1
|
Wang X, Lu X, Tian D, Qian H, Wang P, Zhu Y, Dang X, Liu R. Transcriptomic integration and ligand-receptor crosstalk reveal the underlying molecular mechanisms between hip cartilage and subchondral bone in osteonecrosis of femoral head. Gene 2024; 939:149179. [PMID: 39708930 DOI: 10.1016/j.gene.2024.149179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Osteonecrosis of femoral head (ONFH) is characterized not only by ischemic bone tissue necrosis but also by cartilage degeneration, which plays an essential role in the pathogenesis of ONFH. The molecular communication between tissues contributes to disease progression, however the communication between cartilage and subchondral bone in the progression of ONFH remains unclear. In this study, we integrated transcriptomic data from ONFH cartilage and subchondral bone, exploring common differentially expressed genes (DEGs), pathway and function enrichment analyses, the protein-protein interaction (PPI) network, and hub genes to comprehensively study molecular integration. Additionally, we explored the molecular crosstalk between and within cartilage and subchondral bone using ligand-receptor pairs and ONFH cartilage proteomic data. Finally, key genes and ligand-receptor pairs were validated by quantitative real-time PCR (qRT-PCR). There were 27 common DEGs and five hub genes in cartilage and subchondral bone. The defined hub genes included COL1A1, COLIA2, CTSK, SPARC, and MXRA5. Notably, pathways related to ossification, extracellular matrix, and collagen formation were significantly altered in ONFH. Ligand-receptor data combined with DEGs revealed 60 differentially expressed ligands and 51 differentially expressed receptors in cartilage and four ligands and three receptors in subchondral bone. In inter-tissue comparisons, ligands from chondrocytes predominantly paired with receptors on osteoblasts in the subchondral bone, such as FN1, MMP2, and FGF1. Conversely, ligands from osteoblasts and osteocytes in the subchondral bone frequently paired with chondrocyte receptors, including FN1, COL1A1, and SEMA7A. At the protein level, we identified thirteen ligands and one receptor, with COL3A1 being the most highly expressed ligand and CD82 the only differentially expressed receptor in ONFH. This study highlights common molecular mechanisms and ligand-receptor crosstalk between and within cartilage and subchondral bone in ONFH, offering new insights into the disease's pathophysiology and potential molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xu Wang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Xueliang Lu
- Department of Orthopedics, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan Province 471003, China.
| | - Donghao Tian
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Hang Qian
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Pengbo Wang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Yingkang Zhu
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Xiaoqian Dang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Ruiyu Liu
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| |
Collapse
|
2
|
Zhu Y, Wang X, Liu R. Bioinformatics proved the existence of potential hub genes activating autophagy to participate in cartilage degeneration in osteonecrosis of the femoral head. J Mol Histol 2024; 55:539-554. [PMID: 38758521 DOI: 10.1007/s10735-024-10200-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
The obvious degeneration of articular cartilage occurs in the late stage of osteonecrosis of the femoral head (ONFH), which aggravates the condition of ONFH. This study aimed to demonstrate aberrant activation of autophagy processes in ONFH chondrocytes through bioinformatics and to predict and identify relevant hub genes and pathways. Differentially expressed genes (DEGs) were identified using R software in the GSE74089 dataset from the GEO database. DEGs were crossed with the Human Autophagy Database (HADb) autophagy genes to screen out autophagy-related differential genes (AT-DEGs). GSEA, GSVA, GO, and KEGG pathway enrichment analyses of AT-DEGs were performed. The STRING database was used to analyze the protein-protein interaction (PPI) of the AT-DEGs network, and the MCODE and CytoHubba plugin in the Cytoscape software was used to analyze the key gene cluster module and screen the hub genes. The PPI network of hub genes was constructed using the GeneMANIA database, and functional enrichment and gene connectivity categories were analyzed. The expression levels of hub genes of related genes in the ONFH patients were verified in the dataset GSE123568, and the protein expression was verified by immunohistochemistry in tissues. The analysis of DEGs revealed abnormal autophagy in ONFH cartilage. AT-DEGs in ONFH have special enrichment in macroautophagy, autophagosome membrane, and phosphatidylinositol-3-phosphate binding. In the GSE123568 dataset, it was also found that ATG2B, ATG4B, and UVRAG were all significantly upregulated in ONFH patients. By immunohistochemistry, it was verified that ATG2B, ATG4B, and UVRAG were significantly overexpressed. These three genes regulate the occurrence and extension of autophagosomes through the PI3KC3C pathway. Finally, we determined that chondrocytes in ONFH undergo positive regulation of autophagy through the corresponding pathways involved in three genes: ATG2B, ATG4B, and UVRAG.
