolds promoted angiogenesis and fibrocartilage regeneration at the enthesis and provided higher mechanical strength than controls.
Collapse
Affiliation(s)
- Kohei Yamaura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hanako Nishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shintaro Mukohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoya Yoshikawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Issei Shinohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsuo Kato
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takahiro Furukawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuichi Hoshino
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
14
|
Liu XG, Chen L, Li HH, Hu YK, Xiong YH, Huang W, Su SS, Qi SH. [Research advances on the application of natural and recombinant collagen in wound repair]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2022; 38:978-982. [PMID: 36299212 DOI: 10.3760/cma.j.cn501120-20211123-00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Collagen is a macromolecular protein constituting the extracellular matrix of animal connective tissue, which has been widely used and developed in fields of biomedicine, tissue engineering, food, and cosmetics. Due to its advantages such as abundant sources and good biocompatibility, low immunogenicity, and degradability, collagen can be used as a dressing or tissue engineering scaffold for wound repair. According to the source of materials, collagen can be divided into natural collagen and recombinant collagen. Natural collagen is mainly extracted directly from mammals and fish; recombinant collagen is obtained based on genetic engineering technology, and its sources include recombinant expression systems of microorganisms, animals, and plants. This paper summarizes the sources of collagen, and the roles, advantages, and disadvantages of different sources of collagen in wound repair, the particularity and superiority of collagen combined with three-dimensional printing technology in wound repair, the impact of market norms of China's collagen industry on the field of wound repair, and explains the precautions for the development of collagen-related products, aiming to provide new ideas for selecting a suitable source of collagen for wound repair.
Collapse
Affiliation(s)
- X G Liu
- Department of Burn and Wound Repair, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510062, China
| | - L Chen
- Department of Burn and Wound Repair, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510062, China
| | - H H Li
- School of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Y K Hu
- Department of Burn and Wound Repair, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510062, China
| | - Y H Xiong
- Department of Burn and Wound Repair, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510062, China
| | - W Huang
- Department of Burn and Wound Repair, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510062, China
| | - S S Su
- Sun Yat-sen University-Yixian Group Skin Health Precision Research Joint Laboratory, Yue Keli Skin Regeneration Laboratory, Guangzhou 510275, China
| | - S H Qi
- Department of Burn and Wound Repair, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510062, China
| |
Collapse
|
15
|
Kandhasamy S, Zeng Y. Fabrication of vitamin K3-carnosine peptide-loaded spun silk fibroin fibers/collagen bi-layered architecture for bronchopleural fistula tissue repair and regeneration applications. BIOMATERIALS ADVANCES 2022; 137:212817. [PMID: 35929255 DOI: 10.1016/j.bioadv.2022.212817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Bronchial and pleural injuries with persistent air leak pose a threat in the repair and regeneration of pulmonary diseases. The need to arrive at a highly efficient therapy for closure of bronchopleural fistula (BPF) so as to effectively suppress inflammation, infection and repair the damaged pleural space caused by cancer as well as contractile restoration of bronchopleural scars remain a significant clinical challenge. Herein, we have designed and developed potent bioactive vitamin K3 carnosine peptide (VKC)-loaded spun SF fibroin fibers/collagen bi-layered 3D scaffold for bronchopleural fistula tissue engineering applications. The VKC drug showed excellent cell viability in human bronchial epithelial cells (HBECs), in addition to its pronounced higher cytotoxicity against the A549 lung cancer cell line with an IC50 of 5 μg/mL. Furthermore, VKC displayed a strong affinity with the catalytic site of EGFR (PDB ID: 1M17) and VEGFR2 (PDB ID: 4AGD, 4ASD) receptors in molecular docking studies. Following which the spun SF-VKC (primary layer) and collagen film (top layer) constructed bi-layered CSVKC were structurally elucidated and its morphological, physicochemical and biological characterizations were well examined. The bi-layered scaffold showed superior biocompatibility and cell migration ability in HBECs than other scaffolds. Interestingly, the CSVKC revealed rapid HBECs motility towards scratched regions for fast healing in vitro bronchial tissue engineering. In vivo biocompatibility and angiogenesis studies of the prepared scaffolds were evaluated and the results obtained demonstrated excellent new tissue formation and neovascularization in the bi-layered architecture rather than others. Therefore, our results suggest that the potent antibacterial and anticancer therapeutic agent (VKC)-impregnated silk fibroin fibers/collagen bi-layered 3D biomaterial could be useful in treating cancerous BPF and pulmonary diseases in future.
Collapse
Affiliation(s)
- Subramani Kandhasamy
- Department of Respiratory Diseases, Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Yiming Zeng
- Department of Respiratory Diseases, Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China.
| |
Collapse
|
16
|
Aquaponics-Derived Tilapia Skin Collagen for Biomaterials Development. Polymers (Basel) 2022; 14:polym14091865. [PMID: 35567034 PMCID: PMC9103308 DOI: 10.3390/polym14091865] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Collagen is one of the most widely used biomaterials in health-related sectors. The industrial production of collagen mostly relies on its extraction from mammals, but several issues limited its use. In the last two decades, marine organisms attracted interest as safe, abundant, and alternative source for collagen extraction. In particular, the possibility to valorize the huge quantity of fish industry waste and byproducts as collagen source reinforced perception of fish collagen as eco-friendlier and particularly attractive in terms of profitability and cost-effectiveness. Especially fish byproducts from eco-sustainable aquaponics production allow for fish biomass with additional added value and controlled properties over time. Among fish species, Oreochromis niloticus is one of the most widely bred fish in large-scale aquaculture and aquaponics systems. In this work, type I collagen was extracted from aquaponics-raised Tilapia skin and characterized from a chemical, physical, mechanical, and biological point of view in comparison with a commercially available analog. Performed analysis confirmed that the proprietary process optimized for type I collagen extraction allowed to isolate pure native collagen and to preserve its native conformational structure. Preliminary cellular studies performed with mouse fibroblasts indicated its optimal biocompatibility. All data confirmed the eligibility of the extracted Tilapia-derived native type I collagen as a biomaterial for healthcare applications.
Collapse
|
17
|
Furtado M, Chen L, Chen Z, Chen A, Cui W. Development of fish collagen in tissue regeneration and drug delivery. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
18
|
Biazar E, Heidari Keshel S, Rezaei Tavirani M, Kamalvand M. Healing effect of acellular fish skin with plasma rich in growth factor on full-thickness skin defects. Int Wound J 2022; 19:2154-2162. [PMID: 35441469 DOI: 10.1111/iwj.13821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Acellular skin as a scaffold has a good potential to regenerate or repair damaged tissues. Growth factors such as Plasma Rich in Growth Factor (PRGF) as a rich source of active proteins can accelerate tissue regeneration. In this study, an acellular scaffold derived from fish skin with growth factors was used to repair full-thickness skin defects in a rat model. Cellular results demonstrated that epithelial cells adhere well to acellular scaffolds. The results of animal studies showed that the groups treated with acellular scaffold and growth factor have a high ability to close and heal wounds on the 28th day after surgery. Histological and staining results showed that in the treated groups with scaffold and growth factor, an epidermal layer was formed with some skin appendages similar to normal skin. Overall, such scaffolds with biological agents can cause an acceptable synergistic effect on skin regeneration and wound healing.
