1
|
Marampon F, Gravina GL, Cinelli E, Zaccaro L, Tomaciello M, Meglio ND, Gentili F, Cerase A, Perrella A, Yavorska M, Aburas S, Mutti L, Mazzei MA, Minniti G, Tini P. Reducing clinical target volume margins for multifocal glioblastoma: a multi-institutional analysis of patterns of recurrence and treatment response. Radiat Oncol J 2025; 43:13-21. [PMID: 39928965 PMCID: PMC12010890 DOI: 10.3857/roj.2024.00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 02/12/2025] Open
Abstract
PURPOSE No guidelines exist to delineate radiation therapy (RT) targets for the treatment of multiple glioblastoma (mGBM). This study analyzes margins around the gross tumor volume (GTV) to create a clinical target volume (CTV), comparing response parameters and modalities of recurrence. Material and Methods: One-hundred and three mGBM patients with a CTV margin of 2 cm (GTV + 2.0 cm) or 1 cm (GTV + 1.0 cm) were retrospectively analyzed. All patients received a total dose of 59.4-60 Gy in 1.8-2.0 Gy daily fractions, delivered from 4 to 8 weeks after surgery, concomitantly with temozolomide (75 mg/m2). Overall survival (OS) and progression-free survival (PFS) were calculated from the date of surgery until diagnosis of disease progression performed by magnetic resonance imaging and classified as marginal, in-field, or distant, comparing site of progression with dose distribution in RT plan. RESULTS OS in mGBM CTV1 group was 11.2 months (95% confidence interval [CI], 10.3-12.1), and 9.2 months in mGBM CTV2 group (95% CI, 9.0-11.3). PFS in mGBM CTV1 group occurred within 8.3 months (95% CI, 7.3-9.3), and 7.3 months in mGBM CTV2 group (95% CI, 6.4-8.1). No difference was observed between the two groups in terms of OS and PFS time distribution. Adjusted to a multivariate Cox risk model, epidermal growth factor receptor amplification resulted a negative prognostic factor for both OS and PFS. CONCLUSION In mGBM, the use of a 1 cm CTV expansion seems feasible as it does not significantly affect oncological outcomes and progression outcome.
Collapse
Affiliation(s)
- Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, University of Rome Sapienza, Rome, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisa Cinelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Lucy Zaccaro
- Department of Radiological, Oncological and Pathological Sciences, University of Rome Sapienza, Rome, Italy
| | - Miriam Tomaciello
- Department of Radiological, Oncological and Pathological Sciences, University of Rome Sapienza, Rome, Italy
| | - Nunzia Di Meglio
- Diagnostic Imaging, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Francesco Gentili
- Diagnostic Imaging, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alfonso Cerase
- Unit of Neuroradiology, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Armando Perrella
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Mariya Yavorska
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Sami Aburas
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Luciano Mutti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Maria Antonietta Mazzei
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Diagnostic Imaging, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giuseppe Minniti
- Department of Radiological, Oncological and Pathological Sciences, University of Rome Sapienza, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy
| | - Paolo Tini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Diagnostic Imaging, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
2
|
Zamani M, Sadeghi E, Mokarram P, Kadkhodaei B, Ghasemi H. Autophagy related proteins as potential biomarkers in predicting cancer prognosis after chemoradiotherapy: systematic review and meta-analysis. Int J Radiat Biol 2024; 101:232-239. [PMID: 39625853 DOI: 10.1080/09553002.2024.2435320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/30/2024] [Accepted: 11/24/2024] [Indexed: 02/22/2025]
Abstract
BACKGROUND Resistance to chemo- and radiotherapy is the main obstacle in cancer treatment success, which results in cancer's poor prognosis. Therefore finding the exact mechanism of resistance may contribute to addressing this concern. This could result in improved cancer prognosis and survival outcomes for cancer patients by targeting the basic causes of resistance. AIM This systematic review and meta-analysis assessed the potential of using autophagy-related proteins as prognostic biomarkers in radiotherapy-treated patients. METHODS Following PRISMA guidelines, we systematically reviewed 956 studies from PubMed, Scopus, and Web of Science databases until April 2023. The keywords used for this purpose were 'cancer', 'radiotherapy', 'prognosis', and 'Autophagy'. Then the related meta-analysis was performed using STATA software. RESULTS Four studies met the inclusion criteria. Upregulation of autophagy markers (LC3B, Beclin1 and ULK1) and subsequent activation of autophagy were significantly associated with a higher risk of mortality (1.95 times) in radiotherapy-treated groups compared with patients with low expression of these markers. Although such results were observed for recurrence-free survival (RFS); however, it was not significant. CONCLUSION The findings of this meta-analysis suggest that autophagy activation may be a critical factor in resistance to radiotherapy and subsequent poor survival rates in cancer patients. Consequently, assessing the expression of autophagy-related markers like Beclin1, LC3II, P62, and ULK may be a useful method for monitoring cancer prognosis following radiotherapy.