Collapse
Affiliation(s)
- Yingkang Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, 710004, China
| | - Xianxuan Wang
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ruiyu Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
3
|
Chen Z, Jiang Y, Wu S, Dang M. Comprehensive analysis of femoral head necrosis based on machine learning and bioinformatics analysis. Medicine (Baltimore) 2023; 102:e33963. [PMID: 37335681 PMCID: PMC10256394 DOI: 10.1097/md.0000000000033963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/19/2023] [Indexed: 06/21/2023] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a kind of disabling disease, given that the molecular mechanism of ONFH has not been elucidated, it is of significance to use bioinformatics analysis to understand the disease mechanism of ONFH and discover biomarkers. Gene set for ONFH GSE74089 was downloaded in the Gene Expression Omnibus, and "limma" package in R software was used to identify differentially expressed genes related to oxidative stress. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyze were performed for functional analysis. We constructed a protein interaction network and identified potential transcription factors and therapeutic drugs for the hub genes, and delineated the TF-hub genes network. Least absolute shrinkage and selection operator regression, support vector machine and cytoHubba were used to screen feature genes and key genes, which were validated by Receiver operating characteristic. CIBERSORT was used to explored the immune microenvironment. Subsequently, we identified the function of key genes using Gene set variation analysis and their relationship with each type of immune cell. Finally, molecular docking validated the binding association between molecules and validated genes. We detected 144 differentially expressed oxidative stress-related genes, and enrichment analysis showed that they were enriched in reactive oxygen species and AGE-RAGE signaling pathway. Protein-protein interaction and TF-hub genes network were conducted. Further exploration suggested that APOD and TMEM161A were feature genes, while TNF, NOS3 and CASP3 were key genes. Receiver operating characteristic analysis showed that APOD, CASP3, NOS3, and TNF have strong diagnostic ability. The key genes were enriched in oxidative phosphorylation. CIBERSORT analysis showed that 17 types immune cells were differentially relocated, and most of which were also closely related to key genes. In addition, genistein maybe potential therapeutic compound. In all, we identified that TNF, NOS3, and CASP3 played key roles on ONFH, and APOD, CASP3, NOS3, and TNF could serve as diagnostic biomarkers.
Collapse
Affiliation(s)
- Zheng Chen
- Guangzhou University of Chinese Medicine Third Clinical Medical College, Guangzhou, China
| | - Yuankang Jiang
- Guangzhou University of Chinese Medicine Third Clinical Medical College, Guangzhou, China
| | - Suwen Wu
- Guangzhou University of Chinese Medicine Third Clinical Medical College, Guangzhou, China
| | - Meng Dang
- Department of Anesthesiology, Shenzhen Pingle Orthopedic Hospital, Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Xing T, Zhao Y, Zhao J, Jiang Z, Zhang Y, Li S. Duhuo Jisheng Decoction inhibits the activity of osteoclasts in osteonecrosis of the femoral head via regulation of the RELA/AKT1 axis. Am J Transl Res 2022; 14:3559-3571. [PMID: 35702106 PMCID: PMC9185058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/27/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate the effect of Duhuo Jisheng Decotion (DHJSD) on the activity of osteoclasts in osteonecrosis of the femoral head (ONFH) and its underlying mechanism relating to the RELA/AKT1 axis. METHODS The TCMSP database was used to search for the effective ingredients and the targets of various Chinese medicines in DHJSD. Its targets were intersected with ONFH risk genes in DisGeNET and Malacards databases to obtain the potential target genes. qRT-PCR was used to detect the expression of potential target genes in ONFH tissues, and the ChIP experiment was used to verify the relationship between RELA and AKT1 promoter. An ONFH rat model was established and DHJSD was used for the treatment. The expressions of RELA and AKT1 in rats were intervened, and rats were grouped. qRT-PCR was applied to detect the expression levels of osteoclast markers ACP5, CTSK, and RANK in the tissues to evaluate the regulation of DHJSD on target