Collapse
Affiliation(s)
- Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahshad Kamalvand
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
19
|
Yao S, Shang Y, Ren B, Deng S, Wang Z, Peng Y, Huang Z, Ma S, Peng C, Hou S. A novel natural-derived tilapia skin collagen mineralized with hydroxyapatite as a potential bone-grafting scaffold. J Biomater Appl 2022; 37:219-237. [PMID: 35345923 DOI: 10.1177/08853282221086246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Collagen is widely used in medical field because of its excellent biocompatibility and bioactivity. To date, collagen for biomedical use is always derived from bovine or swine. The purpose of this study was to evaluate collagen-based biomaterials from non-mammalian donors for bone repair. Thus, tilapia skin collagen-hydroxyapatite (T-col/HAp) scaffolds were fabricated in three different proportions and then cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-N-hydroxysuccinimide (EDC-NHS). The scaffolds were evaluated for their microstructure, chemical and physical properties, mechanical strength and degradability. Then the in vitro responses of bone mesenchymal stem cells (BMSCs) to the scaffolds were investigated in terms of cellular proliferation, differentiation, and mineralization. At last, the scaffolds were implanted into rat skull critical defections to investigate the potential of osteogenic activities. As a result, the pore sizes and the porosities of the scaffolds were approximately 106.67–196.67 μm and 81.5%–66.7%. Pure collagen group showed a mechanical strength of 0.065 MPa, and the mechanical strength was significantly enhanced almost 17 times and 32 times in collagen/HAp ratio 1:4 and 1:9 groups. In vitro studies revealed the most prominent and healthy growth of BMSCs in collagen/HAp ratio 1:4 group. All the scaffolds showed certain osteogenic activities and those loaded with small amount of hydroxyapatite showed the strongest bioactivities. The micro-CT showed that the critical bone defect was almost filled with generated bone 6 months after implantation in collagen/HAp ratio 1:4 group. The biomechanics tests further confirmed the highest generated bone strength was in the collagen/HAp ratio 1:4 group. This study indicated aquatic collagen might be a potential alternative for type I collagen from mammals in bone tissue engineering. The combination of collagen and inorganic materials was also important and appropriate inorganic component loading can achieve both osteogenic quality and osteogenic efficiency to a certain extent.
Collapse
Affiliation(s)
- Shiyu Yao
- Tianjin Medical University Second Hospital, Tianjin, China
| | - Yuli Shang
- Tianjin Medical University Second Hospital, Tianjin, China
| | - Bo Ren
- Knee and Ankle Ward of Sports Medicine Center, Xi’an, China
| | - Shu Deng
- The Forsyth Institute, Cambridge, MA, USA
| | - Zhe Wang
- Tianjin Medical University Second Hospital, Tianjin, China
| | - Yang Peng
- Tianjin Medical University Second Hospital, Tianjin, China
| | - Zhaohui Huang
- Yantai Desheng Marine Biotechnology Co, Ltd, Yantai, China
| | - Shiqing Ma
- Tianjin Medical University Second Hospital, Tianjin, China
| | - Cheng Peng
- Tianjin Medical University Second Hospital, Tianjin, China
| | - Shuai Hou
- Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
20
|
Li D, Wang T, Zhao J, Wu J, Zhang S, He C, Zhu M, El-Newehy M, El-Hamshary H, Morsi Y, Gao Y, Mo X. Prodrug inspired bi-layered electrospun membrane with properties of enhanced tissue integration for guided tissue regeneration. J Biomed Mater Res B Appl Biomater 2022; 110:2050-2062. [PMID: 35322549 DOI: 10.1002/jbm.b.35059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 11/09/2022]
Abstract
Guided tissue regeneration (GTR) membranes play a vital role in periodontal surgery. Recently a series of composite electrospun membranes have been fabricated to improve the unexpected biodegradation of collagen-based GTR membranes. However, their tissue integrity needs to be studied in depth. In this study, a bi-layered electrospun membrane (BEM) inspired by "prodrug" was fabricated, which contained a dense-layer (BEM-DL) and a potential loose-layer (BEM-LL). The nanofibers of BEM-DL were composed of poly(l-lactic-co-glycolic acid) and tilapia skin collagen (TSC). Whereas the BEM-LL consisted of two types of nanofibers, one was the same as BEM-DL and the other was made from TSC. The morphology, degradation in vitro, cytocompatibility and biocompatibility in rats were investigated with a poly(lactic-co-glycolic acid) electrospun membrane (PLGA) as the negative control. The pore size of BEM-LL soaked for 7 days became larger than the original sample (164.8 ± 90.9 and 52.5 ± 21.0 μm2 , respectively), which was significantly higher (p < .05) than that of BEM-DL and PLGA. The BEM-LL displayed a larger weight loss rate of 82.3 ± 3.6% than the BEM-DL of 46.0 ± 2.8% at day 7 because of the rapid degradation of TSC fibers. The cytocompatibility test demonstrated that L929 cells were only spread on the surface of the BEM-DL while MC3T3-E1 cells grew into the BEM-LL layer. The subcutaneous implantation test further proved that BEM-DL performed as a cellular barrier, whereas BEM-LL was conducive to cell infiltration as deep as 200 μm with reduced fibrous encapsulation. Herein, the BEM inspired by "prodrug" is a promising GTR membrane with a property of enhanced tissue integration.
Collapse
Affiliation(s)
- Dongsheng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Tong Wang
- College of Life Sciences, Yantai University, Yantai, China
| | - Juanjuan Zhao
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Jinglei Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Shumin Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Meifang Zhu
- State Key Lab of Chemical Fibers & Polymer Materials, College of Materials Science & Engineering, Donghua University, Shanghai, China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hany El-Hamshary
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yosry Morsi
- Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Boroondara, Australia
| | - Yonglin Gao
- College of Life Sciences, Yantai University, Yantai, China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| |
Collapse
|
21
|
Collagen-Based Bioactive Bromelain Hydrolysate from Salt-Cured Cod Skin. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Considerable amounts of fish processing by-products are discarded each year. About 30% of this material may be skin and bone. Fish skin has more than 80% of its total protein content as collagen. Furthermore, in recent years, there has been a growing demand for collagen-based peptides due to their beneficial health effects. So, the objective of the present study was to optimise the obtaining bioactive hydrolysates from salt-cured cod skin using the protease Bromelain at 0.5% (w/w) concentration. This study developed a sustainable process that consumes less time and energy and uses an alternative source as raw material. In addition, bromelain allows hydrolysates with important antioxidant (ORAC, 514 μmol Trolox Equivalent/g protein) and antihypertensive activities (inhibition of ACE, IC50 of 166 μg protein/mL) as well as excellent biocompatibility with dermal and subcutaneous cells.