Collapse
Affiliation(s)
- Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Erfan Sadeghi
- Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry Shiraz, University of Medical Sciences, Shiraz, Iran
| | - Behnam Kadkhodaei
- Department of Radiation Oncology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Ghasemi
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Wan S, Zhang G, Liu R, Abbas MN, Cui H. Pyroptosis, ferroptosis, and autophagy cross-talk in glioblastoma opens up new avenues for glioblastoma treatment. Cell Commun Signal 2023; 21:115. [PMID: 37208730 DOI: 10.1186/s12964-023-01108-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/22/2023] [Indexed: 05/21/2023] Open
Abstract
Glioma is a common primary tumor of the central nervous system (CNS), with glioblastoma multiforme (GBM) being the most malignant, aggressive, and drug resistant. Most drugs are designed to induce cancer cell death, either directly or indirectly, but malignant tumor cells can always evade death and continue to proliferate, resulting in a poor prognosis for patients. This reflects our limited understanding of the complex regulatory network that cancer cells utilize to avoid death. In addition to classical apoptosis, pyroptosis, ferroptosis, and autophagy are recognized as key cell death modalities that play significant roles in tumor progression. Various inducers or inhibitors have been discovered to target the related molecules in these pathways, and some of them have already been translated into clinical treatment. In this review, we summarized recent advances in the molecular mechanisms of inducing or inhibiting pyroptosis, ferroptosis, or autophagy in GBM, which are important for treatment or drug tolerance. We also discussed their links with apoptosis to better understand the mutual regulatory network among different cell death processes. Video Abstract.
Collapse
Affiliation(s)
- Sicheng Wan
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Guanghui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
4
|
Laribee RN, Boucher AB, Madireddy S, Pfeffer LM. The STAT3-Regulated Autophagy Pathway in Glioblastoma. Pharmaceuticals (Basel) 2023; 16:671. [PMID: 37242454 PMCID: PMC10223172 DOI: 10.3390/ph16050671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain malignancy in adults with a dismal prognosis. Despite advances in genomic analysis and surgical technique and the development of targeted therapeutics, most treatment options are ineffective and mainly palliative. Autophagy is a form of cellular self-digestion with the goal of recycling intracellular components to maintain cell metabolism. Here, we describe some recent findings that suggest GBM tumors are more sensitive to the excessive overactivation of autophagy leading to autophagy-dependent cell death. GBM cancer stem cells (GSCs) are a subset of the GBM tumor population that play critical roles in tumor formation and progression, metastasis, and relapse, and they are inherently resistant to most therapeutic strategies. Evidence suggests that GSCs are able to adapt to a tumor microenvironment of hypoxia, acidosis, and lack of nutrients. These findings have suggested that autophagy may promote and maintain the stem-like state of GSCs as well as their resistance to cancer treatment. However, autophagy is a double-edged sword and may have anti-tumor properties under certain conditions. The role of the STAT3 transcription factor in autophagy is also described. These findings provide the basis for future research aimed at targeting the autophagy-dependent pathway to overcome the inherent therapeutic resistance of GBM in general and to specifically target the highly therapy-resistant GSC population through autophagy regulation.