genes and the mechanism of osteoclast differentiation. RESULTS A total of 231 effective targets of DHJSD were screened out in the TCMSP database. Intersection with ONFH risk genes yielded a total of 20 candidate genes. Protein-protein interaction analysis showed that AKT1 regulated other genes. KEGG functional enrichment analysis revealed that STAT1, AKT1, PPARG, PPARG, TNF and RELA were enriched in osteoclast differentiation pathway. Compared with normal tissues, the expression of STAT1 was decreased in ONFH tissues, and the expressions of AKT1, PPARG, TNF, and RELA were increased, among which, RELA and AKT1 are the most significantly increased genes (all P<0.05). ChIP experiment found that RELA had a binding relationship with AKT1 promoter. DHJST had the inhibitory effect on the expression of RELA and AKT1 in ONFH tissues, as well as the levels of ACP5, CTSK, and RANK. However, overexpression of RELA or AKT1 attenuated the inhibitory effect of DHJSD on the levels of ACP5, CTSK and RANK. Meanwhile, knocking down RELA partially reversed the effect of AKT1 on the effect of DHJSD. CONCLUSION DHJSD inhibits the activity of osteoclasts in ONFH by inhibiting the RELA/AKT1 axis. This study further clarifies the potential specific mechanism of DHJSD to improve ONFH.
Collapse
Affiliation(s)
- Tao Xing
- Department of Trauma Center, Gansu Provincial Hospital of TCMLanzhou 730050, Gansu Province, China
| | - Yongqiang Zhao
- Department of Surgery, Gansu Provincial Hospital of TCMLanzhou 730050, Gansu Province, China
| | - Jun Zhao
- Clinical Medicine Center of Orthopedics and Traumatology, Gansu Academy of TCMLanzhou, Gansu Province, China
| | - Zhenxing Jiang
- Department of Repair and Reconstruction Orthopedics, Gansu Provincial Hospital of TCMLanzhou 730050, Gansu Province, China
| | - Yingshuan Zhang
- Clinical College of TCM, Gansu University of Chinese MedicineLanzhou 730000, Gansu Province, China
| | - Shenghua Li
- Department of Clinical Medicine Center of Orthopedics, Gansu Provincial Hospital of TCMLanzhou 730050, Gansu Province, China
| |
Collapse
|
5
|
Yan Y, Wang J, Huang D, Lv J, Li H, An J, Cui X, Zhao H. Plasma lipidomics analysis reveals altered lipids signature in patients with osteonecrosis of the femoral head. Metabolomics 2022; 18:14. [PMID: 35147763 DOI: 10.1007/s11306-022-01872-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/28/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Although studies have established a link between lipid metabolism disorder and osteonecrosis of the femoral head (ONFH), the characteristics of the circulating lipidome signature of ONFH have not yet been investigated and need to be explored. OBJECTIVES We aimed to explore the plasma lipidome signatures in patients with ONFH, and to identify specific lipid biomarkers of ONFH. METHODS In this study, a comprehensive detection and analysis of plasma lipidomics was conducted in clinical human cohort, including 32 healthy normal control (NC) subjects and 91 ONFH patients in different subgroups [alcohol-induced ONFH (AONFH), steroid-induced ONFH (SONFH), and traumatic-induced ONFH (TONFH)] or at different disease stages (stage I, II, III and IV of ONFH) using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). RESULTS Overall, the plasma lipidome profile differs between ONFH and NC samples. Lipidome signature including 22 common differentially expressed lipids (DELs) in all three subgroups (variable importance in projection > 1, P < 0.05, fold change > 1.5 or < 0.67, compared to the NC group) was identified. Besides, the subtype-specific lipidome profiles for each ONFH subgroup were also analyzed. Generally, the AONFH subgroup has the largest number of DELs, and the plasma levels of triacylglycerol lipid compounds increased obviously in the AONFH samples. In the subgroup of SONFH, the relative abundance of lipid 4-Aminobenzoic acid increased significantly with changes in the expression of several of its interactive genes. We have identified that 9 stage-positive and 2 stage-negative lipids may function as novel biomarkers predicting the progression of ONFH. CONCLUSION Our study presents an overview of the phenotype-related plasma lipidome signature of patients with ONFH. The results will provide insight into the mechanisms underlying the metabolism of lipids in the pathogenesis and progression of ONFH and help identify novel lipids biomarkers or disease diagnosis and treatment targets.