Collapse
|
22
|
Lima Verde MEQ, Ferreira-Júnior AEC, de Barros-Silva PG, Miguel EDC, Mathor MB, Lima-Júnior EM, de Moraes-Filho MO, Alves APNN. Nile tilapia skin (Oreochromis niloticus) for burn treatment: ultrastructural analysis and quantitative assessment of collagen. Acta Histochem 2021; 123:151762. [PMID: 34332229 DOI: 10.1016/j.acthis.2021.151762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/18/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Nile tilapia (Oreochromis niloticus) skin is a well-known biomaterial used as an occlusive dressing for burn treatment. It is also an inexpensive and important source of collagen. This study aims to describe the ultrastructural aspects of Nile tilapia skin, assess its collagen amount and organization, and compare quantitative methods of histochemical and immunohistochemical analysis (in all sterilization steps for use in burn dressings). One sample (0.5 × 0.5 cm) of ten different fish skins was divided in four groups: in natura skin (IN), chemical sterilization (CH), additional irradiation (30 kGy) (IR), and skins used in burn treatment (BT) to compare histochemical and immunohistochemical findings of collagen amount and describe ultrastructural aspects through scanning electron microscopy. The amount of type I collagen decreased during sterilization and clinical use owing to gradual reduction of immunostaining (anti-collagen-I) and decreasing fiber thickness of the collagen, when compared to type III (Picrosirius-red-polarized light). The collagen fibers were rearranged at each sterilization step, with a low collagen percentage and large structural disorganization in BT. The amount of type-I collagen was further reduced after BT (p < 0.05). Both the methods did not exhibit a quantified value difference (p = 0.247), and a positive correlation (r = 0.927; 95 % CI = 0.720-0.983) was observed between them, with concordance for collagen quantification in similar samples, presenting a low systematic error rate (Dalberg coefficient: 6.70). A significant amount of type-I collagen is still observed despite sterilization, although clinical application further reduces type I collagen. Its quantification can be performed both by immunohistochemistry and/or Picrosirius Red reliably.
Collapse
|
23
|
Xu N, Peng XL, Li HR, Liu JX, Cheng JSY, Qi XY, Ye SJ, Gong HL, Zhao XH, Yu J, Xu G, Wei DX. Marine-Derived Collagen as Biomaterials for Human Health. Front Nutr 2021; 8:702108. [PMID: 34504861 PMCID: PMC8421607 DOI: 10.3389/fnut.2021.702108] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Collagen is a kind of biocompatible protein material, which is widely used in medical tissue engineering, drug delivery, cosmetics, food and other fields. Because of its wide source, low extraction cost and good physical and chemical properties, it has attracted the attention of many researchers in recent years. However, the application of collagen derived from terrestrial organisms is limited due to the existence of diseases, religious beliefs and other problems. Therefore, exploring a wider range of sources of collagen has become one of the main topics for researchers. Marine-derived collagen (MDC) stands out because it comes from a variety of sources and avoids issues such as religion. On the one hand, this paper summarized the sources, extraction methods and characteristics of MDC, and on the other hand, it summarized the application of MDC in the above fields. And on the basis of the review, we found that MDC can not only be extracted from marine organisms, but also from the wastes of some marine organisms, such as fish scales. This makes further use of seafood resources and increases the application prospect of MDC.
Collapse
Affiliation(s)
- Ning Xu
- Department of Orthopedics, Second Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Xue-Liang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Hao-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Jia-Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Ji-Si-Yu Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Xin-Ya Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Shao-Jie Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Hai-Lun Gong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Xiao-Hong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Jiangming Yu
- Department of Orthopedics, Tongren Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Guohua Xu
- Department of Orthopedics, Second Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| |
Collapse
|
24
|
Yamada S, Yamamoto K, Nakazono A, Matsuura T, Yoshimura A. Functional roles of fish collagen peptides on bone regeneration. Dent Mater J 2021; 40:1295-1302. [PMID: 34334505 DOI: 10.4012/dmj.2020-446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fish collagen peptides (FCP) derived from the skin, bones and scales are commercially used as a functional food or dietary supplement for hypertension and diabetes. However, there is limited evidence on the effects of FCP on the osteoblast function in contrast to evidence of the effects on wound healing, diabetes and bone regeneration, which have been obtained from animal studies. In this narrative review, we expound on the availability of FCP by basic research using osteoblasts. Low-concentration FCP upregulates the expression of osteoblast proliferation, differentiation and collagen modifying enzyme-related genes. Furthermore, it could accelerate matrix mineralization. FCP may have potential utility as a biomaterial to improve collagen quality and promote mineralization through the mitogen-activated protein kinase and Smad cascades. However, there are few clinical studies on bone regeneration in human subjects. It is desirable to be applied clinically through clinical study as soon as possible, based on the results from basic research.
Collapse
Affiliation(s)
- Shizuka Yamada
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Kohei Yamamoto
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Ayako Nakazono
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Takashi Matsuura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Atsutoshi Yoshimura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
25
|
Milan EP, Rodrigues MÁV, Martins VCA, Plepis AMG, Fuhrmann-Lieker T, Horn MM. Mineralization of Phosphorylated Fish Skin Collagen/Mangosteen Scaffolds as Potential Materials for Bone Tissue Regeneration. Molecules 2021; 26:2899. [PMID: 34068232 PMCID: PMC8153159 DOI: 10.3390/molecules26102899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022] Open
Abstract
In this study, a potential hard tissue substitute was mimicked using collagen/mangosteen porous scaffolds. Collagen was extracted from Tilapia fish skin and mangosteen from the waste peel of the respective fruit. Sodium trimetaphosphate was used for the phosphorylation of these scaffolds to improve the nucleation sites for the mineralization process. Phosphate groups were incorporated in the collagen structure as confirmed by their attenuated total reflection Fourier transform infrared (ATR-FTIR) bands. The phosphorylation and mangosteen addition increased the thermal stability of the collagen triple helix structure, as demonstrated by differential scanning calorimetry (DSC) and thermogravimetry (TGA) characterizations. Mineralization was successfully achieved, and the presence of calcium phosphate was visualized by scanning electron microscopy (SEM). Nevertheless, the porous structure was maintained, which is an essential characteristic for the desired application. The deposited mineral was amorphous calcium phosphate, as confirmed by energy dispersive X-ray spectroscopy (EDX) results.
Collapse
Affiliation(s)
- Eduardo P. Milan
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13560-970, Brazil; (E.P.M.); (A.M.G.P.)
- Physical Chemistry of Nanomaterials, Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany;
| | - Murilo Á. V. Rodrigues
- São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos 13560-970, Brazil; (M.Á.V.R.); (V.C.A.M.)
| | - Virginia C. A. Martins
- São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos 13560-970, Brazil; (M.Á.V.R.); (V.C.A.M.)
| | - Ana M. G. Plepis
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13560-970, Brazil; (E.P.M.); (A.M.G.P.)
- São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos 13560-970, Brazil; (M.Á.V.R.); (V.C.A.M.)