Collapse
Affiliation(s)
- Ronald Nicholas Laribee
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Andrew B. Boucher
- Department of Neurosurgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Saivikram Madireddy
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Lawrence M. Pfeffer
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
5
|
Petrosyan E, Fares J, Cordero A, Rashidi A, Arrieta VA, Kanojia D, Lesniak MS. Repurposing autophagy regulators in brain tumors. Int J Cancer 2022; 151:167-180. [PMID: 35179776 PMCID: PMC9133056 DOI: 10.1002/ijc.33965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 11/09/2022]
Abstract
Malignant brain tumors, such as glioblastoma multiforme (GBM) and brain metastases, continue to be an unmet medical challenge. Despite advances in cancer diagnostics and therapeutics, tumor cell colonization in the central nervous system renders most treatment options ineffective. This is primarily due to the selective permeability of the blood-brain barrier (BBB), which hinders the crossing of targeting agents into the brain. As such, repositioning medications that demonstrate anticancer effects and possess the ability to cross the BBB can be a promising option. Antidepressants, which are BBB-permeable, have been reported to exhibit cytotoxicity against tumor cells. Autophagy, specifically, has been identified as one of the common key mediators of antidepressant's antitumor effects. In this work, we provide a comprehensive overview of US Food and Drug Administration (FDA)-approved antidepressants with reported cytotoxic activities in different tumor models, where autophagy dysregulation was demonstrated to play the main part. As such, imipramine, maprotiline, fluoxetine and escitalopram were shown to induce autophagy, whereas nortriptyline, clomipramine and paroxetine were identified as autophagy inhibitors. Sertraline and desipramine, depending on the neoplastic context, were demonstrated to either induce or inhibit autophagy. Collectively, these medications were associated with favorable therapeutic outcomes in a variety of cancer cell models, including brain tumors.
Collapse
Affiliation(s)
- Edgar Petrosyan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Alex Cordero
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Víctor A. Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| |
Collapse
|
6
|
Nardone V, Desideri I, D’Ambrosio L, Morelli I, Visani L, Di Giorgio E, Guida C, Clemente A, Belfiore MP, Cioce F, Spadafora M, Vinciguerra C, Mansi L, Reginelli A, Cappabianca S. Nuclear medicine and radiotherapy in the clinical management of glioblastoma patients. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00495-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Introduction
The aim of the narrative review was to analyse the applications of nuclear medicine (NM) techniques such as PET/CT with different tracers in combination with radiotherapy for the clinical management of glioblastoma patients.
Materials and methods
Key references were derived from a PubMed query. Hand searching and clinicaltrials.gov were also used.
Results
This paper contains a narrative report and a critical discussion of NM approaches in combination with radiotherapy in glioma patients.
Conclusions
NM can provide the Radiation Oncologist several aids that can be useful in the clinical management of glioblastoma patients. At the same, these results need to be validated in prospective and multicenter trials.
Collapse
|
7
|
Jandrey EHF, Bezerra M, Inoue LT, Furnari FB, Camargo AA, Costa ÉT. A Key Pathway to Cancer Resilience: The Role of Autophagy in Glioblastomas. Front Oncol 2021; 11:652133. [PMID: 34178638 PMCID: PMC8222785 DOI: 10.3389/fonc.2021.652133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
There are no effective strategies for the successful treatment of glioblastomas (GBM). Current therapeutic modalities effectively target bulk tumor cells but leave behind marginal GBM cells that escape from the surgical margins and radiotherapy field, exhibiting high migratory phenotype and resistance to all available anti-glioma therapies. Drug resistance is mostly driven by tumor cell plasticity: a concept associated with reactivating transcriptional programs in response to adverse and dynamic conditions from the tumor microenvironment. Autophagy, or "self-eating", pathway is an emerging target for cancer therapy and has been regarded as one of the key drivers of cell plasticity in response to energy demanding stress conditions. Many studies shed light on the importance of autophagy as an adaptive mechanism, protecting GBM cells from unfavorable conditions, while others recognize that autophagy can kill those cells by triggering a non-apoptotic cell death program, called 'autophagy cell death' (ACD). In this review, we carefully analyzed literature data and conclude that there is no clear evidence indicating the presence of ACD under pathophysiological settings in GBM disease. It seems to be exclusively induced by excessive (supra-physiological) stress signals, mostly from in vitro cell culture studies. Instead, pre-clinical and clinical data indicate that autophagy is an emblematic example of the 'dark-side' of a rescue pathway that contributes profoundly to a pro-tumoral adaptive response. From a standpoint of treating the real human disease, only combinatorial therapy targeting autophagy with cytotoxic drugs in the adjuvant setting for GBM patients, associated with the development of less toxic and more specific autophagy inhibitors, may inhibit adaptive response and enhance the sensibility of glioma cells to conventional therapies.