Collapse
Affiliation(s)
- Yuzhu Yan
- Clinical Laboratory of Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Dageng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jing Lv
- Clinical Laboratory of Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jing An
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xiaojian Cui
- Department of Radiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Heping Zhao
- Clinical Laboratory of Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
6
|
Shi W, Zhang X, Xu C, Pang R, Fan Z, Wan X, Jiang Z, Li H, Li Z, Zhang H. Identification of Hub Genes and Pathways Associated with Oxidative Stress of Cartilage in Osteonecrosis of Femoral Head Using Bioinformatics Analysis. Cartilage 2022; 13:19476035221074000. [PMID: 35118903 PMCID: PMC9137318 DOI: 10.1177/19476035221074000] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE This study aimed to identify the hub genes and pathways of genes related to oxidative stress of cartilage in osteonecrosis of femoral head (ONFH), and to predict the transcription factors of the hub genes. METHODS The GSE74089 was obtained from the Gene Expression Omnibus (GEO) database, including 4 necrotic tissues and 4 normal tissues, and the differentially expressed genes (DEGs) were identified by limma package in R language. Simultaneously, we searched for the genes related to oxidative stress in the Gene Ontology (GO) database. GO and signaling pathways analysis were performed using DAVID, Metascape, and GSEA. Protein-protein interaction (PPI) network was constructed using the STRING database, and the Degree algorithm of Cytoscape software was used to screen for hub genes. Finally, the NetworkAnalyst web tool was used to find the hub genes' transcriptional factors (TFs). RESULTS In total, 440 oxidative stress-related genes were found in GSE74089 and GO database, and 88 of them were significantly differentially expressed. These genes were mainly involved in several signaling pathways, such as MAPK signaling pathway, PI3K-AKT-mTOR signaling pathway, FOXO signaling pathway. The top 10 hub genes were JUN, FOXO3, CASP3, JAK2, RELA, EZH2, ABL1, PTGS2, FBXW7, MCL1. Besides, TFAP2A, GATA2, SP1, and E2F1 may be the key regulatory factors of hub genes. CONCLUSIONS We identified some hub genes and signaling pathways associated with oxidative stress in ONFH through a series of bioinformatics analyses.
Collapse
Affiliation(s)
- Wei Shi
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Xinglong Zhang
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Chunlei Xu
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Ran Pang
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Zhenqi Fan
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Xin Wan
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Zhaohui Jiang
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Hui Li
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Zhijun Li
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China,Zhijun Li, Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China.
| | - Huafeng Zhang
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China
| |
Collapse
|
7
|
Song J, Wu J, Poulet B, Liang J, Bai C, Dang X, Wang K, Fan L, Liu R. Proteomics analysis of hip articular cartilage identifies differentially expressed proteins associated with osteonecrosis of the femoral head. Osteoarthritis Cartilage 2021; 29:1081-1092. [PMID: 33892138 DOI: 10.1016/j.joca.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 03/16/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The cartilage degeneration that accompanies subchondral bone necrosis plays an important role in the development of osteonecrosis of femoral head (ONFH). To better understand the molecular basis of cartilage degradation in ONFH, we compared the proteomic profiles of ONFH cartilage with that of fracture control. DESIGN Hip cartilage samples were collected from 16 ONFH patients and 16 matched controls with femoral neck fracture. Proteomics analysis was conducted using tandem mass tag-based quantitation technique. Gene ontology (GO) analysis, KEGG pathway and protein-protein interaction analysis were used to investigate the functions of the altered proteins and biological pathways. Differentially expressed proteins including alpha-2-HS-glycoprotein (AHSG) and Cytokine-like protein 1 (Cytl1) were validated by Western blot (WB) and immunohistochemistry (IHC). RESULTS 303 differentially expressed proteins were identified in ONFH cartilage with 72 up-regulated and 231 down-regulated. Collagen turnover, glycosaminoglycan biosynthesis, metabolic pathways, and complement and coagulation cascades were significantly modified in ONFH cartilage. WB and IHC confirmed the increased expression of AHSG and decreased expression of Cytl1 in ONFH cartilage. CONCLUSIONS Our results reveal the implication of altered protein expression in the development of ONFH, and provide novel clues for pathogenesis studies of cartilage degradation in ONFH.