| | - Thomas Fuhrmann-Lieker
- Physical Chemistry of Nanomaterials, Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany;
| | - Marilia M. Horn
- Physical Chemistry of Nanomaterials, Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany;
| |
Collapse
|
26
|
Chen Y, Zhang X, Liu Z, Yang J, Chen C, Wang J, Yang Z, He L, Xu P, Hu X, Luo G, He W. Obstruction of the formation of granulation tissue leads to delayed wound healing after scald burn injury in mice. BURNS & TRAUMA 2021; 9:tkab004. [PMID: 34212057 PMCID: PMC8240558 DOI: 10.1093/burnst/tkab004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/01/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Delayed wound healing remains a common but challenging problem in patients with acute or chronic wound following accidental scald burn injury. However, the systematic and detailed evaluation of the scald burn injury, including second-degree deep scald (SDDS) and third-degree scald (TDS), is still unclear. The present study aims to analyze the wound-healing speed, the formation of granulation tissue, and the healing quality after cutaneous damage. METHODS In order to assess SDDS and TDS, the models of SDDS and TDS were established using a scald instrument in C57BL/6 mice. Furthermore, an excisional wound was administered on the dorsal surface in mice (Cut group). The wound-healing rate was first analyzed at days 0, 3, 5, 7, 15 and 27, with the Cut group as a control. Then, on the full-thickness wounds, hematoxylin and eosin (H&E) staining, Masson staining, Sirius red staining, Victoria blue staining and immunohistochemistry were performed to examine re-epithelialization, the formation of granulation tissue, vascularization, inflammatory infiltration and the healing quality at different time points in the Cut, SDDS and TDS groups. RESULTS The presented data revealed that the wound-healing rate was higher in the Cut group, when compared with the SDDS and TDS groups. H&E staining showed that re-epithelialization, formation of granulation tissue and inflammatory infiltration were greater in the Cut group, when compared with the SDDS and TDS groups. Immunohistochemistry revealed that the number of CD31, vascular endothelial growth factor A, transforming growth factor-β and α-smooth muscle actin reached preferential peak in the Cut group, when compared with other groups. In addition, Masson staining, Sirius red staining, Victoria blue staining, Gordon-Sweets staining and stress analysis indicated that the ratio of collagen I to III, reticular fibers, failure stress, Young's modulus and failure length in the SDDS group were similar to those in the normal group, suggesting that healing quality was better in the SDDS group, when compared with the Cut and TDS groups. CONCLUSION Overall, the investigators first administered a comprehensive analysis in the Cut, SDDS and TDS groups through in vivo experiments, which further proved that the obstacle of the formation of granulation tissue leads to delayed wound healing after scald burn injury in mice.
Collapse
Affiliation(s)
- Yunxia Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Zhihui Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Cheng Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jue Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zengjun Yang
- Department of Dermatology, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Lei He
- Department of Osteopathic Medicine, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Pengcheng Xu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| |
Collapse
|
27
|
Coppola D, Lauritano C, Palma Esposito F, Riccio G, Rizzo C, de Pascale D. Fish Waste: From Problem to Valuable Resource. Mar Drugs 2021; 19:116. [PMID: 33669858 PMCID: PMC7923225 DOI: 10.3390/md19020116] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Following the growth of the global population and the subsequent rapid increase in urbanization and industrialization, the fisheries and aquaculture production has seen a massive increase driven mainly by the development of fishing technologies. Accordingly, a remarkable increase in the amount of fish waste has been produced around the world; it has been estimated that about two-thirds of the total amount of fish is discarded as waste, creating huge economic and environmental concerns. For this reason, the disposal and recycling of these wastes has become a key issue to be resolved. With the growing attention of the circular economy, the exploitation of underused or discarded marine material can represent a sustainable strategy for the realization of a circular bioeconomy, with the production of materials with high added value. In this study, we underline the enormous role that fish waste can have in the socio-economic sector. This review presents the different compounds with high commercial value obtained by fish byproducts, including collagen, enzymes, and bioactive peptides, and lists their possible applications in different fields.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Fortunato Palma Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Gennaro Riccio
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Carmen Rizzo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
28
|
Ibrahim A, Hassan D, Kelany N, Kotb S, Soliman M. Validation of Three Different Sterilization Methods of Tilapia Skin Dressing: Impact on Microbiological Enumeration and Collagen Content. Front Vet Sci 2020; 7:597751. [PMID: 33426019 PMCID: PMC7785820 DOI: 10.3389/fvets.2020.597751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Tilapia fish skin has demonstrated promise as a stable and practical biological dressing to be used in wound and burn management. However, the appropriate sterilization technique of the Tilapia fish skin is crucial before its clinical application. The standard sterilization technique must eliminate harmful pathogens but maintain the structural and biochemical properties that could compromise the dressing function. This study investigated and compared the efficiency of three sterilizing agents; chlorhexidine gluconate 4% (CHG), povidone iodine 10% (PVP-I), and silver nanoparticles (25 μg/mL) (AgNPs), at three different times (5, 10, and 15 min) on Tilapia fish skin based on the microbial count, histological and collagen properties. Among the sterilization procedures, AgNPs showed rapid and complete antimicrobial activity, with a 100% reduction in microbial growth of the fish skin throughout the treated times. Furthermore, AgNPs did not impair the cellular structure or collagen fibers content of the fish skin. However, CHG and PVP-I caused alterations in the collagen content. This study demonstrated that the AgNPs treatment of Tilapia fish skin provided sterile skin while preserving the histological properties and structural integrity. These findings provide an efficient and quick sterilization method suitable for Tilapia fish skin that could be adopted as a biological dressing.
Collapse
Affiliation(s)
- Ahmed Ibrahim
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Dalia Hassan
- Department of Animal and Poultry Hygiene, and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Noura Kelany
- Department of Animal and Poultry Hygiene, and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Saber Kotb
- Department of Animal and Poultry Hygiene, and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud Soliman
- Department of Veterinary Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.,Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
29
|
Cheng G, Guo S, Wang N, Xiao S, Jiang B, Ding Y. A novel lamellar structural biomaterial and its effect on bone regeneration. RSC Adv 2020; 10:39072-39079. [PMID: 35518390 PMCID: PMC9057690 DOI: 10.1039/d0ra05760f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/09/2020] [Indexed: 01/14/2023] Open
Abstract
To evaluate a novel lamellar structural biomaterial as a potential biomaterial for guided bone regeneration, we describe the preparation of a collagen membrane with high mechanical strength and anti-enzyme degradation ability by using the multi-level structure of Ctenopharyngodon idella scales. The physical and chemical properties, in vitro degradation, biocompatibility, and in vivo osteogenic activity were preliminarily evaluated. In conclusion, it was shown that the multi-layered collagen structure material had sufficient mechanical properties, biocompatibility, and osteogenic ability. Meanwhile, it is also shown that there is a gap in current clinical needs, between the guided tissue regeneration membrane and the one being used. Therefore, this study provides useful insights into the efforts being made to design and adjust the microstructure to balance its mechanical properties, degradation rate, and osteogenic activity. To evaluate a novel lamellar structural biomaterial for guided bone regeneration, we describe the preparation of a collagen membrane with high mechanical strength and anti-enzyme degradation ability using Ctenopharyngodon idella scales.![]()
Collapse
Affiliation(s)
- Guoping Cheng
- Department of Periodontics, West China College of Stomatology, Sichuan University Chengdu 610041 P. R. China +86-28-85501439.,State Key Laboratory of Oral Diseases, Sichuan University Chengdu 610041 P. R. China
| | - Shujuan Guo
- Department of Periodontics, West China College of Stomatology, Sichuan University Chengdu 610041 P. R. China +86-28-85501439.,State Key Laboratory of Oral Diseases, Sichuan University Chengdu 610041 P. R. China
| | - Ningxin Wang
- National Engineering Research Center for Biomaterials, Sichuan University Chengdu 610065 P. R. China +86-28-85412848 +86-28-85415977
| | - Shimeng Xiao
- Department of Periodontics, West China College of Stomatology, Sichuan University Chengdu 610041 P. R. China +86-28-85501439.,State Key Laboratory of Oral Diseases, Sichuan University Chengdu 610041 P. R. China
| | - Bo Jiang
- National Engineering Research Center for Biomaterials, Sichuan University Chengdu 610065 P. R. China +86-28-85412848 +86-28-85415977
| | - Yi Ding
- Department of Periodontics, West China College of Stomatology, Sichuan University Chengdu 610041 P. R. China +86-28-85501439.,State Key Laboratory of Oral Diseases, Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
30
|
Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110963. [DOI: 10.1016/j.msec.2020.110963] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
|
31
|
Wyganowska-Swiatkowska M, Duda-Sobczak A, Corbo A, Matthews-Brzozowska T. Atelocollagen Application in Human Periodontal Tissue Treatment-A Pilot Study. Life (Basel) 2020; 10:life10070114. [PMID: 32708681 PMCID: PMC7400082 DOI: 10.3390/life10070114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
Background: The aim of this study is the clinical observation of gingival tissue condition after atelocollagen injection. Methods: In 18 patients, 97 gingival class I Miller recessions were divided according to recession height, gingival papillae loss and thickness of gingivae. Atelocollagen (Linerase, 100 mg) was injected into keratinized gingivae twice or thrice, at two-week intervals. Results: Statistically significant changes in gingival recession, amount of gingival papillae loss and thickness of gingiva were observed, after both two and three collagen injections. Although the degree (height) of recession decreased and gingival tissue thickness increased with every injection; there was no difference in gingival papillae loss between second and third collagen injections. Conclusions: The injectable form of atelocollagen is a promising material for gingival soft tissue regeneration and stimulation and allows for reduction in the number of procedures and support in a variety of surgical scenarios. This is a pilot study that clinically measures the impact of injected atelocollagen on periodontal tissue biotype, including the thickness of gingivae and gingival papillae regeneration.