Collapse
Affiliation(s)
| | - Marcelle Bezerra
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Frank B. Furnari
- Ludwig Institute for Cancer Research, University of California San Diego (UCSD), San Diego, CA, United States
| | | | | |
Collapse
|
8
|
Khan I, Baig MH, Mahfooz S, Rahim M, Karacam B, Elbasan EB, Ulasov I, Dong JJ, Hatiboglu MA. Deciphering the Role of Autophagy in Treatment of Resistance Mechanisms in Glioblastoma. Int J Mol Sci 2021; 22:ijms22031318. [PMID: 33525678 PMCID: PMC7865981 DOI: 10.3390/ijms22031318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a process essential for cellular energy consumption, survival, and defense mechanisms. The role of autophagy in several types of human cancers has been explicitly explained; however, the underlying molecular mechanism of autophagy in glioblastoma remains ambiguous. Autophagy is thought to be a “double-edged sword”, and its effect on tumorigenesis varies with cell type. On the other hand, autophagy may play a significant role in the resistance mechanisms against various therapies. Therefore, it is of the utmost importance to gain insight into the molecular mechanisms deriving the autophagy-mediated therapeutic resistance and designing improved treatment strategies for glioblastoma. In this review, we discuss autophagy mechanisms, specifically its pro-survival and growth-suppressing mechanisms in glioblastomas. In addition, we try to shed some light on the autophagy-mediated activation of the cellular mechanisms supporting radioresistance and chemoresistance in glioblastoma. This review also highlights autophagy’s involvement in glioma stem cell behavior, underlining its role as a potential molecular target for therapeutic interventions.
Collapse
Affiliation(s)
- Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy Mahallesi, Beykoz, 34820 Istanbul, Turkey; (I.K.); (S.M.); (B.K.)
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy Mahallesi, Beykoz, 34820 Istanbul, Turkey; (I.K.); (S.M.); (B.K.)
| | - Moniba Rahim
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India;
| | - Busra Karacam
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy Mahallesi, Beykoz, 34820 Istanbul, Turkey; (I.K.); (S.M.); (B.K.)
| | - Elif Burce Elbasan
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, 34093 Istanbul, Turkey;
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
- Correspondence: (J.-J.D.); (M.A.H.)
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy Mahallesi, Beykoz, 34820 Istanbul, Turkey; (I.K.); (S.M.); (B.K.)
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, 34093 Istanbul, Turkey;
- Correspondence: (J.-J.D.); (M.A.H.)
| |
Collapse
|
9
|
Zhang F, Xie S, Zhang Z, Zhao H, Zhao Z, Sun H, Zheng J. A Novel Risk Model Based on Autophagy Pathway Related Genes for Survival Prediction in Lung Adenocarcinoma. Med Sci Monit 2020; 26:e924710. [PMID: 32873769 PMCID: PMC7486793 DOI: 10.12659/msm.924710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Autophagy has a principal role in mediating tumor cell metabolism. However, the role of autophagy-pathway-related genes (APRGs) as prognostic markers remains obscure in lung adenocarcinoma (LUAD). More potential prognostic biomarkers are needed to deepen our understanding to explore the prognostic role of APRGs in LUAD. Material/Methods We used The Cancer Genome Atlas (TCGA) database to identify differentially expressed APRGs. Cox proportional hazard regression was used to identify prognostic APRGs, and then a risk model was constructed. The efficacy of the risk model was confirmed using a testing group. Lastly, we explored mutational signatures of prognostic of APRGs. T-tests were used to analyze all the expression patterns of genes by SPSS 19.0. Results Using TCGA database, 5 differently expressed APRGs were identified in LUAD patients, and functional enrichment analyze of the genes that were closely associated with the survival status in LUAD patients. Cox proportional hazard regression was facilitated to identify 9 APRGs (CCR2, LAMP1, RELA, ATG12, ATG9A, NCKAP1, ATG10, DNAJB9, and MBTPS2). Multivariate Cox proportional hazards regression analyses further identified 5 key prognostic APRGs (CCR2, LAMP1, RELA, ATG12, and MBTPS2) that were closely related to the survival status in LUAD. Then the prognostic scores based on the 5 genes as independent prognostic indicators were constructed for overall survival (OS) of LUAD patients; area under the curve (AUC) values >0.70 (all P<0.05). The efficacy of prognostic scores was confirmed by data from the testing group and showed significant differences between the low-risk and the high-risk groups for OS (P<0.05). Conclusions The risk model based on the construction of 5 APRGs can predict the prognosis of patients with LUAD, which may potentially predict prognostic signatures for LUAD.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Ophthalmology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China (mainland)
| | - Suzhen Xie
- Department of Ophthalmology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China (mainland)
| | - Zhenyu Zhang
- Department of Ophthalmology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China (mainland)
| | - Huanhuan Zhao
- Department of Ophthalmology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China (mainland)
| | - Zijun Zhao
- Department of Ophthalmology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China (mainland)
| | - Haiying Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Jiao Zheng
- Department of Ophthalmology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
10
|