Collapse
Affiliation(s)
- J Song
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - J Wu
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China; Department of Orthopaedics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan Province, 471009, PR China.
| | - B Poulet
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, West Derby Road, Liverpool, L7 8TX, UK.
| | - J Liang
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - C Bai
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - X Dang
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - K Wang
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - L Fan
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - R Liu
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China; Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, West Derby Road, Liverpool, L7 8TX, UK.
| |
Collapse
|
8
|
Follistatin-Like 1 Attenuation Suppresses Intervertebral Disc Degeneration in Mice through Interacting with TNF- α and Smad Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6640751. [PMID: 33936382 PMCID: PMC8055391 DOI: 10.1155/2021/6640751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/23/2020] [Accepted: 03/23/2021] [Indexed: 12/14/2022]
Abstract
Background Inflammation plays an important role in intervertebral disc degeneration (IDD). The protein follistatin-like 1 (FSTL1) plays a proinflammatory role in a variety of inflammatory diseases. Objectives The purpose of this study was to investigate whether IDD could be delayed by inhibiting FSTL-1 expression. Methods We established a puncture-induced IDD model in wild-type and FSTL-1+/- mice and collected intervertebral discs (IVDs) from the mice. Safranin O staining was used to detect cartilage loss of IVD tissue, and HE staining was used to detect morphological changes of IVD tissue. We measured the expression of FSTL-1 and related inflammatory indicators in IVD tissues by immunohistochemical staining, real-time PCR, and Western blotting. Results In the age-induced model of IDD, the level of FSTL-1 increased with the exacerbation of degeneration. In the puncture-induced IDD model, FSTL-1-knockdown mice showed a reduced degree of degeneration compared with that of wild-type mice. Further experiments showed that FSTL-1 knockdown also significantly reduced the level of related inflammatory factors in IVD. In vitro experiments showed that FSTL-1 knockdown significantly reduced TNF-α-induced inflammation. Specifically, the expression levels of the inflammatory factors COX-2, iNOS, MMP-13, and ADAMTS-5 were reduced. Knockdown of FSTL-1 attenuated inflammation by inhibiting the expression of P-Smad1/5/8, P-Erk1/2, and P-P65. Conclusion Knockdown of FSTL-1 attenuated inflammation by inhibiting the TNF-α response and Smad pathway activity and ultimately delayed IDD.
Collapse
|
9
|
Chen N, Xiao B, Wang S, Wei B. Bioinformatics analysis of microRNA linked to ubiquitin proteasome system in traumatic osteonecrosis of the femoral head. Medicine (Baltimore) 2020; 99:e21706. [PMID: 32872046 PMCID: PMC7437855 DOI: 10.1097/md.0000000000021706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) have been suggested to act critical roles in the pathophysiology of traumatic osteonecrosis of the femoral head (TONFH). Unfortunately, their roles in the development of TONFH are still ambiguous. The purpose of this study is to identify promising miRNA biomarkers in traumatic osteonecrosis development.We conducted a comprehensive bioinformatics analysis using microarray datasets downloaded from the Gene Expression Omnibus database, and compared the expression of miRNAs in the serum of TONFH patients with controls. Next, we performed target prediction, function enrichment analysis, and protein-protein interaction network analysis based on differentially expressed (DE) miRNAs.We identified 26 DE miRNAs that may contribute to the pathophysiology of TONFH. The miRNAs were linked to ubiquitin proteasome system including conjugating protein ligase activity, ubiquitin-protein ligase activity and ubiquitin mediated proteolysis 5 pathway, and we exposed miR-181a-5p and miR-140-5p as promising biomarkers in TONFH.A predicting model consisting of 5 miRNAs may help discriminating high-risk patients who might develop TONFH after femur neck fracture. Among DE miRNAs, MiR-181a-5p and miR-140-5p may contribute to the development femoral head osteonecrosis after femur neck fracture via ubiquitin proteasome system.