Collapse
Affiliation(s)
- Marzena Wyganowska-Swiatkowska
- Department of Dental Surgery and Periodontology, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
- Correspondence:
| | - Anna Duda-Sobczak
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Mickiewicza 2, 60-830 Poznan, Poland;
| | - Andrea Corbo
- Private Practice Medical Spa, Via Cassia 1840, 00123 Rome, Italy;
| | - Teresa Matthews-Brzozowska
- The Chair and Clinic of Maxillofacial Orthopaedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
| |
Collapse
|
32
|
Coppola D, Oliviero M, Vitale GA, Lauritano C, D’Ambra I, Iannace S, de Pascale D. Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications. Mar Drugs 2020; 18:E214. [PMID: 32326635 PMCID: PMC7230273 DOI: 10.3390/md18040214] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/28/2022] Open
Abstract
Due to its unique properties, collagen is used in the growing fields of pharmaceutical and biomedical devices, as well as in the fields of nutraceuticals, cosmeceuticals, food and beverages. Collagen also represents a valid resource for bioplastics and biomaterials, to be used in the emerging health sectors. Recently, marine organisms have been considered as promising sources of collagen, because they do not harbor transmissible disease. In particular, fish biomass as well as by-catch organisms, such as undersized fish, jellyfish, sharks, starfish, and sponges, possess a very high collagen content. The use of discarded and underused biomass could contribute to the development of a sustainable process for collagen extraction, with a significantly reduced environmental impact. This addresses the European zero-waste strategy, which supports all three generally accepted goals of sustainability: sustainable economic well-being, environmental protection, and social well-being. A zero-waste strategy would use far fewer new raw materials and send no waste materials to landfills. In this review, we present an overview of the studies carried out on collagen obtained from by-catch organisms and fish wastes. Additionally, we discuss novel technologies based on thermoplastic processes that could be applied, likewise, as marine collagen treatment.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (C.L.)
- Institute of Biosciences and BioResources (IBBR), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Maria Oliviero
- Institute of Polymers, Composites and Biomaterials, National Research Council, P.le E. Fermi 1, Portici, 80055 Naples, Italy; (M.O.); (S.I.)
| | - Giovanni Andrea Vitale
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (C.L.)
| | - Isabella D’Ambra
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Salvatore Iannace
- Institute of Polymers, Composites and Biomaterials, National Research Council, P.le E. Fermi 1, Portici, 80055 Naples, Italy; (M.O.); (S.I.)
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (C.L.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy;
| |
Collapse
|
33
|
Paula AB, Laranjo M, Marto CM, Paulo S, Abrantes AM, Fernandes B, Casalta-Lopes J, Marques-Ferreira M, Botelho MF, Carrilho E. Evaluation of dentinogenesis inducer biomaterials: an in vivo study. J Appl Oral Sci 2019; 28:e20190023. [PMID: 31800871 PMCID: PMC6886398 DOI: 10.1590/1678-7757-2019-0023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/29/2019] [Indexed: 12/16/2022] Open
Abstract
When exposure of the pulp to external environment occurs, reparative dentinogenesis can be induced by direct pulp capping to maintain pulp tissue vitality and function. These clinical situations require the use of materials that induce dentin repair and, subsequently, formation of a mineralized tissue. Objective: This work aims to assess the effect of tricalcium silicate cements and mineral trioxide aggregate cements, including repairing dentin formation and inflammatory reactions over time after pulp exposure in Wistar rats. Methodology: These two biomaterials were compared with positive control groups (open cavity with pulp tissue exposure) and negative control groups (no intervention). The evaluations were performed in three stages; three, seven and twenty-one days, and consisted of an imaging (nuclear medicine) and histological evaluation (H&E staining, immunohistochemistry and Alizarin Red S). Results: The therapeutic effect of these biomaterials was confirmed. Nuclear medicine evaluation demonstrated that the uptake of 99mTc-Hydroxymethylene diphosphonate (HMDP) showed no significant differences between the different experimental groups and the control, revealing the non-occurrence of differences in the phosphocalcium metabolism. The histological study demonstrated that in mineral trioxide aggregate therapies, the presence of moderate inflammatory infiltration was found after three days, decreasing during follow-ups. The formation of mineralized tissue was only verified at 21 days of follow-up. The tricalcium silicate therapies demonstrated the presence of a slight inflammatory infiltration on the third day, increasing throughout the follow-up. The formation of mineralized tissue was observed in the seventh follow-up day, increasing over time. Conclusions: The mineral trioxide aggregate (WhiteProRoot®MTA) and tricalcium silicate (Biodentine™) present slight and reversible inflammatory signs in the pulp tissue, with the formation of mineralized tissue. However, the exacerbated induction of mineralized tissue formation with the tricalcium silicate biomaterial may lead to the formation of pulp calcifications
Collapse
Affiliation(s)
- Anabela B Paula
- Universidade de Coimbra, Faculdade de Medicina, Instituto de Prática Clínica Integrada, Coimbra, Portugal.,Universidade de Coimbra, Faculdade de Medicina, Instituto de Biofísica, Coimbra, Portugal.,Universidade de Coimbra, Faculdade de Medicina, Instituto de Pesquisa Clínica e Biomédica, area of Environment Genetics and Oncobiology (CIMAGO), Coimbra, Portugal.,Universidade de Coimbra, CNC.IBILI, Coimbra, Portugal
| | - Mafalda Laranjo
- Universidade de Coimbra, Faculdade de Medicina, Instituto de Biofísica, Coimbra, Portugal.,Universidade de Coimbra, Faculdade de Medicina, Instituto de Pesquisa Clínica e Biomédica, area of Environment Genetics and Oncobiology (CIMAGO), Coimbra, Portugal.,Universidade de Coimbra, CNC.IBILI, Coimbra, Portugal
| | - Carlos-Miguel Marto
- Universidade de Coimbra, Faculdade de Medicina, Instituto de Prática Clínica Integrada, Coimbra, Portugal.,Universidade de Coimbra, Faculdade de Medicina, Instituto de Biofísica, Coimbra, Portugal.,Universidade de Coimbra, Faculdade de Medicina, Instituto de Pesquisa Clínica e Biomédica, area of Environment Genetics and Oncobiology (CIMAGO), Coimbra, Portugal.,Universidade de Coimbra, CNC.IBILI, Coimbra, Portugal.,Universidade de Coimbra, Faculdade de Medicina, Instituto de Patologia Experimental, Coimbra, Portugal
| | - Siri Paulo