Escamilla-Ramírez A, Castillo-Rodríguez RA, Zavala-Vega S, Jimenez-Farfan D, Anaya-Rubio I, Briseño E, Palencia G, Guevara P, Cruz-Salgado A, Sotelo J, Trejo-Solís C. Autophagy as a Potential Therapy for Malignant Glioma. Pharmaceuticals (Basel) 2020; 13:ph13070156. [PMID: 32707662 PMCID: PMC7407942 DOI: 10.3390/ph13070156] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most frequent and aggressive type of brain neoplasm, being anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM), its most malignant forms. The survival rate in patients with these neoplasms is 15 months after diagnosis, despite a diversity of treatments, including surgery, radiation, chemotherapy, and immunotherapy. The resistance of GBM to various therapies is due to a highly mutated genome; these genetic changes induce a de-regulation of several signaling pathways and result in higher cell proliferation rates, angiogenesis, invasion, and a marked resistance to apoptosis; this latter trait is a hallmark of highly invasive tumor cells, such as glioma cells. Due to a defective apoptosis in gliomas, induced autophagic death can be an alternative to remove tumor cells. Paradoxically, however, autophagy in cancer can promote either a cell death or survival. Modulating the autophagic pathway as a death mechanism for cancer cells has prompted the use of both inhibitors and autophagy inducers. The autophagic process, either as a cancer suppressing or inducing mechanism in high-grade gliomas is discussed in this review, along with therapeutic approaches to inhibit or induce autophagy in pre-clinical and clinical studies, aiming to increase the efficiency of conventional treatments to remove glioma neoplastic cells.
Collapse
Affiliation(s)
- Angel Escamilla-Ramírez
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Rosa A. Castillo-Rodríguez
- Laboratorio de Oncología Experimental, CONACYT-Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Sergio Zavala-Vega
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Isabel Anaya-Rubio
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Eduardo Briseño
- Clínica de Neurooncología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Guadalupe Palencia
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Patricia Guevara
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Arturo Cruz-Salgado
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Julio Sotelo
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Cristina Trejo-Solís
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
- Correspondence: ; Tel.: +52-555-060-4040
| |
Collapse
|
11
|
Kareem O, Bader GN, Pottoo FH, Amir M, Barkat MA, Pandey M. Beclin 1 Complex and Neurodegenerative Disorders. QUALITY CONTROL OF CELLULAR PROTEIN IN NEURODEGENERATIVE DISORDERS 2020. [DOI: 10.4018/978-1-7998-1317-0.ch009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Beclin1 is the mammalian orthologue of yeast Atg6/vacuolar protein sorting-30 (VPS30). Beclin1 interacts with various biological macromolecules like ATG14, BIF-1, NRBF2, RUBICON, UVRAG, AMBRA1, HMGB1, PINK1, and PARKIN. Such interactions promote Beclin1-PI3KC3 complex formation. Autophagy is blocked in apoptosis owing to the breakdown of Beclin1 by caspase whereas autophagy induction inhibits effector caspase degradation, therefore, blocks apoptosis. Thus, the Beclin1 is an essential biomolecular species for cross-regulation between autophagy and apoptosis. Various studies carried out in neurodegenerative animal models associated with aggregated proteins have confirmed that multifunctional Beclin1 protein is necessary for neuronal integrity. The role of Beclin1 protein has been investigated and was reported in various human neurodegeneration disorders. This chapter aims to provide an insight into the role of Beclin1 in the development of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ozaifa Kareem
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Mohd. Amir
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Md. Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al-Batin, Saudi Arabia
| | - Mukesh Pandey
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, India
| |
Collapse
|
12
|
Sennikov SV, Alshevskaya AA, Zhukova J, Belomestnova I, Karaulov AV, Lopatnikova JA. Expression Density of Receptors as a Potent Regulator of Cell Function and Property in Health and Pathology. Int Arch Allergy Immunol 2018; 178:182-191. [PMID: 30544119 DOI: 10.1159/000494387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/10/2018] [Indexed: 11/19/2022] Open
Abstract
The expression of cytokine receptors has a crucial role in many cellular processes. Recent studies reported that changes of receptor expression could control the action of mediators on target cells. The initiation of different signaling pathways and, therefore, specific effects on cells, depends on certain components forming the cytokine-receptor complex. These mechanisms control the immune response and affect both the course of diseases (oncological, autoimmune, inflammatory) and the effectiveness of therapy. This review describes the potential of immune mediator receptors to regulate the efficiency of cytokine activity during pathologic processes and ensure the variability of their biological effects. Our aim was to investigate the spectrum of potential roles of changes in mediator receptor expression for main classes of pathologies. For all major types of immune mediators (cytokines, interleukins, chemokines, growth factors, and tumor necrosis factors), it has been shown that changes in their receptor expression are associated with impaired functioning of the organism in chronic diseases.