Collapse
Affiliation(s)
- Ning Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong
- Department of Femoral Head, Linyi People's Hospital, Linyi, Shandong, China
| | - Bolian Xiao
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong
- Department of Femoral Head, Linyi People's Hospital, Linyi, Shandong, China
| | - Shiying Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong
- Department of Femoral Head, Linyi People's Hospital, Linyi, Shandong, China
| | - Biaofang Wei
- Department of Femoral Head, Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
10
|
Histopathological Signatures of the Femoral Head in Patients with Osteonecrosis and Potential Applications in a Multi-Targeted Approach: A Pilot Study. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
(1) Background: Osteonecrosis (ON) of the femoral head is a disabling disease for which limited treatment options exist. Identifying therapeutic targets of its evolution could provide crucial insights into multi-targeted approaches. The aim of this pilot study was to assess the histopathological features of patients with non-traumatic femoral head (NTFH) and post-traumatic femoral head (PTFH) ON to produce a fresh vision for clinical use. (2) Methods: We got biopsies from patients with different ON stages, according to the ARCO system. Samples from multi-organ donors were used as controls. Histological and immunohistochemical evaluations were performed on the osteochondral unit. (3) Results: The PTFH group displayed several fibrotic reactions, a small stem cell pool and a lower international cartilage repair society (ICRS)-I score than NTFH, which instead presented intact cartilage similar to the controls. Immunostaining for collagen I and autotaxin confirmed these features in the PTFH group, which displayed top levels of MMP-13 involved in cartilage loss and reduced CB-2 in the underlying bone. Both groups manifested a similar pattern of apoptotic and pain mediators. (4) Conclusions: The different histopathological features suggest a multi-disciplinary and multi-targeted approach for ON. Further studies are necessary to measure the effect size to gain clinical evidence.
Collapse
|
11
|
Qu Y, Liu Y, Li R. FSTL1 Promotes Inflammatory Reaction and Cartilage Catabolism through Interplay with NFκB Signaling Pathways in an In Vitro ONFH Model. Inflammation 2020; 42:1491-1503. [PMID: 31011927 DOI: 10.1007/s10753-019-01012-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) usually occurs in young people and is closely associated with autoimmune reactions. Follistatin-like 1 (FSTL1) was recently proven to participate in several inflammation-related diseases. The role of FSTL1 in ONFH is still unclear. Serum levels of FSTL1 were not significantly different in ONFH patients and healthy individuals. In contrast, elevated expression levels of FSTL1 were observed in degraded cartilage and synovial fluid in ONFH patients and in a cultured human primary chondrocyte model treated with interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). Suppression of FSTL1 by FSTL1-siRNA downregulated the inflammatory response mediated by IL-1β or TNF-α in cultured human chondrocytes. In a human cartilage culture model, FSTL1 promoted the production of inflammatory cytokines and cartilage degradation enzymes. The activation of NFκB signaling pathway was detected in degenerated cartilage from ONFH patients and in FSTL1-treated chondrocytes. Additionally, administration of an NFκB inhibitor (JSH-23) significantly reduced the overexpression of inflammatory cytokines and protein degradation enzymes induced by FSTL1 and maintained the level of major cartilage matrix components (aggrecan and collagen II). In summary, FSTL1 was involved in the degeneration progression of the ONFH and might provide a novel direction for treating and curing ONFH.
Collapse
Affiliation(s)
- Yuan Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yi Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Rui Li
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
12
|
Han Y, Si M, Zhao Y, Liu Y, Cheng K, Zhang Y, Jia J, Li J, Nie L. Progranulin Protects Against Osteonecrosis of the Femoral Head by Activating ERK1/2 Pathway. Inflammation 2018; 40:946-955. [PMID: 28247166 DOI: 10.1007/s10753-017-0539-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The aim of this study was to investigate progranulin (PGRN) expression and its effect in cartilage degradation and in the pathogenesis of osteonecrosis of the femoral head (ONFH). Cartilage specimens were obtained from ONFH and FNF patients and PGRN expression was analyzed by immunohistochemistry, western blot analysis, and RT-PCR. Peripheral blood PGRN level was detected by ELISA. Additionally, primary chondrocytes were cultured and treated with PGRN. Next, the expression of aggrecan and collagen II and the activation of ERK1/2 were detected. We observed that the expression of PGRN was significantly upregulated in ONFH patients' articular cartilage, and recombinant PGRN could promote expression of aggrecan and collagen II and the activation of ERK1/2. Collectively, PGRN can improve chondrocyte anabolism and perform a therapeutic role in the pathogenesis of ONFH. This study helps to elucidate the pathogenesis of ONFH and presents PGRN as a potential target for the treatment of ONFH.