- Universidade de Coimbra, Faculdade de Medicina, Instituto de Prática Clínica Integrada, Coimbra, Portugal.,Universidade de Coimbra, Faculdade de Medicina, Instituto de Biofísica, Coimbra, Portugal.,Universidade de Coimbra, Faculdade de Medicina, Instituto de Pesquisa Clínica e Biomédica, area of Environment Genetics and Oncobiology (CIMAGO), Coimbra, Portugal.,Universidade de Coimbra, CNC.IBILI, Coimbra, Portugal
| | - Ana M Abrantes
- Universidade de Coimbra, Faculdade de Medicina, Instituto de Biofísica, Coimbra, Portugal.,Universidade de Coimbra, Faculdade de Medicina, Instituto de Pesquisa Clínica e Biomédica, area of Environment Genetics and Oncobiology (CIMAGO), Coimbra, Portugal.,Universidade de Coimbra, CNC.IBILI, Coimbra, Portugal
| | - Bruno Fernandes
- Centro Hospitalar e Universitário do Porto, Departamento de Patologia, Porto, Portugal
| | - João Casalta-Lopes
- Universidade de Coimbra, Faculdade de Medicina, Instituto de Biofísica, Coimbra, Portugal.,Universidade de Coimbra, Faculdade de Medicina, Instituto de Pesquisa Clínica e Biomédica, area of Environment Genetics and Oncobiology (CIMAGO), Coimbra, Portugal.,Coimbra University Hospital Center, Radiation Oncology Department, Coimbra, Portugal
| | - Manuel Marques-Ferreira
- Universidade de Coimbra, Faculdade de Medicina, Instituto de Prática Clínica Integrada, Coimbra, Portugal.,Universidade de Coimbra, Faculdade de Medicina, Instituto de Biofísica, Coimbra, Portugal.,Universidade de Coimbra, Faculdade de Medicina, Instituto de Pesquisa Clínica e Biomédica, area of Environment Genetics and Oncobiology (CIMAGO), Coimbra, Portugal.,Universidade de Coimbra, CNC.IBILI, Coimbra, Portugal
| | - Maria Filomena Botelho
- Universidade de Coimbra, Faculdade de Medicina, Instituto de Biofísica, Coimbra, Portugal.,Universidade de Coimbra, Faculdade de Medicina, Instituto de Pesquisa Clínica e Biomédica, area of Environment Genetics and Oncobiology (CIMAGO), Coimbra, Portugal.,Universidade de Coimbra, CNC.IBILI, Coimbra, Portugal
| | - Eunice Carrilho
- Universidade de Coimbra, Faculdade de Medicina, Instituto de Prática Clínica Integrada, Coimbra, Portugal.,Universidade de Coimbra, Faculdade de Medicina, Instituto de Biofísica, Coimbra, Portugal.,Universidade de Coimbra, Faculdade de Medicina, Instituto de Pesquisa Clínica e Biomédica, area of Environment Genetics and Oncobiology (CIMAGO), Coimbra, Portugal.,Universidade de Coimbra, CNC.IBILI, Coimbra, Portugal
| |
Collapse
|
34
|
Lau CS, Hassanbhai A, Wen F, Wang D, Chanchareonsook N, Goh BT, Yu N, Teoh SH. Evaluation of decellularized tilapia skin as a tissue engineering scaffold. J Tissue Eng Regen Med 2019; 13:1779-1791. [PMID: 31278852 DOI: 10.1002/term.2928] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 01/14/2023]
Abstract
Decellularized bovine and porcine tissues have been used as scaffolds to support tissue regeneration but inherit religious restrictions and risks of disease transmission to humans. Decellularized marine tissues are seen as attractive alternatives due to their similarity to mammalian tissues, reduced biological risks, and less religious restrictions. The aim of this study was to derive an acellular scaffold from the skin of tilapia and evaluate its suitability as a tissue engineering scaffold. Tilapia skin was treated with a series of chemical and enzymatic treatments to remove cellular materials. The decellularized tilapia skin (DTS) was then characterized and evaluated in vitro and in vivo to assess its biological compatibility. The results indicated that the decellularization process removed 99.6% of the DNA content from tilapia skin. The resultant DTS was shown to possess a high denaturation temperature of 68.1 ± 1.0°C and a high Young's modulus of 56.2 ± 14.4 MPa. The properties of DTS were also compared against those of crosslinked electrospun tilapia collagen membrane, another form of tilapia-derived collagen scaffold. In vitro studies revealed that both DTS and crosslinked electrospun tilapia collagen promoted cellular metabolic activity, differentiation, and mineralization of murine preosteogenic MC3T3-E1 cells. The rat calvarial defect model was used to evaluate the in vivo performance of the scaffolds, and both scaffolds did not induce hyperacute rejections. Furthermore, they enhanced bone regeneration in the critical defect compared with the sham control. This study suggests that tilapia-derived scaffolds have great potential in tissue engineering applications.
Collapse
Affiliation(s)
- Chau Sang Lau
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.,Academic Clinical Program (Research), National Dental Centre of Singapore, Singapore
| | - Ammar Hassanbhai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Feng Wen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Dongan Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Nattharee Chanchareonsook
- Department of Oral and Maxillofacial Surgery, National Dental Centre Singapore, Singapore.,Oral Health Academic Clinical Program, Duke-NUS Medical School Singapore, Singapore
| | - Bee Tin Goh
- Department of Oral and Maxillofacial Surgery, National Dental Centre Singapore, Singapore.,Oral Health Academic Clinical Program, Duke-NUS Medical School Singapore, Singapore
| | - Na Yu
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore.,Oral Health Academic Clinical Program, Duke-NUS Medical School Singapore, Singapore
| | - Swee-Hin Teoh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Skin Research Institute of Singapore, Singapore
| |
Collapse
|
35
|
Lim YS, Ok YJ, Hwang SY, Kwak JY, Yoon S. Marine Collagen as A Promising Biomaterial for Biomedical Applications. Mar Drugs 2019; 17:E467. [PMID: 31405173 PMCID: PMC6723527 DOI: 10.3390/md17080467] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the expanding role of marine collagen (MC)-based scaffolds for biomedical applications. A scaffold-a three-dimensional (3D) structure fabricated from biomaterials-is a key supporting element for cell attachment, growth, and maintenance in 3D cell culture and tissue engineering. The mechanical and biological properties of the scaffolds influence cell morphology, behavior, and function. MC, collagen derived from marine organisms, offers advantages over mammalian collagen due to its biocompatibility, biodegradability, easy extractability, water solubility, safety, low immunogenicity, and low production costs. In recent years, the use of MC as an increasingly valuable scaffold biomaterial has drawn considerable attention from biomedical researchers. The characteristics, isolation, physical, and biochemical properties of MC are discussed as an understanding of MC in optimizing the subsequent modification and the chemistries behind important tissue engineering applications. The latest technologies behind scaffold processing are assessed and the biomedical applications of MC and MC-based scaffolds, including tissue engineering and regeneration, wound dressing, drug delivery, and therapeutic approach for diseases, especially those associated with metabolic disturbances such as obesity and diabetes, are discussed. Despite all the challenges, MC holds great promise as a biomaterial for developing medical products and therapeutics.