Collapse
Affiliation(s)
- Sergey Vitalievich Sennikov
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk, Russian Federation, .,Novosibirsk State University, Novosibirsk, Russian Federation,
| | - Alina A Alshevskaya
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk, Russian Federation
| | - Julia Zhukova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk, Russian Federation
| | - Irina Belomestnova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk, Russian Federation
| | - Alexander V Karaulov
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Julia A Lopatnikova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk, Russian Federation
| |
Collapse
|
13
|
Nardone V, Vinciguerra C, Federico A, Cerase A, Pirtoli L, Tini P. Perilesional edema in brain cancer: Independent prognosticator or epiphenomenon of biomolecular signature? Radiother Oncol 2018; 129:183-184. [PMID: 29331541 DOI: 10.1016/j.radonc.2017.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 11/22/2022]
Affiliation(s)
- Valerio Nardone
- Unit of Radiation Oncology, University Hospital of Siena, Siena, Italy; Istituto Toscano Tumori, Florence, Italy.
| | - Claudia Vinciguerra
- Unit of Clinical Neurology and Neurometabolic Disorders, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Antonio Federico
- Unit of Clinical Neurology and Neurometabolic Disorders, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Alfonso Cerase
- Unit of Neuro Radiology, University Hospital of Siena, Siena, Italy
| | - Luigi Pirtoli
- Unit of Radiation Oncology, University Hospital of Siena, Siena, Italy; Istituto Toscano Tumori, Florence, Italy; Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA United States
| | - Paolo Tini
- Unit of Radiation Oncology, University Hospital of Siena, Siena, Italy; Istituto Toscano Tumori, Florence, Italy; Sbarro Health Research Organization, Temple University, Philadelphia, PA, United States
| |
Collapse
|
14
|
Li J, Liang R, Song C, Xiang Y, Liu Y. Prognostic significance of epidermal growth factor receptor expression in glioma patients. Onco Targets Ther 2018; 11:731-742. [PMID: 29445288 PMCID: PMC5808691 DOI: 10.2147/ott.s155160] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose There is a great controversy regarding the prognostic significance of epidermal growth factor receptor (EGFR) in glioma patients. The current meta-analysis was conducted to evaluate the effect of abnormal EGFR expression on overall survival in glioma patients. Materials and methods A comprehensive literature search of PubMed, EMBASE, Google Scholar, Web of Science, and Cochrane Library was conducted. The combined hazard ratio (HR) and its 95% confidence intervals (CIs) were used to evaluate the association between EGFR expression and survival in glioma. Results A total of 476 articles were screened, and 17 articles containing 1,458 patients were selected. The quality assessment of the included studies was performed by the Newcastle-Ottawa Scale. Overexpression of EGFR was found to be an indicator of poor prognosis in overall survival in glioma patients (HR =1.72, 95% CI 1.32-2.25, P=0.000, random effect) and glioblastoma multiforme patients (HR =1.57, 95% CI 1.15-2.14, P=0.004, random effect). Subgroup analysis was conducted to explore the source of high heterogeneity. Conclusion This meta-analysis indicated that high expression of EGFR may serve as a biomarker for poor prognosis in glioma patients.
Collapse
Affiliation(s)
- Junhong Li
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Ruofei Liang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Chen Song
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yufan Xiang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
15
|
Mitrakas AG, Kalamida D, Giatromanolaki A, Pouliliou S, Tsolou A, Kyranas R, Koukourakis MI. Autophagic flux response and glioblastoma sensitivity to radiation. Cancer Biol Med 2018; 15:260-274. [PMID: 30197793 PMCID: PMC6121047 DOI: 10.20892/j.issn.2095-3941.2017.0173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Objective: Glioblastoma is the most common primary brain tumor in adults and one of the most lethal human tumors. It constitutes a unique non-metastasizing human tumor model with high resistance to radiotherapy and chemotherapy. The current study investigates the association between autophagic flux and glioblastoma cell resistance. Methods: The expression kinetics of autophagy- and lysosome-related proteins following exposure of two glioblastoma cell lines (T98 and U87) to clinically relevant radiation doses was examined. Then, the response of cells resistant to radiotherapy and chemotherapy was investigated after silencing of LC3A, LC3B, and TFEB genes in vitro and in vivo.