Collapse
Affiliation(s)
- Yingguang Han
- Department of Orthopaedic Surgery, Shandong University Qilu Hospital, No. 107, Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Meng Si
- Department of Orthopaedic Surgery, Shandong University Qilu Hospital, No. 107, Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yunpeng Zhao
- Department of Orthopaedic Surgery, Shandong University Qilu Hospital, No. 107, Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yi Liu
- Department of Orthopaedic Surgery, Shandong University Qilu Hospital, No. 107, Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Kaiyuan Cheng
- Department of Orthopaedic Surgery, Shandong University Qilu Hospital, No. 107, Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yuedong Zhang
- Department of Orthopaedic Surgery, Taian Central Hospital, Taian, Shandong, 271000, China
| | - Jialin Jia
- Department of Orthopaedic Surgery, Shandong University Qilu Hospital, No. 107, Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Jingkun Li
- Department of Orthopaedic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766, Jingshi Road, Jinan, Shandong, 250014, People's Republic of China.
| | - Lin Nie
- Department of Orthopaedic Surgery, Shandong University Qilu Hospital, No. 107, Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
13
|
Zhang Y, Zhao Y, Li J, Wang S, Liu Y, Nie L, Cheng L. Interleukin-9 Promotes TNF-α and PGE2 Release in Human Degenerated Intervertebral Disc Tissues. Spine (Phila Pa 1976) 2016; 41:1631-1640. [PMID: 27802252 DOI: 10.1097/brs.0000000000001621] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Based on human disc surgical samples and isolated cells in vitro, we undertook a descriptive and mechanistic investigation of proinflammatory effects of interleukin (IL)-9 in intervertebral disc (IVD) degeneration. OBJECTIVE To investigate the proinflammatory role of IL-9 in the pathological process of IVD degeneration. SUMMARY OF BACKGROUND DATA IL-9 is known as a pleiotropic cytokine that regulates the human pathogenesis of inflammatory and autoimmune diseases. However, whether IL-9 cytokine is involved in the immuno-inflammatory pathogenesis of IVD degeneration is unclear. METHODS The IVD samples were obtained from 45 patients. Immunohistochemistry, western blot, and real-time Polymerase Chain Reaction (PCR) were performed to detect the expression of IL-9 and tumor necrosis factor alpha (TNF-α) in the degenerated IVDs. Moreover, nucleus pulposus (NP) cells were treated with 0, 1, 10, and 100 ng/mL IL-9 cytokine and stimulated with IL-9 alone at 100 ng/mL for 0, 12, 24, and 48 hours. TNF-α expression was determined by immunofluorescence staining, western blot, and real-time PCR, respectively. The amounts of TNF-α and prostaglandin E2 (PGE2) in the supernatant were quantified by enzyme-linked immunosorbent assay. Additionally, Spearman correlation analyses were performed to analyze the correlation between Pfirrmann grading score of the involved degenerated IVDs and serum levels of IL-9. RESULTS The expressions of IL-9 and TNF-α in degenerated IVD tissues were dramatically elevated in comparison with the control. IL-9 significantly up-regulated the TNF-α and PGE2 secretion of NP cells in dose- and time-dependent manner. Moreover, there is a positive correlation between IL-9 serum level and severity of involved IVD degeneration. CONCLUSION Our findings suggest that IL-9 may play a potential role in the inflammatory processes of IVD degeneration. IL-9 may be involved in the IVD degeneration, at least in part, though stimulating the release of TNF-α and PGE2 in NP cells. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Yuanqiang Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Wang W, Liu Y, Hao J, Zheng S, Wen Y, Xiao X, He A, Fan Q, Zhang F, Liu R. Comparative analysis of gene expression profiles of hip articular cartilage between non-traumatic necrosis and osteoarthritis. Gene 2016; 591:43-47. [PMID: 27374150 DOI: 10.1016/j.gene.2016.06.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/15/2022]
Abstract