Collapse
Affiliation(s)
- Ye-Seon Lim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ye-Jin Ok
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Seon-Yeong Hwang
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jong-Young Kwak
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Korea
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
36
|
Davison-Kotler E, Marshall WS, García-Gareta E. Sources of Collagen for Biomaterials in Skin Wound Healing. Bioengineering (Basel) 2019; 6:E56. [PMID: 31261996 PMCID: PMC6783949 DOI: 10.3390/bioengineering6030056] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 01/09/2023] Open
Abstract
Collagen is the most frequently used protein in the fields of biomaterials and regenerative medicine. Within the skin, collagen type I and III are the most abundant, while collagen type VII is associated with pathologies of the dermal-epidermal junction. The focus of this review is mainly collagens I and III, with a brief overview of collagen VII. Currently, the majority of collagen is extracted from animal sources; however, animal-derived collagen has a number of shortcomings, including immunogenicity, batch-to-batch variation, and pathogenic contamination. Recombinant collagen is a potential solution to the aforementioned issues, although production of correctly post-translationally modified recombinant human collagen has not yet been performed at industrial scale. This review provides an overview of current collagen sources, associated shortcomings, and potential resolutions. Recombinant expression systems are discussed, as well as the issues associated with each method of expression.
Collapse
Affiliation(s)
- Evan Davison-Kotler
- Biology Department, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
- Regenerative Biomaterials Group, The RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, UK
| | - William S Marshall
- Biology Department, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Elena García-Gareta
- Regenerative Biomaterials Group, The RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, UK.
| |
Collapse
|
37
|
Biodentine ™ Boosts, WhiteProRoot ®MTA Increases and Life ® Suppresses Odontoblast Activity. MATERIALS 2019; 12:ma12071184. [PMID: 30978943 PMCID: PMC6479701 DOI: 10.3390/ma12071184] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
(1) Background: When pulp exposure occurs, reparative dentinogenesis can be induced by direct pulp capping to maintain the vitality and function of the tissue. The aim of this work was to assess the cytotoxicity and bioactivity of three different direct pulp capping materials, calcium hydroxide (Life®), mineral trioxide aggregate (WhiteProRoot®MTA) and calcium silicate (Biodentine™), in an odontoblast-like mouse cell line (MDPC-23). (2) Methods: Metabolic activity was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test (MTT)assay, viability by the sulforhodamine B (SRB) assay, and the type of death and cell cycle analysis by flow cytometry. Alkaline phosphatase was evaluated by polymerase chain reaction (PCR), and dentin sialoprotein expression was assessed by immunocytochemistry. Mineralization was determined by the Alizarin Red S colorimetric assay and quantified by spectrophotometry. (3) Results: Life® induced a decrease in metabolic activity and viability, which is associated with an increase cell death. WhiteProRoot®MTA and Biodentine™ induced similar effects in cytotoxicity assays, with an increase in the expression of dentin sialoprotein (DSP) and formation of mineralized deposits, especially with Biodentine™. (4) Conclusions: The results of WhiteProRoot®MTA confirm its indication for these therapies, justifying its recognition as the “gold standard”. Biodentine™ may be an alternative, since they promote the same cellular response that mineral trioxide aggregate (MTA) does.
Collapse
|
38
|
Tang J, Saito T. iMatrix-511 Stimulates the Proliferation and Differentiation of MDPC-23 Cells into Odontoblastlike Phenotype. J Endod 2019; 44:1367-1375. [PMID: 30144832 DOI: 10.1016/j.joen.2018.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION iMatrix-511 is a novel integrin-binding fragment derived from laminin-511. Previous studies showed its superiority as a culture substrate for xeno-free culture and maintenance of pluripotency in stem cells. However, its effects in the dental field remain largely unknown. The aim of the present study was to unravel the in vitro effects of iMatrix-511 in comparison with vitronectin (VN). METHODS Biochemical assays were performed in vitro in MDPC-23 cells. The optimal coating density for 2 proteins was determined using the cell counting kit-8. To evaluate cell proliferation to both proteins, MDPC-23 cells were directly seeded onto the iMatrix-511 or VN-modified polystyrene and analyzed by the cell counting kit-8. The phenotype of cells seeded on iMatrix-511 and VN was characterized. Phenotypic characterization included real-time reverse-transcription polymerase chain reaction and alizarin red staining. RESULTS The optimal coating density for iMatrix-511 and VN was determined to be 1 μg/cm2 and 0.25 μg/cm2, respectively. Cells cultured on iMatrix-511 showed higher cell proliferative activity than the noncoated control and VN on days 1, 2, and 4. Cell morphology observation revealed MDPC-23 cells attach preferentially to iMatrix-511 and start to spread as early as 1 hour after inoculation. MDPC-23 cells exhibited more potent odontogenic differentiation on iMatrix-511 than the control and VN as shown by the marked enhancement of dentin matrix protein 1 and dentin sialophosphoprotein messenger RNA expression. Although both proteins showed more mineralized nodule formation than the control, iMatrix-511 remained to be the one that elicited stronger calcific deposition. CONCLUSIONS iMatrix-511 supported the proliferation and acquisition of odontogenic cell phenotype in vitro, rendering this novel material a potential candidate for dentin regeneration.
Collapse
Affiliation(s)
- Jia Tang
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan.