Results: Following irradiation with 4 Gy, the relatively radioresistant T98 cells exhibited enhanced autophagic flux. The more radiosensitive U87 cell line suffered a blockage of autophagic flux. Silencing of LC3A, LC3B, and TFEB genes in vitro, significantly sensitized cells to radiotherapy and temozolomide (U87: P < 0.01 and < 0.05, respectively; T98: P < 0.01 and < 0.01, respectively). Silencing of the LC3A gene sensitized mouse xenografts to radiation.
Conclusions: Autophagy in cancer cells may be a key factor of radio-resistance and chemo-resistance in glioblastoma cells. Blocking autophagy may improve the efficacy of radiochemotherapy for glioblastoma patients.
Collapse
Affiliation(s)
| | | | - Alexandra Giatromanolaki
- Department of Pathology, Democritus University of Thrace, and University General Hospital of Alexandroupolis, Alexandroupolis 68100, Greece
| | | | | | | | | |
Collapse
|
16
|
Tini P, Nardone V, Pastina P, Battaglia G, Miracco C, Sebaste L, Rubino G, Cerase A, Pirtoli L. Patients Affected by Unmethylated O(6)-Methylguanine-DNA Methyltransferase Glioblastoma Undergoing Radiochemotherapy May Benefit from Moderately Dose-Escalated Radiotherapy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9461402. [PMID: 29159183 PMCID: PMC5660746 DOI: 10.1155/2017/9461402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/09/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE To compare the therapeutic results of two radiotherapy (RT) dose schedules in combined temozolomide- (TMZ-) RT treatment in newly diagnosed glioblastoma (GB), according to the O(6)-methylguanine-DNA methyltransferase (MGMT) methylation status. MATERIAL AND METHOD Patients received either standard (60 Gy) or moderately escalated dose (70 Gy) radiotherapy (RT) with concomitant and adjuvant TMZ between June 2006 and October 2013. We retrospectively evaluated the therapeutic effectiveness of RT schedules in terms of Overall Survival (OS) and Progression-Disease Free Survival (PDFS) analyzing the MGMT methylation status. RESULTS One hundred and seventeen patients were selected for the present analysis. Seventy-two out of the selected cases received the standard RT-TMZ course (SDRT-TMZ) whereas the remaining 45 underwent the escalated schedule (HDRT-TMZ). The analysis according to the MGMT promoter methylation status showed that, in unmethylated-MGMT GB patients, HDRT-TMZ and SDRT-TMZ groups had different median OS (p = 0,01) and PDFS (p = 0,007), that is, 8 months and 5 months for the SDRT-TMZ group and 14 months and 9 months for the HDRT-TMZ group, respectively. No difference in survival outcomes was found in methylated MGMT patients according to the two RT schedules (p = 0,12). CONCLUSIONS In our experience, unmethylated-MGMT GB patients benefited from a moderately escalated dose of RT plus TMZ.