Hip cartilage destruction is consistently observed in the non-traumatic osteonecrosis of femoral head (NOFH) and accelerates its bone necrosis. The molecular mechanism underlying the cartilage damage of NOFH remains elusive. In this study, we conducted a systematically comparative study of gene expression profiles between NOFH and osteoarthritis (OA). Hip articular cartilage specimens were collected from 12 NOFH patients and 12 controls with traumatic femoral neck fracture for microarray (n=4) and quantitative real-time PCR validation experiments (n=8). Gene expression profiling of articular cartilage was performed using Agilent Human 4×44K Microarray chip. The accuracy of microarray experiment was further validated by qRT-PCR. Gene expression results of OA hip cartilage were derived from previously published study. Significance Analysis of Microarrays (SAM) software was applied for identifying differently expressed genes. Gene ontology (GO) and pathway enrichment analysis were conducted by Gene Set Enrichment Analysis software and DAVID tool, respectively. Totally, 27 differently expressed genes were identified for NOFH. Comparing the gene expression profiles of NOFH cartilage and OA cartilage detected 8 common differently expressed genes, including COL5A1, OGN, ANGPTL4, CRIP1, NFIL3, METRNL, ID2 and STEAP1. GO comparative analysis identified 10 common significant GO terms, mainly implicated in apoptosis and development process. Pathway comparative analysis observed that ECM-receptor interaction pathway and focal adhesion pathway were enriched in the differently expressed genes of both NOFH and hip OA. In conclusion, we identified a set of differently expressed genes, GO and pathways for NOFH articular destruction, some of which were also involved in the hip OA. Our study results may help to reveal the pathogenetic similarities and differences of cartilage damage of NOFH and hip OA.
Collapse
Affiliation(s)
- Wenyu Wang
- Key Laboratory of Traece Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - Yang Liu
- Department of Rheumatology, Xi'an Fifth Hospital, PR China
| | - Jingcan Hao
- Key Laboratory of Traece Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - Shuyu Zheng
- Department of Radiation Oncology, First Affiliated Hospital, Health Science Center, Xi'an Jiaotong University, PR China
| | - Yan Wen
- Key Laboratory of Traece Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - Xiao Xiao
- Key Laboratory of Traece Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - Awen He
- Key Laboratory of Traece Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - Qianrui Fan
- Key Laboratory of Traece Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - Feng Zhang
- Key Laboratory of Traece Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China.
| | - Ruiyu Liu
- Department of Orthopedics, Second Affiliated Hospital of Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
15
|
Persistent immune alterations and comorbidities in splenectomized patients with Gaucher disease. Blood Cells Mol Dis 2016; 59:8-15. [PMID: 27282561 DOI: 10.1016/j.bcmd.2016.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 01/18/2023]
Abstract
Gaucher disease (GD) is an autosomal recessive disorder caused by mutations in the gene encoding acid-β-glucosidase, resulting in functional disruptions in degradation of glycosphingolipids and lysosomal accumulation of the substrates. The most frequent clinical presentations of GD are thrombocytopenia, splenomegaly and bone pain. Prior to advent of enzyme replacement therapy, splenectomy was performed for complications of hypersplenism such as severe thrombocytopenia and transfusion dependency. Though there is evidence about worsening bone disease after splenectomy, there is no systematic study to assess its effects on the immune system in GD patients. In order to investigate the long-term immunological effects of splenectomy, we used flow cytometry to compare the immunophenotypes of GD patients who had undergone splenectomy (SGD) to those with intact spleen. The results show that SGD patients have significantly fewer CD27(+)/IgM(+) B-cells but more CD4(+)/CD45RO(+) and CD8(+)/CD45RO(+) T-cells. The most surprising finding was an almost complete absence of circulating dendritic cells in SGD patients. In addition, splenectomized subjects had comorbidities, the most common being monoclonal gammopathy of undetermined significance (MGUS). Taken together, these results highlight the persistence of multiple immune alterations and comorbidities coexisting in higher frequency in the SGD group and they are not affected by GD specific therapy.
Collapse
|