| | - Takashi Saito
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| |
Collapse
|
39
|
Li J, Wang Z. [Effect of human tooth bone graft materials on proliferation and differentiation of mice mononuclear macrophage RAW264.7]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1332-1339. [PMID: 30600668 PMCID: PMC8414148 DOI: 10.7507/1002-1892.201803034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/18/2018] [Indexed: 11/03/2022]
Abstract
Objective To investigate the effect of human tooth bone graft materials on the proliferation, differentiation, and morphology of macrophages, and to understand the biocompatibility and cytotoxicity of human tooth bone graft materials. Methods Fresh human teeth were collected to prepare human tooth bone graft materials, the adhesion of mouse mononuclear macrophages RAW264.7 to human bone graft materials was observed under confocal microscopy. Scanning electron microscopy was used to observe the morphology of human tooth bone graft materials, OSTEONⅡ synthetic highly resorbable bone grafting materials, and untreated tooth powder (dental particles without preparation reagents). Different components of the extract were prepared in 4 groups: group A (DMEM medium containing 10% fetal bovine serum), group B (human tooth bone graft materials), group C (OSTEONⅡ synthetic highly resorbable bone grafting materials), group D (untreated tooth powder without preparation reagents). The 4 groups of extracts were co-cultured with the cells, and the cytotoxicity was qualitatively determined by observing the cell morphological changes by inverted microscope. The cell proliferation and differentiation results and cell relative proliferation rate were determined by MTT method to quantitatively determine cytotoxicity. The cell viability was detected by trypanosoma blue staining, and tumor necrosis factor α (TNF-α ) and interleukin 6 (IL-6) expressions were detected by ELISA. Results Scanning electron microscopy showed that the surface of the human tooth bone graft material and the OSTEONⅡ synthetic highly resorbable bone grafting materials had a uniform pore structure, while the untreated tooth particle collagen fiber structure and the demineralized dentin layer collapsed without specific structure. Confocal microscopy showed that the cells grew well on human tooth bone graft materials. After co-culture with the extract, the morphology and quantity of cells in groups A, B, and C were normal, and the toxic reaction grades were all grade 0, while group D was grade 3 reaction. MTT test showed that the cytotoxicity of groups B and C was grade 0 or 1 at each time point, indicating that the materials were qualified. The cytotoxicity was grade 2 in group D at 1 day after culture, and was grade 4 at 3, 5, and 7 days. Combined with cell morphology analysis, the materials were unqualified. The trypanosoma blue staining showed that the number of cells in groups A, B, and C was significantly higher than that in group D at each time point ( P<0.05), but no significant difference was found among groups A, B, and C ( P<0.05). ELISA test showed that the levels of TNF-α and IL-6 in groups A, B, and C were significantly lower than those in group D ( P<0.05), but no significant difference was found among groups A, B, and C ( P<0.05). Conclusion The human tooth bone graft materials is co-cultured with mice mononuclear macrophages without cytotoxicity. The extract has no significant effect on cell proliferation and differentiation, does not increase the expression of inflammatory factors, has good biocompatibility, and is expected to be used for clinical bone defect repair.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Stomatology, the Second Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, 121001, P.R.China
| | - Zhiying Wang
- Department of Stomatology, the Second Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, 121001,
| |
Collapse
|
40
|
Tang J, Saito T. Nephronectin Stimulates the Differentiation of MDPC-23 Cells into an Odontoblast-like Phenotype. J Endod 2018; 43:263-271. [PMID: 28132711 DOI: 10.1016/j.joen.2016.10.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/18/2016] [Accepted: 10/22/2016] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The present study investigated the in vitro effects of nephronectin (Npnt) on the proliferation, differentiation, and mineralization of a rat odontoblast-like cell line (MDPC-23 cells). METHODS MDPC-23 cells were cultured on Npnt-coated polystyrene or in the presence of soluble Npnt. Cell proliferation was analyzed using a Cell Counting Kit-8 kit (Dojindo, Kumamoto, Japan). Alkaline phosphatase (ALP) activity was quantified using an ALP activity assay. A reverse-transcription polymerase chain reaction was performed to evaluate the messenger RNA (mRNA) expression level of odontogenic markers and integrin(s). Alizarin red staining was conducted to quantify the calcium deposition. RESULTS Soluble Npnt had no adverse effect on the proliferation of MDPC-23 cells, but it exhibited concentration-dependent inhibitory activity toward differentiation. In contrast, coated Npnt promoted cell proliferation dramatically and significantly up-regulated the mRNA expression of odontogenesis-related genes; moreover, mRNA expression of integrin α1, α3, α5, β1, and β5 was found to be augmented. MDPC-23 cells cultured on Npnt-coated polystyrene displayed markedly higher ALP activity as early as day 3 after inoculation. In addition, mineralization was accelerated on Npnt-coated polystyrene. CONCLUSIONS Npnt in its immobilized form enhanced the proliferation of MDPC-23 cells and induced this odontoblastic precursor cell line to differentiate into a mineralizing phenotype.
Collapse
Affiliation(s)
- Jia Tang
- Division of Clinical Cariology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.
| | - Takashi Saito
- Division of Clinical Cariology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|
41
|
Ullah S, Zainol I, Chowdhury SR, Fauzi MB. Development of various composition multicomponent chitosan/fish collagen/glycerin 3D porous scaffolds: Effect on morphology, mechanical strength, biostability and cytocompatibility. Int J Biol Macromol 2018; 111:158-168. [PMID: 29305219 DOI: 10.1016/j.ijbiomac.2017.12.136] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/24/2017] [Accepted: 12/27/2017] [Indexed: 01/09/2023]
Abstract
The various composition multicomponent chitosan/fish collagen/glycerin 3D porous scaffolds were developed and investigated the effect of various composition chitosan/fish collagen/glycerin on scaffolds morphology, mechanical strength, biostability and cytocompatibility. The scaffolds were fabricated via freeze-drying technique. The effects of various compositions consisting in 3D scaffolds were investigated via FT-IR analysis, porosity, swelling and mechanical tests, and effect on the morphology of scaffolds investigated microscopically. The biostability and cytocompatibility tests were used to explore the ability of scaffolds to use for tissue engineering application. The average pore sizes of scaffolds were in range of 100.73±27.62-116.01±52.06, porosity 71.72±3.46-91.17±2.42%, tensile modulus in dry environment 1.47±0.08-0.17±0.03MPa, tensile modulus in wet environment 0.32±0.03-0.14±0.04MPa and biodegradation rate (at day 30) 60.38±0.70-83.48±0.28%. In vitro culture of human fibroblasts and keratinocytes showed that the various composition multicomponent 3D scaffolds were good cytocompatibility however, the scaffolds contained high amount of fish collagen excellently facilitated cell proliferation and adhesion. It was found that the high amount fish collagen and glycerin scaffolds have high porosity, enough mechanical strength and biostability, and excellent cytocompatibility.
Collapse
Affiliation(s)
- Saleem Ullah
- Polymer Labs, Chemistry Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Darul Ridzuan, Malaysia
| | - Ismail Zainol
- Polymer Labs, Chemistry Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Darul Ridzuan, Malaysia.
| | - Shiplu Roy Chowdhury
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia
| | - M B Fauzi
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Ullah S, Zainol I, Idrus RH. Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: Effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds. Int J Biol Macromol 2017; 104:1020-1029. [DOI: 10.1016/j.ijbiomac.2017.06.080] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/07/2017] [Accepted: 06/17/2017] [Indexed: 01/09/2023]
|
43
|
Hassanbhai AM, Lau CS, Wen F, Jayaraman P, Goh BT, Yu N, Teoh SH. In Vivo Immune Responses of Cross-Linked Electrospun Tilapia Collagen Membrane. Tissue Eng Part A 2017; 23:1110-1119. [DOI: 10.1089/ten.tea.2016.0504] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ammar Mansoor Hassanbhai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chau Sang Lau
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Feng Wen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Praveena Jayaraman
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Bee Tin Goh
- National Dental Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School Singapore, Singapore, Singapore
| | - Na Yu
- National Dental Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School Singapore, Singapore, Singapore
| | - Swee-Hin Teoh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
44
|
Zhang J, Jeevithan E, Bao B, Wang S, Gao K, Zhang C, Wu W. Structural characterization, in-vivo acute systemic toxicity assessment and in-vitro intestinal absorption properties of tilapia (Oreochromis niloticus) skin acid and pepsin solublilized type I collagen. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Hsu HH, Uemura T, Yamaguchi I, Ikoma T, Tanaka J. Chondrogenic differentiation of human mesenchymal stem cells on fish scale collagen. J Biosci Bioeng 2016; 122:219-25. [DOI: 10.1016/j.jbiosc.2016.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/26/2015] [Accepted: 01/04/2016] [Indexed: 01/14/2023]
|