Collapse
Affiliation(s)
- Paolo Tini
- Sbarro Health Research Organization, Temple University, Philadelphia, PA, USA
- Unit of Radiation Oncology, University Hospital of Siena, Siena, Italy
| | - Valerio Nardone
- Unit of Radiation Oncology, University Hospital of Siena, Siena, Italy
| | - Pierpaolo Pastina
- Department of Medicine, Surgery and Neurological Sciences, University of Siena, Siena, Italy
| | - Giuseppe Battaglia
- Department of Medicine, Surgery and Neurological Sciences, University of Siena, Siena, Italy
| | - Clelia Miracco
- Department of Medicine, Surgery and Neurological Sciences, University of Siena, Siena, Italy
- Unit of Pathological Anatomy, Department of Medicine, Surgery and Neurological Sciences, University of Siena, Siena, Italy
| | - Lucio Sebaste
- Unit of Radiation Oncology, University Hospital of Siena, Siena, Italy
| | - Giovanni Rubino
- Unit of Radiation Oncology, University Hospital of Siena, Siena, Italy
| | - Alfonso Cerase
- Unit of Neuroradiology, University Hospital of Siena, Siena, Italy
| | - Luigi Pirtoli
- Unit of Radiation Oncology, University Hospital of Siena, Siena, Italy
- Department of Medicine, Surgery and Neurological Sciences, University of Siena, Siena, Italy
| |
Collapse
|
17
|
Jogalekar MP, Cooper LG, Serrano EE. Hydrogel Environment Supports Cell Culture Expansion of a Grade IV Astrocytoma. Neurochem Res 2017; 42:2610-2624. [PMID: 28589519 PMCID: PMC6217807 DOI: 10.1007/s11064-017-2308-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/13/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023]
Abstract
Malignant astrocytomas are aggressive cancers of glial origin that can develop into invasive brain tumors. The disease has poor prognosis and high recurrence rate. Astrocytoma cell lines of human origin are an important tool in the experimental pathway from bench to bedside because they afford a convenient intermediate system for in vitro analysis of brain cancer pathogenesis and treatment options. We undertook the current study to determine whether hydrogel culture methods could be adapted to support the growth of astrocytoma cell lines, thereby facilitating a system that may be biologically more similar to in vivo tumor tissue. Our experimental protocols enabled maintenance of Grade IV astrocytoma cell lines in conventional monolayer culture and in the extracellular matrix hydrogel, Geltrex™. Light and fluorescence microscopy showed that hydrogel environments promoted cellular reorganization from dispersed cells into multilayered aggregates. Transmission electron microscopy revealed the prevalence of autophagy and nuclear membrane distortions in both culture systems. Analysis of microarray Gene Expression Omnibus (GEO) DataSets highlighted expression of genes implicated in pathways for cancer progression and autophagy. A pilot quantitative polymerase chain reaction (qPCR) analysis of the autophagic biomarkers, Beclin 1 (BECN1) and microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B), with two reference genes (beta actin, ACTB; glyceraldehyde 3-phosphate dehydrogenase, GAPDH), uncovered a relative increase of BECN1 and LC3B in hydrogel cultures of astrocytoma as compared to the monolayer. Taken together, results establish that ultrastructural and molecular characteristics of autophagy are features of this astrocytoma cell line, and that hydrogel culture systems can afford novel opportunities for in vitro studies of glioma.
Collapse
Affiliation(s)
- Manasi P Jogalekar
- Molecular Biology Program, New Mexico State University, Las Cruces, NM, USA
| | - Leigh G Cooper
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Elba E Serrano
- Molecular Biology Program, New Mexico State University, Las Cruces, NM, USA.
- Department of Biology, New Mexico State University, Las Cruces, NM, USA.
| |
Collapse
|
18
|
Tini P, Pastina P, Nardone V, Sebaste L, Toscano M, Miracco C, Cerase A, Pirtoli L. The combined EGFR protein expression analysis refines the prognostic value of the MGMT promoter methylation status in glioblastoma. Clin Neurol Neurosurg 2016; 149:15-21. [DOI: 10.1016/j.clineuro.2016.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 12/19/2022]
|
19
|
Toscana virus infects dendritic and endothelial cells opening the way for the central nervous system. J Neurovirol 2015; 22:307-15. [PMID: 26510872 DOI: 10.1007/s13365-015-0395-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 02/06/2023]
Abstract
Toscana virus (TOSV) is a Phlebovirus responsible for human neurological infections in endemic Mediterranean areas. The main viral target is the central nervous system, with viremia as a way of dissemination throughout the host. This study was aimed at understanding the spread of TOSV in the host by identifying the cell population infected by the virus and the vehicle to the organs. In vivo studies provided evidence that endothelial cells are infected by TOSV, indicating their potential role in the diffusion of the virus following viremic spread. These results were further confirmed in vitro. Human peripheral mononuclear blood cells were infected with TOSV; only monocyte-derived dendritic cells were identified as susceptible to TOSV infection. Productive viral replication was then observed in human monocyte-derived dendritic cells (moDCs) and in human endothelial cells by recovery of the virus from a cell supernatant. Interleukin-6 was produced by both cell types upon TOSV infection, mostly by endothelial cells, while moDCs particularly expressed TNF-α, which is known to induce a long-lasting decrease in endothelial cell barrier function. These cells could therefore be implicated in the spread of the virus in the host and in the infection of tissues that are affected by the disease, such as the central nervous system. The identification of in vitro and in vivo TOSV cell targets is an important tool for understanding the pathogenesis of the infection, providing new insight into virus-cell interaction for improved knowledge and control of this viral disease.
Collapse
|